Velopix, a new hybrid pixel readout ASIC for the LHCB VELO LS2 upgrade

CERN, NIKHEF and USC

Outline

- Introduction to the VELO upgrade (Martin)
- The VeloPix chip (Martin):
 - Velopix FE (Rafa)
 - Digital pixel (+eCDRPLL) (Xavi)
 - Super Pixel, EOC, periphery and GWT (Tuomas)
- Measurements (Jan)
- Conclusion (Jan)

Introduction to LHCb and its upgrade

- LHCb is a dedicated experiment searching for new physics by studying CP violation and rare decays of b and c quarks
- Forward angle spectrometer with excellent vertex resolution and PID
- Detector upgrade in 2019 \rightarrow 2020 for 5x higher luminosity and improved efficiency
- No more hardware trigger \rightarrow all data data read out and sent to CPU farm

Vertex Locator Upgrade

LHCb will be upgraded in 2019→2020 → very tight planning

- Vertex detector surrounding collision region
 - In vacuum
 - Close to the beam: 5.1 mm
- From silicon strips to pixels
- New R/O chip VeloPix, derived from Timepix3
- In total 624 ASICs, ~41 Mpixels
- Trigger-less readout (~2.9 Tbits/s)

VELO module

ASIC challenges: data rate & radiation hardness

- Sensor and ASIC exposed to high, non-homogeneous, radiation fluence
 - Only part of the pixel matrix gets the full dose of ~ 370 Mrad
 - TID at periphery of chip is factor 10 lower
- For data rates calc. we assume collisions in every LHCb bunch crossing
 - in reality only 2/3 of bunches collide
 - would require a lot of memory to level out
 - \rightarrow assume peak rates for ASIC design
- Data flow simulations using physics Monte Carlo data
- No trigger, all data sent off chip
- Hottest ASIC gives ~15 Gbps
- ASIC design starting point: Timepix3

From Timepix3 \rightarrow Velopix

	Timepix3 (2013)	VeloPix (2016)				
Pixel arrangement	256 x 256					
Pixel size	55 x 5	5 μm²				
Peak hit rate	80 Mhits/s/ASIC	800 Mhits/s/ASIC 50 khits/s/pixel				
Readout type	Continuous, trigger-less, TOT	Continuous, trigger-less, binary				
Timing resolution/range	1.5625 ns, 18 bits	25 ns, 9 bits				
Total Power consumption	<1.5 W	< 3 W				
Radiation hardness		400 Mrad, SEU tolerant				
Sensor type	Various, e- and h+ collection	Planar silicon, e- collection				
Max. data rate	5.12 Gbps	20.48 Gbps				
Technology	IBM 130 nm CMOS	TSMC 130 nm CMOS				

VeloPix Project Overview

- Design started in June 2013 (after Timepix3 submission)
- Change of technology (IBM 130nm \rightarrow TSMC 130nm)
- The chip was submitted as an engineering run on May 2016
- First wafers received on 31st August
- Fabricated (and diced) chips back at CERN on 7th September
- First beam tests done on 6th November
- Production testing later this year (624 chips)
- Irradiation campaign in the future with sensors bonded

VeloPix wafers

VeloPix Chip Architecture

VeloPix pixel schematic

Specifications

Parameter	Value
Technology	TSMC 130nm CMOS
Number of pixels	256 x 256 @ 55 μm pitch
Analog front-end size	55 x 14.5 μm
Analog supply voltage	1.2 V
Detector capacitance	50 fF
Detector polarity	Optimized for electron collection
Maximum of charge distribution	16ke⁻ (200μm Si @ 80e⁻h⁺ pairs per μm)
Leakage current	Up to 12nA/pixel (non-uniform)
Minimum threshold	~500e-
Pile-up	Discharge of 16ke ⁻ charge in 300ns
Time of arrival resolution	25ns
Operating temperature (in experiment)	-30°C <t<0°c< td=""></t<0°c<>
Analog power consumption	~6.1µW/pixel 200mW/cm ² (250mW/cm ²) (constant)

<u>FAB 14 (NMOS)</u>

The annealing at -30°C is much faster in HVT transistors wrt regular transistors

2 Fabs showed different results in terms of leakage for the NMOS transistors

We decided to design for the worst case i.e.:

NMOS transistors either ELT or HVT

ESE Seminar 8th November 2016

Radiation measurements: S. Michelis, F. Faccio

The front-end circuit

The choice on the capacitance for C_{LEAK}

The comparator

- Designed for minimizing time-walk of the system (target below 25ns)
- Designed based on cascading low gain stages was selected
- Constant current consumption in analog part


```
Gain ~4, BW ~40MHz
```

Gain ~3.2, BW ~40MHz

Simulation ToA, ToT

Threshold at 750e-, reference pixel (bottom column). Corners: typ,ff,ss, radiation corners (at 100 Mirad and 400 Mrad)

Implementation of the DAC

VbiasDAC and VbiasDACcasc are provided from the periphery. / Less loading to the DAC in the periphery.

ESE Seminar 8th November 2016

P. Leitao eCDRPLL (simplified) Block Diagram

http://cern.ch/proj-gbt/eCDR-PLL

ePLLCDR Description

- Radiation-hard and phase deterministic PLL & CDR
 - TSMC 130nm, 960 x 420 μm
- Two Frequency Multiplier modes
 - VCO@240MHz 40, 60, 120 and 240 MHz simultaneous output clocks
 - 260-ps phase shift resolution
 - Targets GBT-FPGA/backend applications
 - VCO@320 MHz 40, 80, 160 and 320 MHz simultaneous output clocks
 - 195-ps phase shift resolution
 - Targets typical TTC/e-link applications
 - BIST for jitter characterization (to be run at production time)
- Clock and Data Recovery
 - VCO@320 MHz only
 - 40, 80, 160 and 320 MHz simultaneous output clocks
 - 40, 80, 160 and 320 Mbps selectable output recovered data
 - Uses reference-less wien-bridge VCO calibration (no external clock required)
 - 195-ps phase shift resolution (data pushed-out on clock's falling edge)

P. Leitao ePLLCDR preliminary experimental data

- Jitter measured using the phase noise (Agilent E5052B)
 - Input Clock:
 - 40 MHz (Agilent 81133A)
 - Output Clock:
 - 320 MHz
 - PLL w/ Default parameters

- Phase Shifter
 INL and DNL < 0.5 LSB
- PLL full characterization on going
- CDR and BIST are still being characterized

CERN TSMC 130nm HD Library

Library type	Tap-less CMOS standard cell library
Transistors	Pmos+NmosHVT
Antenna cell	1
WellSubTap cell	1
Filler cells	8
DeCap cells	5 (thin gate) 4 (thin gate + diode) 4 (thick gate)
Sequential cells	2
ClockGate cells	1
ClockBuffer cells	3
Combinatorial cells	54
Total cells	83
Technology	TSMC 130nm 1p7m4x1z1u
Metals used	M1 to M2
Corners [prerad, 100M and 400MRad]	1.2 25C TT 1.1 80C SS 1.3 -20C FF

VOTERI_B_XL_TSMC_HVTN

VOTERI3_B_XL_TSMC_HVTN

test Cell Library: Process , Voltage 1.20, Temp 25.00

Pin Capacitance Information

Call Name	Pin Cap(pf)			Max Cap(pf)	
Centvanie	A	В	С	Z	ZI
VOTERI3_B_XL_TSMC_HVTN	0.00442	0.00413	0.00402	0.10100	0.10100

E Leakage Information

Ł	C-ll N-m-	Leakage(nW)			
	Cen Name	Min.	Avg	Max.	
	VOTERI3_B_XL_TSMC_HVTN	0.00000	0.12682	0.32031	

Delay Information

Delay(ns) to Z rising :					
Call Name	Timing Am(Din)		Delay(ns)		
Cell Name	Timing Arc(Dir)	Min	Mid	Max	
	ZI->Z (FR)	0.02528	0.16214	1.29370	
VOTERIZ R VI TEMC HVTN	A->Z (RR)	0.13665	0.38323	2.39742	
VOTEKIS_B_AL_ISMC_HVIN	B->Z (RR)	0.11776	0.36529	2.37046	
	C->Z (RR)	0.13377	0.36643	2.24325	

Delay(ns) to Z falling :

Call Name	Timing Ave(Div)		Delay(ns)	
Cen Ivanie	Thing Art(Dir)	Min	Mid	Max
	7L->7.(RF)	0.02384	0 14605	1 14841

HD Library Characterization

- Use Liberate
- 9 different corners:
 - TT 25C 1.2
 - preRad
 - 100MRad
 - 400MRad
 - SS 80C 1.1
 - preRad
 - 100MRad
 - 400MRad
 - FF -20C 1.3
 - preRad
 - 100MRad
 - 400MRad
- Observation:
 - 400MRad_TT → preRad_SS
- Corners used:
 - SLOW: SS 80C 1.1 400MRad
 - TYP: TT 25C 1.2 PreRad
 - FAST: FF -20C 1.3 PreRad

Velopix Pixel

								6-bit PC	6-bit Pixel Configuration Register (TMR)	Top Pixel Utild Event ToToverflow[1:0]
@Shutter	verflow_FullRange_TOToverf low	TOToverflow [1:0]	elect_1hitTOT_iTOT	Select_PC_TOT	ectDirection_Write_Read	read_seu	@Parallel Load	Analog Pixel	Pixel Hit & Shutter Processor Clk_counter	Pixel Logic Super Pixel
	SelectO		01		@Sel6				Bott	tom Pixel
	SelectO				@Sele	0	0		Reads the 6-bit Shift Register	om Pixel
0	× SelectO	XX	x	X	@Sele	0	0	Read	Reads the 6-bit Shift Register Reads back the 6-bit PCR	tom Pixel
0	X SelectO	xx	x	x	@Sele	0	0 1 1	Read	Reads the 6-bit Shift Register Reads back the 6-bit PCR Reads the 6-bit SEU status from the PCR	tom Pixel
0	X SelectO	хх	X	x	©Sel © 0 1	0 1 X	0 1 1 X	Read Write	Reads the 6-bit Shift Register Reads back the 6-bit PCR Reads the 6-bit SEU status from the PCR Writes the 6-bit PCR	com Pixel
0	X SelectO	XX 00	X	x	©Sel 0 1	0 1 X	0 1 1 X	Read Write	Reads the 6-bit Shift Register Reads back the 6-bit PCR Reads the 6-bit SEU status from the PCR Writes the 6-bit PCR Valid event generated if TOT _{measured} ≥ 0	tom Pixel
0	SelectO 0	XX 00 01	X	X 0	0 1	0 1 X	0 1 1 X	Read Write Data acquisition	Reads the 6-bit Shift Register Reads back the 6-bit PCR Reads the 6-bit SEU status from the PCR Writes the 6-bit PCR Valid event generated if TOT _{measured} ≥ 0 Valid event generated if TOT _{measured} ≥ 1	tom Pixel
0	x 0	XX 00 01 10	x 0	x 0	0 1	0 1 X	0 1 1 X	Read Write Data acquisition	Reads the 6-bit Shift RegisterReads back the 6-bit PCRReads the 6-bit SEU status from the PCRWrites the 6-bit PCRValid event generated if $TOT_{measured} \ge 0$ Valid event generated if $TOT_{measured} \ge 1$ Valid event generated if $TOT_{measured} \ge 2$	tom Pixel
0	X SelectO	XX 00 01 10 11	x 0	x 0	0 0 1	0 1 X X	0 1 1 X	Read Write Data acquisition	BottReads the 6-bit Shift RegisterReads back the 6-bit PCRReads the 6-bit SEU status from the PCRWrites the 6-bit PCRValid event generated if $TOT_{measured} \ge 0$ Valid event generated if $TOT_{measured} \ge 1$ Valid event generated if $TOT_{measured} \ge 2$ Valid event generated if $TOT_{measured} \ge 3$	tom Pixel
0	X SelectO	XX 00 01 10 11	x 0	x 0		0 1 X X	0 1 1 X X	Read Write Data acquisition	BottReads the 6-bit Shift RegisterReads back the 6-bit PCRReads the 6-bit SEU status from the PCRWrites the 6-bit PCRValid event generated if $TOT_{measured} \ge 0$ Valid event generated if $TOT_{measured} \ge 1$ Valid event generated if $TOT_{measured} \ge 2$ Valid event generated if $TOT_{measured} \ge 3$ Integrating TOT up to 63 counts	tom Pixel
0	X SelectO	XX 00 01 10 11	x 0	X 0 0 1		0 1 X X	0 1 1 X X	Read Write Data acquisition Data debug	Reads the 6-bit Shift RegisterReads back the 6-bit PCRReads the 6-bit SEU status from the PCRWrites the 6-bit PCRWrites the 6-bit PCRValid event generated if $TOT_{measured} \ge 0$ Valid event generated if $TOT_{measured} \ge 1$ Valid event generated if $TOT_{measured} \ge 2$ Valid event generated if $TOT_{measured} \ge 3$ Integrating TOT up to 63 countsIntegrating PC up to 63 counts	tom Pixel
0	X 0 1	XX 00 01 10 11 XX	x 0 0	X 0 0 1 0		0 1 X X	0 1 1 X X	Read Write Data acquisition Data debug acquisition	BottReads the 6-bit Shift RegisterReads back the 6-bit PCRReads the 6-bit SEU status from the PCRWrites the 6-bit PCRValid event generated if $TOT_{measured} \ge 0$ Valid event generated if $TOT_{measured} \ge 1$ Valid event generated if $TOT_{measured} \ge 2$ Valid event generated if $TOT_{measured} \ge 3$ Integrating TOT up to 63 countsIntegrating PC up to 63 counts1-hit integrating TOT up to 63 counts	tom Pixel

TOT Processor

- Event-by-event processor
- Very useful to correctly set a hit in BxID
- Events below TOT threshold are ignored
- Most noise events can also be filtered

TOT threshold	TOT clocks	Fix delay to valid event
00	0	50ns
01	1	75ns
10	2	100ns
11	3	125ns

Simulation of TOT processor

Peak Time	25ns
Return to zero	12.5ns/Ke ⁻
ENC	60e ⁻ rms
Threshold mismatch	30e ⁻ rms
Gain	35e ⁻ /mV
Analog Threshold	~570e ⁻
Pixels tested	64
TestPulses per Qin/pixel	100

Best setting: TOT=01 \rightarrow 100% Qindetected \geq 1.0 Ke⁻

Double column datapath

Periphery datapath

EoC Data Fabric

Packet processors (Center node)

Latency: T1 - T0

EoC Data Fabric Node

Router and output block

GWT (NIKHEF)

Clock distribution

Velopix: TMR/RadHard design

- Pixel Matrix (<400Mrad):
 - Only NMOS ELT transistors used in analog front-end
 - Full TMR in FSM & configuration FFs:
 - Pixel configuration \rightarrow Asynchronous self correcting TMR latch
 - Pixel data flip-flops (FF) unprotected
 - Custom made HD Standard cell library (74 cells) with HVT NMOS HVT and regular PMOS:
 - Standard cell library characterized at 400 Mrad, High-Vt NMOS + Std PMOS
- Periphery (<50Mrad):
 - Full TMR in FSM & configuration FFs
 - Data path unprotected

VeloPix

Double column:

- 512 pixels
- 64 super pixels

Full matrix:

Active Periphery:

40, 80, 160 and 320 TMR clocks
HVT TSMC (tcb013ghphvt library)
4nF digital decoupling (thin gate)

- 128 Double columns
- ~190 Mtransistors
- 14.8nF digital decoupling (thick gate)

2.4 mm 🚽

VeloPix test readout system

- SPIDR-readout system developed at NIKHEF (NL)
 - Based on a Virtex VC707
- Similar as Timepix3. -> Large reuse of soft & firmware.
- Chipboard developed at Univ. Santiago De Compostella.
- Not final LHCb readout.

VeloPix: General Measurements

- Measured power consumption (@nominal settings):
 - Analog suuply < 480 mW</p>
 - Digital:
 - Periphery < 380mW</p>
 - Pixel Matrix <350mW (idle, i.e. clock distribution only)
 - ✓ @High rate ~+300mW (simulated)
 - ✓ Total= ~1.5W @High rate
- Slow and Fast control fully functional.
- Pixel matrix Configuration and readout
- On-chip biasing DACs (next slide)
- Internally measured packet latency (@low rate)
- eCDRPLL (CERN) total jitter @320MHz <6ps_{rms}

VeloPix on-chip biasing DACs

VeloPix Serializers (GWT)

- A low power (~20mW) 5.12 Gbps byte-interleaved serializer and wireline transmitter (NIKHEF).
- Voltage driver, large swing (1.6 V diff)
- Measure internally generated PRBS15 signal with scope \rightarrow Measured BER<10⁻¹²

FE Measurements

• Front end characterization measurements done through the slow control readout.

Front-end gain: (test pulses in one pixel)

Front-end gain uniformity (test pulses in 32 pixels)

Pixel ENC.

[Threshold scan over noise floor in PC mode]

ENC of full matrix.

Threshold Equalization.

Summary of pixel measurements

Pixel gain	~24.6 mV/Ke⁻
Pixel to pixel gain variation	~3.3%
Pixel ENC	62.9 e⁻
Pixel to pixel threshold mismatch	410 e⁻rms
Pixel to pixel threshold mismatch calibrated (Threq)	40.3 e⁻rms
Expected minimum threshold	> 450 e-

Threshold equalization only calculated not measured on chip All measurements assuming Ctest=5fF

Bumps on a Velopix chip

SEM images done by S. Vähänen (Advacam)

Velopix Modules

- Bumping to the 200 μm n-p Hamamatsu Si sensor
- 8 3x1 modules and 6 single sensors available
- Not thinned \rightarrow Experiment requires thinning to ~200 μ m

First source measurements [S40 single sensor]

Beamtest

- First VeloPix in testbeam last Sunday
- Image taken through 1 GWT link
- Hitmap from 1 SPS spill (~5 sec)
- Received 2.6 Million Superpixel packets with 3.42 Million pixel hits:
 - Numbers consistent with #tracks recorded by the Timepix3 telescope (upstream of VeloPix)
 - Linking of VeloPix hits to telescope tracks to be done
- Note that this is only 0.1% of the rate capability of VeloPix !

Still to do...

- Obtain calibration with X-ray sources:
 - Extract correct FE characterization (ENC, gain...)
- Read the chip at full bandwidth with all GWT (20 Gbps):
 where to find such beam?
- Whole setup test using: GBT as clock reference, optical drivers, 200m of fibers and miniDaq
- TID and SEU irradiation campaigns
- Production testing later this year at CERN

Conclusions

- VeloPix ASIC designed in 130nm CMOS for the LS2 VELO upgrade
- First results show the chip is alive and eyes open:
 - Power < 2 W/ASIC, DACs working, pixels functional
 - Pixel: Gain ~25 mV/Ke- and ENC 63 e- (no sensor)
 - GWT serializer working
- All measurements, so far, indicate that the Velopix chip is fully functional as designed:
 - First source images taken in photon counting mode : Slow Control
 - First beam test through the binary readout chain @ low rate
 - Scheduled TID and SEU campaigns to validate design robustness

VeloPix Contributors

- <u>ASIC designers</u>:
 - R.Ballabriga, V.Gromov, X.Llopart, S.Miryala, T.Poikela, J.D.Schipper and W.Wong
- <u>IP Blocks</u>:
 - eCDRPLL: R. de Oliveira and P. Leitao
 - Band-Gap: S. Michelis
- Support, readout and Testing:
 - J. Alozy, M.van Beuzekom, H.Boterenbrood, B. van der Heijden, J. Buytaert, M.Daldoss and E.Lemos