Introduction	Template fit	Direct simulation of $\mathcal{R}_{90\%}$	Conclusions

Template fit of the radial shower profile in LumiCal

S. Lukić

Vinča institute of nuclear sciences, University of Belgrade

30thFCAL Workshop, 6-7 March 2017 CERN,

Introduction	Template fit	Direct simulation of $\mathcal{R}_{90\%}$	Conclusions
	000	0000	

Introduction

2 Template fit – possibilities, challenges and limitations

Oirect simulation of $\mathcal{R}_{90\%}$

4 Conclusions

Introduction	

Section 1

Introduction

S. Lukić, 30th FCAL Workshop, 6-7 March 2017 CERN, Presentation template 3/14

- With 1.8 mm pad height, LumiCal is perfectly suited for precise measurements of the transverse profile of EM showers.
- Assume that data from a prototype with 2+ full sectors of active pads becomes available soon.
- Analysis possibilities: Fit of the vertical profile or template fit.

4/14

duction

Direct simulation of $\mathcal{R}_{90\%}$

Conclusions

${\sf Section}\ 2$

Template fit – possibilities, challenges and limitations

- Minimisation of χ^2 between the data and model histograms:
 - Data: measured or simulated deposits in the pads.
 - Model: Numerical integration of the parametrisation over the pads.
- Both the data and the model describe average energy as a function of the pad ID of the deposit and of the electron impact.

 $\left\langle E_{dep}(n_{pad}^{deposit}, n_{pad}^{impact}) \right\rangle$

S. Lukić, 30th FCAL Workshop, 6-7 March 2017 CERN, Presentation template 7/14

1

-10

-5 0 5 10 Distance from shower core (pads) 1D fit results

S. Lukić, 30th FCAL Workshop, 6-7 March 2017 CERN Presentation template

S. Lukić, 30th FCAL Workshop, 6-7 March 2017 CERN, Presentation template 7/14

du	

Challenges

Template fit

Direct simulation of $\mathcal{R}_{90\%}$

Conclusions

Numerical integration of the model

- The grid currently used adapts to the pad shape, but not to the shape of the shower profile.
- Potential pitfalls: point-like beam hitting in-between the grid points (See below). Fortunately, this is not a realistic case.
- The universal solution would require advanced tesselation which takes into account both the pad structure and the profile shape and adapts to both for each beam electron.
- The present grid should work fine for beam spot sizes comparable or greater than the pad height (which is the realistic case).

Introduction	

Section 3

Direct simulation of $\mathcal{R}_{90\%}$

Direct simulation of *R*_{90%} ●○○○ Conclusions 0

Simulation of radial PDF – Geometry

- Identical geometry as the LumiCal prototype
- Circular sensors with concentric radial segmentation
- Point-like beam hitting at the center of the sensor

Direct simulation of *R*_{90%} ○●○○ Conclusions

Simulation of radial PDF – Segmentation

Segmentation adapted to extract radial PDF

- Azimuthal division in 4 quadrants
- Radial steps of 0.1 mm from 0 to 50 mm. Single segment from 50 to 70 mm

Direct simulation of *R*_{90%} ○○●○ Conclusions

Simulation of radial PDF – Results

Two methods:

- Fit the tail to determine the fraction of energy leaking transversally; Find $\mathcal{R}_{90\%}$ directly from the histogram.
- \bullet Full fit of the radial PDF; Determine $\mathcal{R}_{90\%}$ from the fit parameters.

Direct simulation of *R*_{90%} ○○○●

Simulation of radial PDF – Results

- Even when directly extracting $\mathcal{R}_{90\%}$ from the data and using fit only to determine the leaking fraction, results using different parametrisations differ by $\sim 20\%$.
- $\mathcal{R}_{90\%}$ is found in a relatively low region of the PDF with weak slope \rightarrow very sensitive on the choice of parametrisation and the parameters.
- Existing parametrisations do not match simulated data well enough for a precise determination of $\mathcal{R}_{90\%}$. The situation with the data (when measured beyond $\sim 1 \times \mathcal{R}_{90\%}$) may or may not be different.

101 1090%		
Parametrisation	From histogram	From fit parameters
GP	22.2	20.2
GPmod	26.6	29.8

Results for $\mathcal{R}_{90\%}$ (mm)

Introduction	Template fit	Direct simulation of $\mathcal{R}_{90\%}$	Conclusions
O	000		●
Conclusions			

- Template fit in principle offers an accurate method of analysis of the transverse shower profiles.
- Existing parametrisations may not reproduce the data well enough.
- Model integration using a grid adapted to the pad shape is an approximate solution usable in realistic conditions. Advanced adaptive 2D tesselation would offer more robust integration.
- $\bullet \ \mathcal{R}_{90\%}$ is found in a relatively low and flat region of the transverse profile

 \rightarrow extremely sensitive on the choice of parametrisation and the parameters.

• This method could be of interest for use with eventual future LumiCal prototypes with larger active area of the sensor. At the moment it is still unclear whether there is a crucial advantage over the simpler 1D fit procedure.