

Recent Searches for New Resonances and Contact Interactions with **ATLAS**

> **CERN LHC Seminar** April 25th, 2017

Arely Cortes-Gonzalez (CERN) On behalf of the ATLAS Collaboration

Recent Searches for *New Resonances* and *Contact Interactions* with **ATLAS**

CERN LHC Seminar April 25th, 2017

Arely Cortes-Gonzalez (CERN) On behalf of the ATLAS Collaboration

Very **successful** theory.

* **Precise measurements** in great agreement with predictions.

Standard Model Production Cross Section Measurements

3

Status: March 2017

Standard Model

The **Higgs discovery** further validated the SM

(self-consistent theory).

Run I *legacy*: Higgs discovery The discovery of a new particle also opened a new channel for searches.

Phys. Lett. B 716 (2012) 1-29

Still left with many open questions....

e.g. High-levels of **fine tuning** needed to avoid divergences in Higgs mass corrections.

SM is a self-consistent theory, with predictions in agreement with measurements, but...

*** Hierarchy** problem (of mass scales).
Large discrepancy between weak force and gravity: m_{EW}/m_{Plank}~10⁻¹⁶. *** Fine tuning** needed to avoid divergences in Higgs mass corrections. *** No Dark matter** candidate. ***** Baryon asymmetry.

* Neutrino masses.

SIM is a self-consistent theory, with predictions in agreement with measurements, but...

*** Hierarchy** problem (of mass scales).
Large discrepancy between weak force and gravity: m_{EW}/m_{Plank}~10⁻¹⁶. *** Fine tuning** needed to avoid divergences in Higgs mass corrections.
* No **Dark matter** candidate.
* Baryon **asymmetry**.

* Neutrino masses.

How to solve these?

- * SUSY.
- * Extra Dimensions.
- * Compositeness.
- * Sequential Standard Model.
- * Hidden Sectors.
- * Top partners,
- * ... New TeV scale interactions/ particles!

SM is a self-consistent theory, with predictions in agreement with measurements, but...

*** Hierarchy** problem (of mass scales).
Large discrepancy between weak force and gravity: m_{EW}/m_{Plank}~10⁻¹⁶. *** Fine tuning** needed to avoid divergences in Higgs mass corrections. *** No Dark matter** candidate. ***** Baryon **asymmetry**.

* Neutrino masses.

Excited states of leptons and quarks (q*) can be predicted from
 composite models.

Explains generational structure and mass hierarchy of quarks.

* Composite Higgs

Heavy Vector triplet model (HVT), with new W'[±], Z' states.

• Model A: Extended gauge symmetry.

o Model B: *Minimal composite Higgs model*.

SIM is a self-consistent theory, with predictions in agreement with measurements, but...

*** Hierarchy** problem (of mass scales).
Large discrepancy between weak force and gravity: m_{EW}/m_{Plank}~10⁻¹⁶. *** Fine tuning** needed to avoid divergences in Higgs mass corrections. *** No Dark matter** candidate. ***** Baryon **asymmetry**.

* Neutrino masses.

Several extensions of the SM with extended gauge symmetries.

* Sequential Standard Model.

SM + new spin-1 heavy gauge bosons with similar couplings as SM W^{\pm} and Z.

New bosons at the TeV scale.

SM is a self-consistent theory, with predictions in agreement with measurements, but...

*** Hierarchy** problem (of mass scales).
 Large discrepancy between weak force and gravity: m_{EW}/m_{Plank}~10⁻¹⁶.
 *** Fine tuning** needed to avoid divergences in Higgs mass corrections.

* No **Dark matter** candidate.

* Baryon **asymmetry**.

* Neutrino masses.

Resonance searches can also be interpreted in terms of **DM models**.

Searching...

We look for observations of new resonances in the *tails of the SM distributions*.

These resonances could decay into e.g. vector bosons or fermions.

SM background can be modeled in a data driven fashion. Different searches sensitive to **narrow** resonances (wide variety of **signatures** to be explored!).

- * Fully hadronic
 - \circ di-jet, V(qq)+H(qq)
- * With leptons
 - $_{\odot}$ dileptons, lepton + $E_{T}^{\rm miss}$

* with Photons

 $_{\odot}$ photon + $E_{T}^{\rm miss}$

Arely Cortes Gonzalez

CERN LHC Seminar

10

Searching...

We look for modifications in angular and mass distributions arising from **new contact interaction (CI) scales**.

New mediating particle with a mass much higher than the energy exchange modeled as contact interaction with new physics at energy scale Λ .

* Dileptons

• Broad excess in invariant mass distributions.

* Dijets

 \circ CI is often more isotropic than QCD → use angular information.

Arely Cortes Gonzalez

ATLAS Detector

ATLAS Data

Excellent **performance by the LHC** and high **data taking efficiency** by detectors in the **13 TeV pp** collisions period (2015, 2016).

Performance: Leptons

mmunum

Syst. uncert.

1.5

 $\eta(\mu^{\text{lead}})$

Performance: Jets

Arely Cortes Gonzalez

CERN LHC Seminar

25.04.17

15

Re-cluster with $R_{sub} = 0.2$. Remove sub-jets with $f_{cut} < 0.05$.

Trimming

Remove softer components (mainly from UE and pileup).

Improved mass resolution.

ATLAS-PHYS-PUB-2015-033

Performance: Boson Tagging

Discriminating against background: boson tagging.

Use differences in the jet characteristics between signal and background jets.

Jet mass [GeV]

ATLAS-PHYS-PUB-2015-033

Performance: Boson Tagging

Arely Cortes Gonzalez

CERN LHC Seminar

High Mass **Di-Jet** Search

Run: 305777 Event: 4144227629 2016-08-08 08:51:15 CEST

Highest-mass dijet event: m_{jj} = 8.12 TeV, $|y^*|$ =0.38

arxiv:1703.09127

High Mass **Di-Jet** Search

$$f(z) = p_1(1-z)^{p_2} z^{p_3} z^{p_4 \log z}$$

With increasing luminosity and corresponding m_{jj} range extension, a single global fit may not necessarily work. Events selected with lowest un-prescaled single jet trigger (p_T > 380 GeV).

Selection

	$p_{\mathrm{T}}^{\mathrm{leading}}$	$p_{\mathrm{T}}^{\mathrm{subleading}}$	$ y^* $	$ y_{\rm B} $	m_{jj}
Resonance	> 0.44 TeV	> 0.06 TeV	< 0.6	-	> 1.1 TeV
W^*	> 0.44 TeV	> 0.06 TeV	< 1.2	-	> 1.7 TeV
Angular	> 0.44 TeV	> 0.06 TeV	< 1.7	< 1.1	> 2.5 TeV

 $|y^*| = |y_1 - y_2|/2$ Rejects forward peaking t-channel QCD processes.

- Perform the f(z) fit in restricted (sliding) ranges (*more flexible*!).
- The limited range allows to use a
- 3-parameter function.

• Excellent linearity between injected and extracted signal.

High Mass **Di-Jet** Search

Arely Cortes Gonzalez

CERN LHC Seminar

High Mass **Di-Jet** Search

High Mass **Di-Jet** Search

Arely Cortes Gonzalez

CERN LHC Seminar

Di-Jet searches covering the low and high mass regime!

Arely Cortes Gonzalez

CERN LHC Seminar

24

High Mass **Di-Jet** Search

Strategy: Angular

$$\chi = \mathrm{e}^{2|y^*|} \sim \frac{1 + \cos \theta^*}{1 - \cos \theta^*}$$

Background prediction based on Pythia (used as template) corrected for **NLO** and **EW** effects.

 Correction factors are mass and angle dependent.

Uncertainties:

 Jet Energy Scale is the dominant experimental uncertainty.

 Main theoretical uncertainties: renormalization and factorization scales, PDFs.

Arely Cortes Gonzalez

High Mass **Di-Jet** Search

Arely Cortes Gonzalez

CERN LHC Seminar

V(qq)H(bb) Search

Selection

Large BRs: W/Z→qq (67%), H→bb (~70%).
Select events with large-R jets consistent with highly boosted V→qq and H→bb.

- Use **boson tagging**:
 - V-tagging: mass + D₂^{β=1}.
 H-tagging: mass + b-tagging.

Looking for V(qq)H(bb) resonances!

 \circ Leading jet p_T >450 GeV, sub-leading jet p_T > 250 GeV.

- $_{\odot}$ Larger mass jet assigned as Higgs candidate.
- \circ Events categorized in 1-tag and \geq 2-tag.
- WH and ZH SRs not orthogonal (~60% overlap).

25.04.17

V(qq)H(bb) Search

Extract $\mu_{multijets}$ from high mass sideband, different for each SR: 1- and 2-tag, and WH, ZH.

ATLAS-CONF-2017-018

number of b-tags

CERN LHC Seminar

ATLAS-CONF-2017-018

V(qq)H(bb) Search

V(qq)H(bb) Search

• Normalization and shape of multijet bkg: estimated from largest deviation

between data and prediction yields in validation region.

• Normalization: 2-tag: 13%(sys), 3%(stat); 1-tag: 5% (sys), 1% (stat).

 \circ Shape (split for <2TeV and >2TeV).

• Fit **WH** and **ZH** signal regions separately.

 $_{\odot}$ Combining 1-tag and 2-tag regions in each case.

V(qq)H(bb) Search

Heavy Vector Triplet (HVT) W' and Z'.

• Model A: comparable BR to fermions

and gauge bosons.

 \circ Model B: Suppressed couplings to fermions.

Largest excess found at 3.0 TeV in ZH channel, with **global** significance of **2.2** σ .

Lepton + $\mathbf{E}_{\mathbf{T}}^{\text{miss}}$ Search

ATLAS-CONF-2017-016

Run: 304337 Event: 588288156 2016-07-23 19:55:07 CEST

Highest- m_T event in the **electron** channel observed with ATLAS: $m_T = 2.26 \text{ TeV}$ $(p_T^e = 1.11 \text{ TeV}, E_T^{\text{miss}} = 1.16 \text{ TeV})$

Arely Cortes Gonzalez

CERN LHC Seminar

25.04.17

Strategy

Main background from Drell-Yan production.

Additional contributions from processes with **real leptons** in the final state

(t-tbar, single top quark, diboson). Estimated using MC samples.

DY events are simulated with NLO Powheg generator. Events yields are corrected with mass dependent rescaling from NLO to NNLO QCD. Mass-dependent EW-corrections at NLO are also applied.

• **Fakes** background: e.g. from multijet events, where one or more jets satisfies the lepton selection.

- Negligible in muon channels. Minor background in the electron channels.
- Using data-driven approach: *matrix method*. Measure fake and real rates: probabilities of a jet or an electron *to be identified as an electron*.

Background estimates may suffer from low statistics in the high mass tails (e.g. multijets). Extrapolation performed by fitting the lower mass distribution and using the fitted function to predict the background at higher mass.

Source	Dielectron channel		Dimuon channel		T.A.
	Signal	Background	Signal	Background	
Luminosity	3.2% (3.2%)	3.2% (3.2%)	3.2% (3.2%)	3.2% (3.2%)	
MC statistical	<1.0% (<1.0%)	<1.0% (<1.0%)	<1.0% (<1.0%)	<1.0% (<1.0%)	
Beam energy	2.0% (4.1%)	2.0% (4.1%)	1.9% (3.1%)	1.9% (3.1%)	
Pile-Up effects	<1.0% (<1.0%)	<1.0% (<1.0%)	<1.0% (<1.0%)	<1.0% (<1.0%)	
DY PDF choice	N/A	<1.0% (8.4%)	N/A	<1.0% (1.9%)	Largest theory
DY PDF variation	N/A	8.7% (19%)	N/A	7.7% (13%)	uncertainty
DY PDF scale	N/A	1.0% (2.0%)	N/A	<1.0% (1.5%)	differ bailing.
DY α_S	N/A	1.6% (2.7%)	N/A	1.4% (2.2%)	
DY EW corrections	N/A	2.4% (5.5%)	N/A	2.1% (3.9%)	
DY γ -induced corrections	N/A	3.4% (7.6%)	N/A	3.0% (5.4%)	
Top Quarks theoretical	N/A	<1.0% (<1.0%)	N/A	<1.0% (<1.0%)	
Dibosons theoretical	N/A	<1.0% (<1.0%)	N/A	<1.0% (<1.0%)	
Reconstruction efficiency	<1.0% (<1.0%)	<1.0% (<1.0%)	10% (17%)	10% (17%)	Largest exp
Isolation efficiency	9.1% (9.7%)	9.1% (9.7%)	1.8% (2.0%)	1.8% (2.0%)	uncertainty.
Trigger efficiency	<1.0% (<1.0%)	<1.0% (<1.0%)	<1.0% (<1.0%)	<1.0% (<1.0%)	
Identification efficiency	2.6% (2.4%)	2.6% (2.4%)	N/A	N/A	
Lepton energy scale	<1.0% (<1.0%)	4.1% (6.1%)	<1.0% (<1.0%)	<1.0% (<1.0%)	Large uncertainty
Lepton energy resolution	<1.0% (<1.0%)	<1.0% (<1.0%)	2.7% (2.7%)	<1.0% (6.7%)	at high masses
Multi-jet & W+jets	N/A	10% (129%)	N/A	N/A	due to
Total	10% (11%)	18% (132%)	11% (18%)	14% (24%)	extrapolation.

Background and signal systematic uncertainties at

dilepton masses of 2 TeV (4 TeV).

Arely Cortes Gonzalez

CERN LHC Seminar

25.04.17

 \circ Most significant excess in di-electron mass spectrum is observed at 2.37 TeV, global significance of -0.2 σ .

Arely Cortes Gonzalez

CERN LHC Seminar

			Lower limits on $m_{Z'}$ [TeV]					
Model Width [%]		θ_{E_6} [Rad]	ee		μμ		ll	
			Obs	Exp	Obs	Exp	Obs	Exp
$Z'_{\rm SSM}$	3.0	-	4.3	4.3	4.0	3.9	4.5	4.5
Z'_{χ}	1.2	0.50π	3.9	3.9	3.6	3.6	4.1	4.0
Z'_{s}	1.2	0.63π	3.9	3.8	3.6	3.5	4.0	4.0
$Z_I^{\check{\prime}}$	1.1	$0.71 \ \pi$	3.8	3.8	3.5	3.4	4.0	3.9
Z'_{η}	0.6	0.21π	3.7	3.7	3.4	3.3	3.9	3.8
$Z'_{\rm N}$	0.6	-0.08 π	3.6	3.6	3.4	3.3	3.8	3.8
Z'_{ψ}	0.5	0π	3.6	3.6	3.3	3.2	3.8	3.7

Limits

Upper limits are set for Z' cross sections times BR wrt $m_{Z'}$, for various Z' scenarios.

Limits weaken above 3.5 TeV: Rapidly falling signal x-sections and off-shell low mass signal tail.

Limits for minimal Z' models are also discussed in the paper.

Arely Cortes Gonzalez

38

Arely Cortes Gonzalez

CERN LHC Seminar

 \circ Most significant excess in electron channel is at $m_{W'}$ = 1.1 TeV, global significance of 0.6 σ .

 \circ Most significant excess in muon channel is at $m_{W'}\sim 5$ TeV, global significance of 0.1 $\sigma.$

CERN LHC Seminar

Arely Cortes Gonzalez

CERN LHC Seminar

25.04.17

Searches with Leptons

Significant improvement wrt previous ATLAS searches!

Observed limits to the **Z'**_{SSM} cross section from the combination of di-electron and di-muon channels. Observed limits to the **W'_{SSM}** cross section from the combination of electron and muon channels.

42

Photon + \mathbf{E}_{\mathbf{T}}^{\text{miss}} Search

arxiv:1704.03848

A photon with $E_T = 265 \text{ GeV}$ is balanced by E_T^{miss} of 268 GeV.

Photon + E, miss Search

Multiple CRs defined to constrain SM bkgs

Photon + \mathbf{E}_{\mathbf{T}}^{\mathbf{miss}} Search

Strategy

Dominant: Z(vv)+γ(ISR), followed by Wγ and fake γ.
Vγ+jets normalized in dedicated CRs.
S Z_T^{miss} dependent scale factors: k_Z, k_w, k_{yjet}.
Z(vv) normalized in 2μ + 2e CRs.
γ+jets bkg from γ+jet CR.

Main uncertainties: Statistical from CRs: 9%.

This analysis places limits on simplified DM models (photon from ISR) and EFT DM models (probing the γγχχ coupling).

Connection to **Dark Matter**

Conclusions

 $_{\odot}$ Searches for new physics have been performed with the full 2015+2016 dataset.

• Not possible to achieve without the amazing performance of the LHC machine and injector chain. Thanks to all involved!

- New resonances and contact interactions are a strong components of the LHC physics program.
 - \circ New techniques are being developed and new models are studied.
 - o So far, no significant deviations from Standard Model observed.
 - $_{\odot}$ Improved limits on multiple signal models!
 - \circ Di-jet searches now exclude excited quarks up to 6 TeV.
 - \circ Upper limits on σxBR to the qq⁽⁾bb final state are set for masses between 1.1-3.8 TeV.
 - \circ W'_{\rm SSM} excluded for m_w'>5.1 TeV from the lepton+E_T^{\rm miss} search,
 - $_{\odot}$ Z'_{\rm SSM} excluded for $m_{\rm Z'}\!\!>\!\!4.5$ TeV from di-lepton searches.
 - $_{\odot}$ Upper limits on σxBR for a Z(vv)gamma resonance set for masses between 2-5 TeV.

Di-Jet	arXiv:1703.09127		
V(qq)H(bb)	ATLAS-CONF-2017-018		
Dilepton	ATLAS-CONF-2017-027		
Lepton + \mathbf{E}_{T}^{miss}	ATLAS-CONF-2017-016		
Photon + $\mathbf{E}_{\mathbf{T}}^{\text{miss}}$	arXiv:1704.03848		

Bonus Slides

ATLAS Detector

Arely Cortes Gonzalez

CERN LHC Seminar

25.04.17

51

Performance: Electrons

Photon + \mathbf{E}_{\mathbf{T}}^{\mathbf{miss}} Search

• High p_T photon.

 p_T >150 GeV, |η|<2.37, tight, isolated. ○ E_T^{miss} > 150 GeV.

 $\circ \Delta \phi(\gamma, E_T^{\text{miss}}) > 0.4$

• N_{jets} (p_T>30GeV, $|\eta| < 4.5$) ≤ 1 • Δφ(E_T^{miss}, jet) > 0.4. • SR: veto on muons (p_T>6 GeV) and electrons (p_T > 7 GeV).

Performance: Leptons

56

Strategy

 Main background from Drell-Yan production. Additional contributions from processes including 2 real leptons in the final state (t-tbar, single top quark, diboson).
 Estimated using MC samples.

DY events are simulated with NLO Powheg generator. Events yields are corrected with mass dependent rescaling from NLO to NNLO QCD. Mass-dependent EW-corrections at NLO are also applied.

 $_{\odot}$ Fakes background: multijet and W+jets events, where one or more jets satisfies the lepton selection.

• Negligible in di-muon channel.

 \circ Using data-driven approach: *matrix method*. Measure fake (**f**) and real (**r**) rates: probabilities of a jet or an electron **to be identified as an electron**.

 $\begin{pmatrix} N_{TT} \\ N_{TL} \\ N_{LT} \\ N_{LL} \end{pmatrix} = \begin{pmatrix} r^2 & rf & fr & f^2 \\ r(1-r) & r(1-f) & f(1-r) & f(1-f) \\ (1-r)r & (1-r)f & (1-f)r & (1-f)f \\ (1-r)^2 & (1-r)(1-f) & (1-f)(1-r) & (1-f)^2 \end{pmatrix} \begin{pmatrix} N_{RR} \\ N_{RF} \\ N_{FR} \\ N_{FF} \end{pmatrix} \end{pmatrix} N_{TT}^{\text{Multi-jet & W+jets}} = rf(N_{RF} + N_{FR}) + f^2N_{FF}$

 $\circ N_{\rm RF}$, $N_{\rm FR}$, and $N_{\rm FF}$ obtained through matrix inversion expressed in terms of measurable quantities: N_{TT} , N_{TL} , N_{LT} , N_{LL})

Arely Cortes Gonzalez

CERN LHC Seminar

25.04.17

Motivation

CI in **mass** distributions:

 Observable as broad excess in dilepton invariant mass spectrum.

 $_{\rm O}$ Observation in $m_{\rm II}$ distribution requires precise understanding of QCD cross section.

CI in **angular** distributions:

• CI is often more isotropic than QCD.

 $_{\odot}$ As function of $cos\theta^{*}.$

 Angular distributions have much smaller systematic uncertainties than cross section vs mjj.

 \circ Some sensitivity to resonant signals too.

Performance: Boson Tagging

25.04.17

Standard Model

60

Phys. Lett. B 716 (2012) 1-29

The **Higgs discovery** further validated the SM

(*self-consistent* theory).

Run I legacy: Higgs discovery The discovery of a new particle also opened a new channel for searches.

> Still left with many open questions....

e.g. High-levels of fine tuning needed to avoid divergences in Higgs mass corrections.

25.04.17