LHCb UT & Velo CO₂ transfer lines sizing – new flow values

30 October 2016

P. Tropea

Operational parameters data from LHCb cooling meeting on October 13th, 2016 https://indico.cern.ch/event/568964/

		UT 1/2	Velo 1/2	Main lines
Flow	g/s	28.8	15.6	89
By-pass flow @ detector	g/s	0	0.4	0.8
Flow used * calculations	g/s	28.8	16	89.6
Power	W	2500	1040	7080
Enthalpy heater power	W	100	100	0
Power * calc	W	2860	1254	9051
OD inlet	mm	8	6	10
Thickness	mm	1	1	1
ID inlet	mm	6	4	8
OD return	mm	18	12	26.7
Thickness	mm	1.5	1	2.87
ID return	mm	15	10	20.96
Length	m	11	4.5	55
Volume				
Volume liquid	I	0.3	0.1	2.8
Volume gas	I	1.4	0.2	14.7
Volume total	I	1.7	0.3	17.4
Volume after JB	I	3.1	•	2* Velo
Total volume	I	20.5		(one hr

Flow always in by-pass at the detector level

Total flow in main lines = sum of both detector max needs (including local by-pass)

includes 10% margin on each detector + 10% on total power

For each detector max flow & max power are considered 0.9 g/s for UT staves – 5 kW 0.6 g/s for each Velo module – 2 kW

2* Velo transfer lines volume + 1.5* UT transfer line volume (one branch is 2 times the length of the other)

Main transfer lines @ -35 C

max flow and power conditions

Heat pickup -35 C


```
Main transfer lines @ +15 C
```


Summary of valves on the two plants & junction box

	Valve P&I reference	Qty x1 system	Qty for 2 systems	Liquid or gas	Flow rate	Valve proposed	Cv Dp	@-40 C	Op @ 10
Transfer lines	PV1008, PV3010		2	4 L	10	WU80	1.2	109	141
Junction box	PV3814		1	2L	10	WU80	1.2	109	141
Junction box	By pass PV3010		1	1L	8	808UW	1.2	69	90
Junction box	PV3A14, PV3C14		2	4 L	5	608UW	1.2	27	35
Transfer lines	PV1008, PV3010		2	4L	10	0 HP9008	1.02	150	195
Junction box	PV3814		1	2L	10	0 HP9008	1.02	150	195
Junction box	By pass PV3010		1	1L	8	0 HP9008	1.02	96	125
Junction box	PV3A14, PV3C14		2	4L	5	0 HP9008	1.02	38	49
Plant	PV1H56, PV1G56, PV1052		3	6L	15	0HP9012	1.9	97	126
Transfer lines	PV1040, PV3036		2	4G	8	80 HP9012	1.9	600	300
Junction box	By pass PV3036		1	1G	8	80 HP9012	1.9	600	300

baseline	8UW	11
backup	HP9008	<u>11</u>
decided	HP9012	11 (tested @ -25 and +15 with 80 g/s and 7 kW load)

P&ID reference <u>link</u>

Effects of Dp on return line on the detector evaporation T

Summary of limits

- The pressure drops on the return line are driving the minimum evaporating T that can be reached at the exit of the detector
- The pressure drop on the return line from the detector to the accumulator are due to the transfer lines and to the valves along this path
- Transfer line contribution is about (by calculation) 0.3 bar when in backup mode (full flow and full power – 90 g/s & 7 kW). When operating one detector only on that flow we reduce Dp to about 120 mbar
- Valve contribution may go up 600 mbar in worst case, lowers to 300 mbar in single detector operation (*2 for two valves in series)
- The total of 1.5 bar Dp on the return lines translates into 3 C delta T at low T. – Effect can be further mitigated by a choice of a bigger valve and maintained down to about 2 C.

References

Transfer lines lengths by O. Jamet – 25 May 2016

53060 mm from the alcove to the box52800 mm from the alcove to the box

4180 mm from the box to the velo **4050 mm** from the box to the velo

10800 mm from the box to UT**5000 mm** from the box to UT

