Portoroz, 19.IV. 2017

Extensions of the IDM

Maria Krawczyk University of Warsaw

In coll. with I. Ginzburg, K. Kanishev, D.Sokołowska, B. Świeżewska, G. Gil, P.Chankowski, N. Darvishi, A. Ilnicka, T. Robens, L. Diaz-Cruz, C. Bonilla

Higgs particle at LHC -summer 2016ATLAS+CMS Run 1arXiv:1606.02266v1 [hep-ex]

SM-like scenario observed

- Mass 125.09 \pm 0.24 GeV ZZ \rightarrow 4 I, $\gamma \gamma$
- Total width < 23 MeV (95%CL); SM ~4 MeV</p>
- Signal strengths $\mu = R = \sigma \times Br/(\sigma \times Br)|_{SM}$; SM =1 global 1.09 ± 0.11/0.10 $\gamma\gamma$ 1.14 ± 0.19/0.18 $\rightarrow R_{\gamma\gamma}$
- Invisible decay BR = 0.00^{+0.16} (< 0.32 at 95% CL)
 Spin/CP J^{CP} 0 +

LHC 2016

LHC 2016

DM: Z₂ 2HDM potential for 2HDM Branco, Rebelo ,85 (CP conserved) Potential V = $\frac{1}{2}\lambda_{1}(\Phi_{1}^{\dagger}\Phi_{1})^{2} + \frac{1}{2}\lambda_{2}(\Phi_{2}^{\dagger}\Phi_{2})^{2} - \frac{1}{2}m^{2}_{11}(\Phi_{1}^{\dagger}\Phi_{1}) - \frac{1}{2}m^{2}_{22}(\Phi^{\dagger}\Phi_{2})$ $+ \lambda_{3}(\Phi_{1}^{\dagger}\Phi_{1})(\Phi_{2}^{\dagger}\Phi_{2}) + \lambda_{4}(\Phi_{1}^{\dagger}\Phi_{2})(\Phi_{2}^{\dagger}\Phi_{1}) + \frac{1}{2}[\lambda_{5}(\Phi_{1}^{\dagger}\Phi_{2})^{2} + h.c]$ $\lambda_{345} = \lambda_3 + \lambda_4 + \lambda_5$ Z_2 symmetry transf.: $\Phi_1 \rightarrow \Phi_1 \quad \Phi_2 \rightarrow - \Phi_2$ Yukawa interaction **Model I** – one doublet Φ_1 couples to all fermions

Vacuum state ? various possible M. Krawczyk, Portoroz 2017 **positivity (stability) constraints** $\lambda_1 > 0, \quad \lambda_2 > 0, \quad R+1 > 0, \quad R_3+1 > 0$

$$\lambda_{345} = \lambda_3 + \lambda_4 + \lambda_5, \quad R = \lambda_{345} / \sqrt{\lambda_1 \lambda_2}, \quad R_3 = \lambda_3 / \sqrt{\lambda_1 \lambda_2},$$

Extrema \rightarrow **Vacua** $\langle \phi_S \rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ v_S \end{pmatrix}, \quad \langle \phi_D \rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} u \\ v_D \end{pmatrix}$

Symmetry
EWs:
$$v_D = 0$$
, $v_S = 0$, $\mathcal{E}_{EWs} = 0$;
 I_1 , $v_D = 0$, $v_S^2 = v^2 = \frac{m_{11}^2}{\lambda_1}$, $\mathcal{E}_{I_1} = -\frac{m_{11}^4}{8\lambda_1}$
Inerverting
 I_2 : $v_S = 0$, $v_D^2 = v^2 = \frac{m_{22}^2}{\lambda_2}$, $\mathcal{E}_{I_2} = -\frac{m_{22}^4}{8\lambda_2}$
 $w_S^2 = \frac{m_{11}^2\lambda_2 - \lambda_{345}m_{22}^2}{\lambda_1\lambda_2 - \lambda_{345}^2}$, $v_D^2 = \frac{m_{22}^2\lambda_1 - \lambda_{345}m_{11}^2}{\lambda_1\lambda_2 - \lambda_{345}^2}$;
M:
 $\mathcal{E}_M = -\frac{m_{11}^4\lambda_2 - 2\lambda_{345}m_{11}^2m_{22}^2 + m_{22}^4\lambda_1}{8(\lambda_1\lambda_2 - \lambda_{345}^2)}$.
 $\mathcal{E}_{I_1} - \mathcal{E}_M = \frac{(m_{11}^2\lambda_{345} - m_{22}^2\lambda_1)^2}{8\lambda_1^2\lambda_2(1 - R^2)}$
 $v_S^2 = \frac{m_{11}^2\lambda_2 - \lambda_3m_{22}^2}{\lambda_1\lambda_2 - \lambda_3^2}$, $v_D = 0$, $u^2 = \frac{m_{22}^2\lambda_1 - \lambda_3m_{11}^2}{\lambda_1\lambda_2 - \lambda_3^2}$,
 \mathcal{CB} :
 $\mathcal{E}_{CB} = -\frac{m_{11}^4\lambda_2 - 2\lambda_3m_{11}^2m_{22}^2 + m_{22}^4\lambda_1}{8(\lambda_1\lambda_2 - \lambda_3^2)}$.
 $U=0$
 $u \neq 0$
 $u \neq 0$
 $\mathcal{L} = 0$

Inert Doublet Model

 Φ_{s} as in SM (BEH)

Higgs boson h (SM-like)

 $\Phi_{\mathbf{D}}$ – no vev

$$\Phi_{\rm D} = \begin{pmatrix} {\rm H}^+ \\ {\rm H} + {\rm i} \ {\rm A} \end{pmatrix}$$
 (no Higgses!)

Ma,...'78

4 scalars H+,H-,H, A no interaction with fermions

D symmetry
$$\Phi_{s} \rightarrow \Phi_{s} \quad \Phi_{D} \rightarrow \Phi_{D}$$
 exact
 \blacktriangleright D parity
 \lnot only Φ_{D} has odd D-parity
 \lnot only Φ_{D} has odd D-parity
 \lnot the lightest scalar stable - DM candidate (H)
 \lnot (Φ_{D} dark doublet with dark scalars)

IDM: An Archetype for Dark Matter, Lopez Honorez,...Tytgat..07 LHC phenomenology (Barbieri., Ma.. 2006,...)

Ma'2006, .Barbieri 2006, Dolle, Su, **Testing IDM** Gorczyca(Świeżewska), MSc T2011,... Theoretical constraints: Posch 2011, Arhrib..2012, Chang, Stal. vacuum stability, pert.unitarity $\frac{m_{11}^2}{\sqrt{\lambda_1}} \ge \frac{m_{22}^2}{\sqrt{\lambda_2}}$ *condition for Inert vacuum* Swiezewska Detailed study of the SM-like h $M_{h}^{2} = m_{11}^{2} = \lambda_{1} v^{2} = (125 \text{ GeV})^{2}$ Study of dark scalars D = (H, A, H+, H-) - in pairs! $M_{H+}^2 = -\frac{m_{22}^2}{2} + \frac{\lambda_3}{2}v^2 \quad M_A^2 = -\frac{m_{22}^2}{2} + \frac{\lambda_3 + \lambda_4 - \lambda_5}{2}v^2$ m₂₂² arbitrary ! (decoupling...) $M_{H}^{2} = -\frac{m_{22}^{2}}{2} + \frac{\lambda_{3} + \lambda_{4} + \lambda_{5}}{2}v^{2}$ H – dark matter ($\lambda_5 < 0$) D couple to V = W/Z (eg. AZH, H⁻W⁺H), not DVV! Quartic selfcouplings D⁴ proportional to λ_2 Couplings with Higgs: hHH ~ λ_{345} h H+H- ~ λ_3 10 M. Krawczyk, Portoroz 2017

LHC – Higgs H_{125} data \rightarrow h (IDM) Direct couplings to W/Z and fermions - as in SM

- Loop coupling hgg as in SM
- Loop coupling hyy, h $Z\gamma$ extra H⁺ (λ_3) contribution
- Total width extra contributions $h \rightarrow HH, AA, H+H-$
- Invisible decay h \rightarrow HH ($\sim\lambda_{345}$)

$R_{\gamma\gamma}$ as a function of mass H, H +

Invisible h decay ->coupling hHH

- *h* → *HH* invisible decay (*H* is stable)
- augmented total width of the Higgs boson, $\Gamma(h \rightarrow HH) \sim \lambda_{345}^2$

WMAP window for very light H (DM)

using MicrOmegas

M. Krawczyk, Portoroz 2017

here $\lambda_{345} \sim 0.5$ in contradiction to LHC₅!

Relic density for DMD. Sokołowskawith mass > 64 GeV $M_{A,H^{\pm}} = M_H + \delta_{A,\pm}$

For 64 GeV distribution still symmetric, above 76 GeV asymmetry due to annihilation to gauge bosons

M. Krawczyk, Portoroz 2017

Two scales: M_h/2 and M_W

Using PLANCK data

[Planck update: D. Sokołowska, P. Swaczyna, 2014]

$h \rightarrow HH$ open

- light DM $(M_H < 10 \text{ GeV})$ \Rightarrow excluded
- intermediate DM 1 (50 GeV $< M_H < M_H/2$) $\Rightarrow M_H > 53$ GeV
- intermediate DM 2 $(M_h/2 < M_H \lesssim 82 \,\text{GeV})$ $\Rightarrow R_{\gamma\gamma} < 1$

• heavy DM $(M_H > 500 \text{ GeV})$ $\Rightarrow R_{\gamma\gamma} \approx 1$

Full scan for IDM A. Ilnicka, T. Robens, MK Phys.Rev. D93 (2016) Theor. constraints – stability of the potential (positivity), pert.unitarity, condition for the Inert vacuum +LEP constraints STU (from 2014) h total width W/Z total width **Higgssignal/Higgs bounds** Lifetime of H+ (< 10^{-7} s to decay inside detector) Relic density Planck $\Omega < 0.1241$ (95% CL) and "exact" Direct detection LUX (2015) \rightarrow scan over M_H up to 1 TeV Benchmarks other analyses Stahl.., Blinov ... Cline ...Arhrib, ..Belayev...,Poulose, ...Banerjee 18 M. Krawczyk, Portoroz 2017

Low mass H (DM)

1505.04734,1508.01671

Limit on mass of DM: M_H > 45 GeV !

T² corrections:evolution of the Universe
→ rays from EWs phase to Inert phase
one, two or three stages of Universe
(2nd order PT, one 1st order)

Ginzburg, Kanishev,MK, Sokołowska PRD 2010

$$R = \frac{\lambda_{345}}{\sqrt{\lambda_1 \lambda_2}}.$$

beyond T² corrections: strong 1st order PT

G. Gil MsThesis'2011, G.Gil, P. Chankowski, MK 1207.0084 [hep-ph] PLB 2012

We applied one-loop effective potential at T=0 (Coleman-Wienberg term) and temperature dependent effective potential at T≠0 (with sum of ring diagrams)

$$V_T^{(1L)}(v_1, v_2) = V_{\text{eff}}^{(1L)}(v_1, v_2) + \Delta^{(1L)} V_{T \neq 0}(v_1, v_2)$$

Results for v(T_{EW})/T_{EW}>1 Mh=125 GeV, MH=65 GeV, λ2=0.2

strong 1st order phase transition

IDMS Bonilla, Diaz-Cruz, Darvishi, Sokołowska, MK – J.Phys. G43 (2016)

 IDM + extra neutral complex singlet χ with a complex vev

 → towards CP violation and baryogenesis
 SM-like doublet - singlet interaction → mixing in the neutral scalar sector
 3 neutral Higgses: h1 (SM-like), h2, h3

Small change in h₁ couplings to SM particles
 Dark doublet as before → H is a good DM candidate, modifications due to h2 and h3

Fields and potential of the IDMS

$$\Phi_{\mathsf{S}} = \begin{pmatrix} \phi_1^+ \\ \frac{1}{\sqrt{2}} (v + \phi_1 + i\phi_6) \end{pmatrix}, \quad \Phi_2 = \begin{pmatrix} \phi_2^+ \\ \frac{1}{\sqrt{2}} (\phi_4 + i\phi_5) \end{pmatrix}, \quad \Phi_{\mathsf{D}} = \begin{pmatrix} \phi_2^+ \\ \frac{1}{\sqrt{2}} (\phi_4 + i\phi_5) \end{pmatrix}, \quad \Phi_{\mathsf{D}} = \begin{pmatrix} \phi_2^+ \\ \frac{1}{\sqrt{2}} (\phi_4 + i\phi_5) \end{pmatrix}, \quad \Phi_{\mathsf{D}} = \begin{pmatrix} \phi_2^+ \\ \frac{1}{\sqrt{2}} (\phi_4 + i\phi_5) \end{pmatrix}, \quad \Phi_{\mathsf{D}} = \begin{pmatrix} \phi_2^+ \\ \frac{1}{\sqrt{2}} (\phi_4 + i\phi_5) \end{pmatrix}, \quad \Phi_{\mathsf{D}} = \begin{pmatrix} \phi_2^+ \\ \frac{1}{\sqrt{2}} (\phi_4 + i\phi_5) \end{pmatrix}, \quad \Phi_{\mathsf{D}} = \begin{pmatrix} \phi_2^+ \\ \frac{1}{\sqrt{2}} (\phi_4 + i\phi_5) \end{pmatrix}, \quad \Phi_{\mathsf{D}} = \begin{pmatrix} \phi_2^+ \\ \frac{1}{\sqrt{2}} (\phi_4 + i\phi_5) \end{pmatrix}, \quad \Phi_{\mathsf{D}} = \begin{pmatrix} \phi_2^+ \\ \frac{1}{\sqrt{2}} (\phi_4 + i\phi_5) \end{pmatrix}, \quad \Phi_{\mathsf{D}} = \begin{pmatrix} \phi_2^+ \\ \frac{1}{\sqrt{2}} (\phi_4 + i\phi_5) \end{pmatrix}, \quad \Phi_{\mathsf{D}} = \begin{pmatrix} \phi_2^+ \\ \frac{1}{\sqrt{2}} (\phi_4 + i\phi_5) \end{pmatrix}, \quad \Phi_{\mathsf{D}} = \begin{pmatrix} \phi_2^+ \\ \frac{1}{\sqrt{2}} (\phi_4 + i\phi_5) \end{pmatrix}, \quad \Phi_{\mathsf{D}} = \begin{pmatrix} \phi_2^+ \\ \frac{1}{\sqrt{2}} (\phi_4 + i\phi_5) \end{pmatrix}, \quad \Phi_{\mathsf{D}} = \begin{pmatrix} \phi_2^+ \\ \frac{1}{\sqrt{2}} (\phi_4 + i\phi_5) \end{pmatrix}, \quad \Phi_{\mathsf{D}} = \begin{pmatrix} \phi_2^+ \\ \frac{1}{\sqrt{2}} (\phi_4 + i\phi_5) \end{pmatrix}, \quad \Phi_{\mathsf{D}} = \begin{pmatrix} \phi_2^+ \\ \frac{1}{\sqrt{2}} (\phi_4 + i\phi_5) \end{pmatrix}, \quad \Phi_{\mathsf{D}} = \begin{pmatrix} \phi_2^+ \\ \frac{1}{\sqrt{2}} (\phi_4 + i\phi_5) \end{pmatrix}, \quad \Phi_{\mathsf{D}} = \begin{pmatrix} \phi_2^+ \\ \frac{1}{\sqrt{2}} (\phi_4 + i\phi_5) \end{pmatrix}, \quad \Phi_{\mathsf{D}} = \begin{pmatrix} \phi_2^+ \\ \frac{1}{\sqrt{2}} (\phi_4 + i\phi_5) \end{pmatrix}, \quad \Phi_{\mathsf{D}} = \begin{pmatrix} \phi_2^+ \\ \frac{1}{\sqrt{2}} (\phi_4 + i\phi_5) \end{pmatrix}, \quad \Phi_{\mathsf{D}} = \begin{pmatrix} \phi_2^+ \\ \frac{1}{\sqrt{2}} (\phi_4 + i\phi_5) \end{pmatrix}, \quad \Phi_{\mathsf{D}} = \begin{pmatrix} \phi_2^+ \\ \frac{1}{\sqrt{2}} (\phi_4 + i\phi_5) \end{pmatrix}, \quad \Phi_{\mathsf{D}} = \begin{pmatrix} \phi_2^+ \\ \frac{1}{\sqrt{2}} (\phi_4 + i\phi_5) \end{pmatrix}, \quad \Phi_{\mathsf{D}} = \begin{pmatrix} \phi_2^+ \\ \frac{1}{\sqrt{2}} (\phi_4 + i\phi_5) \end{pmatrix}, \quad \Phi_{\mathsf{D}} = \begin{pmatrix} \phi_2^+ \\ \frac{1}{\sqrt{2}} (\phi_4 + i\phi_5) \end{pmatrix}, \quad \Phi_{\mathsf{D}} = \begin{pmatrix} \phi_2^+ \\ \frac{1}{\sqrt{2}} (\phi_4 + i\phi_5) \end{pmatrix}, \quad \Phi_{\mathsf{D}} = \begin{pmatrix} \phi_2^+ \\ \frac{1}{\sqrt{2}} (\phi_4 + i\phi_5) \end{pmatrix}, \quad \Phi_{\mathsf{D}} = \begin{pmatrix} \phi_2^+ \\ \frac{1}{\sqrt{2}} (\phi_4 + i\phi_5) \end{pmatrix}, \quad \Phi_{\mathsf{D}} = \begin{pmatrix} \phi_2^+ \\ \frac{1}{\sqrt{2}} (\phi_4 + i\phi_5) \end{pmatrix}, \quad \Phi_{\mathsf{D}} = \begin{pmatrix} \phi_2^+ \\ \frac{1}{\sqrt{2}} (\phi_4 + i\phi_5) \end{pmatrix}, \quad \Phi_{\mathsf{D}} = \begin{pmatrix} \phi_2^+ \\ \frac{1}{\sqrt{2}} (\phi_4 + i\phi_5) \end{pmatrix}, \quad \Phi_{\mathsf{D}} = \begin{pmatrix} \phi_2^+ \\ \frac{1}{\sqrt{2}} (\phi_4 + i\phi_5) \end{pmatrix}, \quad \Phi_{\mathsf{D}} = \begin{pmatrix} \phi_2^+ \\ \frac{1}{\sqrt{2}} (\phi_4 + i\phi_5) \end{pmatrix}, \quad \Phi_{\mathsf{D}} = \begin{pmatrix} \phi_2^+ \\ \frac{1}{\sqrt{2}} (\phi_4 + i\phi_5) \end{pmatrix}, \quad \Phi_{\mathsf{D}} = \begin{pmatrix} \phi_2^+ \\ \frac{1}{\sqrt{2}} (\phi_4 + i\phi_5) \end{pmatrix}, \quad \Phi_{\mathsf{D}} = \begin{pmatrix} \phi_2^+ \\ \frac{1}{\sqrt{2}} (\phi_4 + i\phi_5) \end{pmatrix}, \quad \Phi_{\mathsf{D}} = \begin{pmatrix} \phi_2^+ \\ \frac{1}{\sqrt{2}} (\phi_4 + i\phi_5) \end{pmatrix}, \quad \Phi_{\mathsf{D}} = \begin{pmatrix} \phi_2^+ \\ \frac{1}{\sqrt{2}} (\phi_4 + i\phi_5) \end{pmatrix}, \quad \Phi_{\mathsf{D}} = \begin{pmatrix} \phi_2^+ \\ \frac{1}{\sqrt{2}} (\phi_5 + i\phi_5) \end{pmatrix}, \quad \Phi_{\mathsf{D}} = \begin{pmatrix} \phi_2^+ \\ \frac{1}{\sqrt{2}} (\phi_5 + i\phi_5)$$

$$Z_2$$
: $\Phi_1 \to \Phi_1$, $\Phi_2 \to -\Phi_2$, SM fields \to SM fields, $\chi \to \chi$.

$$V = -\frac{1}{2} \left[\frac{m_{11}^2 \Phi_1^{\dagger} \Phi_1 + m_{22}^2 \Phi_2^{\dagger} \Phi_2}{m_{11}^2 \Phi_1 \Phi_2} \right] + \frac{1}{2} \left[\lambda_1 \left(\Phi_1^{\dagger} \Phi_1 \right)^2 + \lambda_2 \left(\Phi_2^{\dagger} \Phi_2 \right)^2 \right]$$

$$+ \lambda_3 \left(\Phi_1^{\dagger} \Phi_1 \right) \left(\Phi_2^{\dagger} \Phi_2 \right) + \lambda_4 \left(\Phi_1^{\dagger} \Phi_2 \right) \left(\Phi_2^{\dagger} \Phi_1 \right) + \frac{\lambda_5}{2} \left[\left(\Phi_1^{\dagger} \Phi_2 \right)^2 + \left(\Phi_2^{\dagger} \Phi_1 \right)^2 \right]$$

$$- \frac{m_3^2}{2} \chi^* \chi + \lambda_{s1} (\chi^* \chi)^2 \cdot \left(- \frac{m_4^2}{2} (\chi^{*2} + \chi^2) + \kappa_2 (\chi^3 + \chi^{*3}) + \kappa_3 [\chi(\chi^* \chi) + \chi^*(\chi^* \chi)] \right]$$

$$+ \Lambda_1 (\Phi_1^{\dagger} \Phi_1) (\chi^* \chi)$$
with coffly broken $L(1)$ $U(1)$: $\Phi_1 \to \Phi_2 \to \Phi_3 \chi \to \delta^{i\alpha} \chi$

M. Krawczyk, Portoroz 2017 M. Krawczyk, Portoroz 2017 Droken U(1) $U(1): \Phi_1 \rightarrow \Phi_1, \Phi_2 \rightarrow \Phi_2, \chi \rightarrow e^{i\alpha}\chi.$

Remarks

1

$$Z_2$$
: $\Phi_1 \to \Phi_1$, $\Phi_2 \to -\Phi_2$, SM fields \to SM fields, $\chi \to \chi$,

respected by vacuum -> no domain problem

The general singlet part of the potential is equal to:

$$V_{S} = -\frac{m_{3}^{2}}{2}\chi^{*}\chi - \frac{m_{4}^{2}}{2}(\chi^{*2} + \chi^{2}) + \lambda_{s1}(\chi^{*}\chi)^{2} + \lambda_{s2}(\chi^{*}\chi)(\chi^{*2} + \chi^{2}) + \lambda_{s3}(\chi^{4} + \chi^{*4}) + \kappa_{1}(\chi + \chi^{*}) + \kappa_{2}(\chi^{3} + \chi^{*3}) + \kappa_{3}(\chi(\chi^{*}\chi) + \chi^{*}(\chi^{*}\chi)).$$

The doublet-singlet interaction terms are:

$$V_{DS} = \Lambda_1(\Phi_1^{\dagger}\Phi_1)(\chi^*\chi) + \Lambda_2(\Phi_2^{\dagger}\Phi_2)(\chi^*\chi) + \Lambda_3(\Phi_1^{\dagger}\Phi_1)(\chi^{*2} + \chi^2) + \Lambda_4(\Phi_2^{\dagger}\Phi_2)(\chi^{*2} + \chi^2) + \kappa_4(\Phi_1^{\dagger}\Phi_1)(\chi + \chi^*) + \kappa_5(\Phi_2^{\dagger}\Phi_2)(\chi + \chi^*).$$

To simply model we use U(1) But with non-zero vev for singlet \rightarrow massless Nambu-Goldstone boson. So we softly break it... In order to have DM ~ IDM we neglect terms with dark doublet

Higgs sector – $h_1(125 \text{ GeV})$, h_2 , h_3

$$\begin{pmatrix} h_1 \\ h_2 \\ h_3 \end{pmatrix} = R \begin{pmatrix} \phi_1 \\ \phi_2 \\ \phi_3 \end{pmatrix}$$

$$R = R_1 R_2 R_3 = \begin{pmatrix} c_1 c_2 & c_3 s_1 - c_1 s_2 s_3 & c_1 c_3 s_2 + s_1 s_3 \\ -c_2 s_1 & c_1 c_3 + s_1 s_2 s_3 & -c_3 s_1 s_2 + c_1 s_3 \\ -s_2 & -c_2 s_3 & c_2 c_3 \end{pmatrix}$$

 $h_1 = c_1 c_2 \phi_1 + (c_3 s_1 - c_1 s_2 s_3) \phi_2 + (c_1 c_3 s_2 + s_1 s_3) \phi_3,$

$$R_{11} = R_{11}^{-1} = c_1 c_2 \sim 1$$

M h₁ ~125 GeV, w=300-1000 GeV

$$\begin{split} M_{h_3} > M_{h_2} > 150 \text{ GeV}. \\ \kappa_{2,3} = w\rho_{2,3}, \\ -1 < \Lambda_1 < 1, \quad 0 < \lambda_{s1} < 1, \quad -1 < \rho_{2,3} < 1, \quad 0 < \xi < 2\pi. \end{split}$$

DMS - $h_1(125 \text{ GeV}_{\Gamma(h_1 \to XX)} = R_{11}^2 \Gamma(\phi_{SM} \to XX)$

Relic density - interference and second light Higgs

(a) A1-A3

(c) IDM

IDMS – heavy DM

A1-A4 -> similar results

SM+complex singlet

Branco .. Espinosa

Darvishi, Sokolowska,MK 1512.06437 (APP B47 2016); Darvishi, MK 1603.00598 SM SU(2) doublet + complex singlet with non-zero complex vev (in agreement with LHC)

- Important cubic terms
- Possibility of spontaneous CP violation
- Strong 1st order phase transition

Darvishi, JHEP 2016

Baryogenesis with vector-like quarks (iso-doublet) Darvishi, JHEP 2016; McDonald 1996

Fields and potential of the SMCS

$$\Phi_{s} = \Phi_{1} = \begin{pmatrix} \phi_{1}^{+} \\ \frac{1}{\sqrt{2}} (v + \phi_{1} + i\phi_{6}) \end{pmatrix},$$

$$\chi = \frac{1}{\sqrt{2}} (we^{i\xi} + \phi_{2} + i\phi_{3}).$$

$$W_{1} = w \cos w^{2} = w \sin w^{2} = w \sin w^{2} = w \sin w^{2}$$
Symmetry transformation $\chi \rightarrow \chi^{*}$

$$V = -\frac{1}{2} \begin{bmatrix} m_{11}^{2} \Phi_{1}^{\dagger} \Phi_{1} \end{bmatrix} + \frac{1}{2} \begin{bmatrix} \lambda_{1} (\Phi_{1}^{\dagger} \Phi_{1})^{2} \end{bmatrix}$$

$$W_{1} = \frac{1}{2} \begin{bmatrix} m_{11}^{2} \Phi_{1}^{\dagger} \Phi_{1} \end{bmatrix} + \frac{1}{2} \begin{bmatrix} \lambda_{1} (\Phi_{1}^{\dagger} \Phi_{1})^{2} \end{bmatrix}$$

$$W_{1} = \frac{1}{2} \begin{bmatrix} m_{11}^{2} \Phi_{1}^{\dagger} \Phi_{1} \end{bmatrix} + \frac{1}{2} \begin{bmatrix} \lambda_{1} (\Phi_{1}^{\dagger} \Phi_{1})^{2} \end{bmatrix}$$

$$W_{1} = \frac{1}{2} \begin{bmatrix} m_{11}^{2} \Phi_{1}^{\dagger} \Phi_{1} \end{bmatrix} + \frac{1}{2} \begin{bmatrix} \lambda_{1} (\Phi_{1}^{\dagger} \Phi_{1})^{2} \end{bmatrix}$$

$$W_{1} = \frac{1}{2} \begin{bmatrix} m_{11}^{2} \Phi_{1}^{\dagger} \Phi_{1} \end{bmatrix} + \frac{1}{2} \begin{bmatrix} \lambda_{1} (\Phi_{1}^{\dagger} \Phi_{1})^{2} \end{bmatrix} + \frac{$$

Vacuum: v, $w_1 = \cos\xi$, $w_2 = \sin\xi \neq 0$ Spont. CP violation in region

$$-4m_4^2\cos\xi + 3R_2(1+2\cos 2\xi) + R_3 \cdot = 0$$

Scan – results similar to IDMS but here low $\langle \chi \rangle \sim w$ possible

 $M_{h_1} \in [124.00, 127.00] \text{ GeV}, \ M_{h_3} \gtrsim M_{h_2} > 150 \text{ GeV}$ $0.2 < \lambda_1 < 0.3$

 $-1 < \Lambda < 1, \ 0 < \lambda_s < 1, \ -1 < \rho_{2,3} < 1, \ 0 < \xi < \pi,$

 $-90000 \text{ GeV}^2 < \mu_1^2, \mu_2^2, m_{11}^2 < 90000 \text{ GeV}^2.$ $\mu_1^2 = m_s^2 + 2m_4^2, \quad \mu_2^2 = m_s^2 - 2m_4^2.$

 $\rho_{2,3} = \kappa_{2,3}/w$

singlet self coupling λ_s , to be greater than 0.2, a the doublet-singlet coupling $|\Lambda|$, to be below 0.2.

w not too large

mass 125 GeV 33

Strong 1st order PT

T2 – corrections

Benchmarks

Benchmark	α_1	α_2	α_3	M_{h_1}	M_{h_2}	M_{h_3}	S	Т	J_{1}/v^{6}
A1	-0.047	-0.053	1.294	124.64	652.375	759.984	-0.072	-0.094	-2.2×10^{-4}
A2	-0.048	0.084	0.084	124.26	512.511	712.407	-0.001	-0.039	7.2×10^{-4}
A3	0.078	0.297	0.364	124.27	582.895	650.531	0.003	-0.046	4.5×10^{-4}
A4	0.006	-0.276	0.188	125.86	466.439	568.059	-0.013	-0.169	-9.5×10^{-4}
A5	0.062	-0.436	0.808	125.21	303.545	582.496	0.002	-0.409	5.0×10^{-6}
A6	-0.210	0.358	0.056	124.92	181.032	188.82	0.003	-0.010	-4.0×10^{-5}
A7	-0.205	0.403	0.057	125.01	175.45	178.52	0.002	-0.020	-3.5×10^{-5}

Table I. Benchmark points A1 - A7, masses are given in GeV.

Benchmark	$R^{h_1}_{\gamma\gamma}$	$R^{h_2}_{\gamma\gamma}$	$R^{h_3}_{\gamma\gamma}$	$\Gamma^{h_1}_{tot}$	$\Gamma_{tot}^{h_2}$	$\Gamma_{tot}^{h_3}$
A1	0.98	0.0021	0.0028	0.0042	0.304	0.781
A2	0.98	0.0021	0.0070	0.0042	0.145	1.31
A3	0.98	0.0055	0.085	0.0042	0.566	12.24
A4	0.92	3.3×10^{-5}	0.074	0.0043	0.001	7.08
A5	0.81	0.0029	0.17	0.0043	0.002	17.51
A6	0.82	0.19	0.11	0.0043	0.119	0.163
A7	0.81	0.18	0.15	0.0043	0.871	0.083

Baryogenesis with heavy iso - doublet vector - like quarks

Neda Dravishi, JHEP 2016 (1608.02820)

$$\mathcal{L}_Y(V_q, \chi) = \lambda_V \chi \overline{Q}_L V_R + M \overline{V}_L V_R + h.c,$$

$$\Delta \mathcal{L}_k = -\frac{\lambda_V^2 w^2}{M^2} \dot{\xi} (\overline{Q'}_L \gamma^0 Q'_L - \overline{V'}_L \gamma^0 V'_L).$$

$$\frac{n_B}{s} = \frac{225 K \alpha_W^4}{4\pi^2 g^*} \frac{\lambda_V^2 w^2}{M^2} \delta\xi,$$

Summary

- Doublets and singlets extensions of SM rich phenomenology
- Higgs and Dark Matter in IDM and IDMS
 in agreement with data
- Various stages of the Universe ?
- Strong first order phase transition → baryogenesis with vector - quarks