

Recent experimental results in flavour physics

Marco Gersabeck (The University of Manchester) on behalf of the LHCb collaboration including results from other flavour experiments

Portorož 2017, Portorož, 18 April 2017

Introduction

Neubert

MANCHEST

The University of Manchester

Spectroscopy

A brief visit to the world of many states

MANCHESTER The University of Manchester The University of Manchester The University of Manchester

MANCHESTER 1824 The University of Manchester Towards further confirmation

- $P_c(4450)$ just above χ_{c1P} threshold
- First observation of $\Lambda_b \rightarrow \chi_{c1} p$ and $\chi_{c2} p$

• Strangeness hidden charm pentaquark state predicted to decay into $J/\psi\Lambda$

→ Observed $\Xi_b^- \rightarrow J/\psi \Lambda K$ decays

• Phase-space analyses to follow

arXiv:1703.04639, accepted by PRL

Ω_c gets excited

- 5 new narrow states observed in $\Xi_c K$ spectrum
 - ➡ m = 3-3.12 GeV
 - ➡ Γ = Ι-Ι0 MeV
 - → New excited Ω_c states
- Expected feed-down seen and taken into account
- Sidebands and same-sign combinations show no structures

CP violation

3 quark generations or more?

CP violation in mixing

- Look for $\overline{B} \rightarrow I^+$ decays
 - → Forbidden directly, requires \overline{B} →B oscillation
- Measure asymmetry of $\overline{B} \rightarrow I^+$ and $B \rightarrow I^-$ rates
 - CP violation in mixing
- SM expectation far below current sensitivity
- Can measure this separately for B_d and B_s mesons
 - \rightarrow Separate access to $A_{sl}(B_d) \& A_{sl}(B_s)$
- Alternatively look for same-sign lepton pairs and compare I⁺I⁺ with I⁻I⁻
 - $\Rightarrow Measures combination of A_{sl}(B_d) & A_{sl}(B_S)$

Latest results

- D0 dimuon measurement differs from SM by about 3σ
 - Difficult to motivate by non-SM physics
- Direct measurements of a_{sl}(B_d) & a_{sl}(B_S) show agreement with SM
- Possible differences in SM contribution to observables?
- LHCb has best single measurement of $a_{sl}(B_d)$ and $a_{sl}(B_s)$
 - ➡ Latest: a_{sl}(B_s)=(0.39±0.26±0.20)% PRL 117 (2016) 061803

- ATLAS now contributing constraints on potential direct CP violation contributions
 - ➡ Using top decays
 - No firm conclusion on D0 anomaly yet

	Data	(10^{-2})	MC	(10^{-2})	Existing limits (2σ)	(10^{-2})	SM pred	iction (10^{-2})
A^{ss}	-0.7	± 0.8	0.05	± 0.23	-		< 10 ⁻²	[19]
A^{os}	0.4	± 0.5	-0.03	± 0.13	-		< 10 ⁻²	[19]
$A^b_{\rm mix}$	-2.5	± 2.8	0.2	± 0.7	< 0.1	[<mark>95</mark>]	< 10 ⁻³	[96] [95]
$A_{\rm dir}^{b\ell}$	0.5	± 0.5	-0.03	± 0.14	< 1.2	[<mark>94</mark>]	< 10 ⁻⁵	[19] [9 4]
$A_{\rm dir}^{c\ell}$	1.0	± 1.0	-0.06	± 0.25	< 6.0	[<mark>94</mark>]	< 10 ⁻⁹	[19] [9 4]
$A_{\rm dir}^{bc}$	-1.0	± 1.1	0.07	± 0.29	-		< 10 ⁻⁷	[<mark>97</mark>]

JHEP 02 (2017) 071

News on β

- Combined BaBar and Belle analysis (1.1ab⁻¹)
- Time-dependent analysis of $\Rightarrow B^0 \rightarrow D^{(*)0}h^0$ with $D^0 \rightarrow K_S \pi \pi$ decays
- First evidence for $cos(2\beta)>0$
- Excludes second solution of unitarity triangle fit

MANCHESTER 1824 The University of Manchester Improving V precision

- Combining LHCb measurements of $B_{(s)} \rightarrow DK^{(*)}$ decays
- BaBar average^{*}:
 - → (70±18)°
- Belle average^{*}:
 - ⇒ (73±14)°
- LHCb improves by factor 2
- All based on tree decays
 - SM measurements
 - → Access to beyond SM particles through loops in γ measurements using B→hh(h) decays

*CKMFitter Summer 2014

MANCHESTER 1824 The University of Manchester CP violating phase ϕ_s

- First measurement in $B_s \rightarrow J/\psi KK$ with m_{KK} above ϕ resonance
- Preliminary results: $\phi_s = 119 \pm 107 \pm 34 \,\mathrm{mrad}$

MANCHESTER 1824 The University of Manchester CP violation in Baryons

- CP violation has never been measured in baryons
- Study local triple-product asymmetries
 - in bins of phase space
 - in bins of decay-plane angle
- Triple-products are robust against systematic uncertainties
- Angular bins for $\Lambda_b \rightarrow p\pi^-\pi^+\pi^-$ show 3.3 σ deviation from no-CPV hypothesis
- Weaker signals in phase-space binning and smaller $\Lambda_b \rightarrow p \pi^- K^+ K^-$ sample

Asymmetries [%]

CPV in charm

- Mass difference of eigenstates still unknown
- No sign of indirect CPV
 - How long will super-weak constraint remain valid?
 - \Rightarrow A_{Γ} now constraint to 3×10⁻⁴ arXiv:1702.06490
- Some low p-values in tests for CPV in multi-body ($D^0 \rightarrow 4\pi$) decays arXiv:1612.03207
 - Too early to make a claim

Rare decays

Plenty to learn from the not so plentiful

- LHCb update with Run 2 data
- First single-experiment observation of $B_s \rightarrow \mu \mu$ (7.8 σ)
- No significant signal for B_d→μμ
 (1.6σ)
- SM looks very healthy here
- First measurement of effective lifetime
 - ⇒ $\tau(B_s \rightarrow \mu^+ \mu^-)=2.04\pm0.44\pm0.05$ ps

 First direct limit on B_s decay

 $\Rightarrow B(B_s \rightarrow \tau^+ \tau^-) < 6.8 \times 10^{-3}$

 World best limit on B_d decay

 $\Rightarrow B(B_d \rightarrow \tau^+ \tau^-) < 2.1 \times 10^{-3}$

• Both at 95% CL

K*µµ and friends

- LHC analyses based on full Run I data
 - Awaiting Run 2 updates
- LHCb performs full angular analysis
- Belle, ATLAS and CMS use angular folding, differences in observables, background treatment and control modes

LHCb: JHEP 02 (2016) 104 Belle: BELLE-CONF-1603 ATLAS: ATLAS-CONF-2017-023 CMS: CMS-PAS-BPH-15-008

DHMV: JHEP 12(2014)125 ASZB: EPJC 75 (2015) 382

K*µµ and friends

- LHC analyses based on full Run I data
 - Awaiting Run 2 updates
- LHCb performs full angular analysis
- Belle, ATLAS and CMS use angular folding, differences in observables, background treatment and control modes

LHCb: JHEP 02 (2016) 104 Belle: BELLE-CONF-1603 ATLAS: ATLAS-CONF-2017-023 CMS: CMS-PAS-BPH-15-008

DHMV: JHEP 12(2014)125 ASZB: EPJC 75 (2015) 382

Also investigating related $b \rightarrow sll$ channels

e.g. slight tension in $BF(B_s \rightarrow \varphi \mu \mu)$

more K*µµ friends

- Fits with different phase hypotheses for long-distance contributions
- Minimal influence on shortdistance branching fraction
 - Found to be below SM
 - Improved modelling shows no significant change w.r.t. previous analysis of these data
- Scan of Wilson coefficients disfavours SM solution
- Analyses of other channels underway
 - More complex if hadron not pseudo-scalar

Marco Gersabeck

Lepton flavour universality

A basic principle under attack

Lines of attack

- Tree-level processes
 - → b→ $cl\nu$: R(D), $R(D^*)$, ... in beauty
 - ⇒ c→dlv: R(K), R(K^{*}), ... in charm
- Penguin/FCNC processes
 - ⇒ b→d/sll: R(K), $R(K^*)$, ... in beauty
 - Charm FCNC remain to be observed

R(D), R(D*), ...

- SM disfavoured by 3.9σ
- New Belle measurement on R(D*)
- Many related measurements in the making
 - ➡ R(J/psi), R(D**), baryonic
- Form factors show no strong impact on discrepancy with SM
 - Bernlochner, Ligeti, Papucci, Robinson, 1703.05330
- Plenty of room for BSM

R(D)

LU tests in charm

• So far only measurements of branching fractions

➡ All ratios above unity

- Direct measurement of ratio can exploit cancellation of uncertainties
- Further insight through
 q²-dependent measurement
- To what degree will this be limited by knowledge of form factors?

Phys. Rev. Lett. 113 (2014) 151601

- Moderate tension with SM
 - LHCb Run I result
- Would be clear theoretical signature
- Updates eagerly awaited...

NEW

• Measuring double ratio

 $\mathcal{R}_{K^{*0}} = \frac{\mathcal{B}(B^0 \to K^{*0} \mu^+ \mu^-)}{\mathcal{B}(B^0 \to K^{*0} J/\!\psi \, (\to \mu^+ \mu^-))} \left/ \frac{\mathcal{B}(B^0 \to K^{*0} e^+ e^-)}{\mathcal{B}(B^0 \to K^{*0} J/\!\psi \, (\to e^+ e^-))} \right.$

- Measuring in two bins of q^2
 - Low: 0.045-1.1, central: 1.1-6 GeV/c²
- Using full Run I data
- Veto mis-ID and partially reconstructed background
- Fits separated by trigger three categories for electron mode
 - Results in good agreement
- Main systematics due to simulation corrections and residual backgrounds (for central q² bin)
- Cross-checks with various control channels

• Measuring double ratio

 $\mathcal{R}_{K^{*0}} = \frac{\mathcal{B}(B^0 \to K^{*0} \mu^+ \mu^-)}{\mathcal{B}(B^0 \to K^{*0} J/\psi \, (\to \mu^+ \mu^-))} \left/ \frac{\mathcal{B}(B^0 \to K^{*0} e^+ e^-)}{\mathcal{B}(B^0 \to K^{*0} J/\psi \, (\to e^+ e^-))} \right.$

- Measuring in two bins of q^2
 - Low: 0.045-1.1, central: 1.1-6 GeV/c²
- Using full Run I data
- Veto mis-ID and partially reconstructed background
- Fits separated by trigger three categories for electron mode
 - Results in good agreement
- Main systematics due to simulation corrections and residual backgrounds (for central q² bin)
- Cross-checks with various control channels

Preliminary results for R(K*)

	$\log -q^2$	central- q^2
$\mathcal{R}_{K^{st 0}}$	$0.660 {}^{+}_{-} {}^{0.110}_{0.070} \pm 0.024$	$0.685 \ ^+_{-} \ ^{0.113}_{0.069} \pm 0.047$
$95\%~{ m CL}$	0.517 – 0.891	0.530 – 0.935
$99.7\%~\mathrm{CL}$	$0.454 extrm{}1.042$	0.462 – 1.100

Outlook

Towards a flavourful future

A flavourful decade

Plus lots of activity on charged lepton flavour
 MEG, mu3e, mu2e, COMET, g-2, ...

LHCb upgrade Apr 2017

2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021-23 2024-26 2027-29

- With increased luminosity hadron channels would saturate
 - Limited by hardware trigger
- Upgrade to allow full detector readout at 40 MHz and increased luminosity: collect ~8fb⁻¹ / year
 - Requires several new detectors (all tracking plus RICH) and new readout electronics otherwise
- Full software trigger

MANCHESTER

The University of Manchester

- Massively improved trigger efficiencies
- Offline quality reconstruction in trigger
- Maintain/improve current level of detector performance
- Phase-Ib consolidation and Phase-II upgrade planned in LS3 and LS4

UNDER CONSTRUCTION

Future potential

- Pure software trigger will significantly improve efficiencies,
 - Particularly for soft final states
 - Charm, tau, strange, multi-body
 - Benefits exceeding increase in luminosity
- Healthy competition with Belle II during LHCb Phase-I upgrade
- LHCb Phase-II upgrade will boost yields by another order of magnitude
 - The ultimate precision frontier
- Don't forget the kaons...

Conclusion

- LHCb has taken over the leading role in flavour physics
- No smoking gun signal for physics beyond the SM
- Several hints demand more precise and complementary measurements as well as advances on the theoretical side
 New result shown on R(K*)
- Good chance that strong signals will emerge with Run 2

First results shown today

- Need LHCb upgrades to probe to Standard Model level precision
- Next decade will be flavourful

Belle II, BESIII, COMET, g-2, LHCb Run 2, LHCb upgrade(s), MEG, mu2e, mu3e, NA62, ...