# **Top-Flavoured Dark Matter beyond Minimal Flavour Violation**

#### Monika Blanke



New physics at the junction of flavour and collider phenomenology Portoroz – April 20, 2017

## Flavoured dark matter?

Why should we care about dark flavours?

## Flavoured dark matter?

## Why should we care about dark flavours?



## Flavoured dark matter?

#### unknown DM properties

- coupling to SM particles?
- single particle or entire sector?
- analogy to ordinary SM matter
- ➤ flavoured?

#### **Assumption:**

Dark matter carries flavour and comes in multiple copies



## ➤ New coupling to quarks:

e.g. 
$$\lambda^{ij}ar{d}_{Ri}\chi_j\phi$$
 or  $\lambda^{ij}ar{u}_{Ri}\chi_j\phi$ 

 $q_{Ri}$  right-handed quarks

 $\chi_j$  DM particle, flavoured

new scalar, coloured

## The idea is not new...

## Flavoured DM received a lot of attention in recent years, see e.g.

- Flavoured Dark Matter in Direct Detection Experiments and at LHC J. KILE, A. SONI (APRIL 2011)
- Dark Matter from Minimal Flavor Violation
   B. BATELL, J. PRADLER, M. SPANNOWSKY (MAY 2011)
- Discovering Dark Matter Through Flavor Violation at the LHC J. F. KAMENIK, J. ZUPAN (JULY 2011)
- Flavored Dark Matter, and Its Implications for Direct Detection and Colliders
   P. AGRAWAL, S. BLANCHET, Z. CHACKO, C. KILIC (SEP. 2011)
- Top-flavored dark matter and the forward-backward asymmetry A. KUMAR, S. TULIN (MAR. 2013)
- Flavored Dark Matter and R-Parity Violation
   B. BATELL, T. LIN, L.-T. WANG (SEP. 2013)
- ...
- common to most studies: Minimal Flavour Violation

# Going beyond MFV

## MFV



> HARMLESS

But not very exciting.

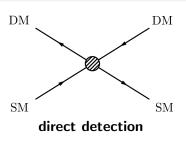
## Going beyond MFV

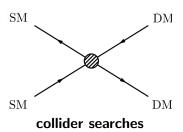
**MFV** 

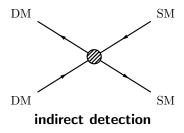


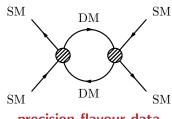
> HARMLESS

But not very exciting.


non-MFV





> DANGEROUS


But interesting if you know how to handle it!

## How to detect flavoured dark matter







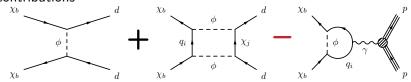


precision flavour data

## Bottom-flavoured DM beyond MFV

Agrawal, MB, Gemmler (2014)

**Step 1:** simplified model of flavoured Dirac-fermionic DM  $\chi_j$  coupling to down-type quarks via a coloured scalar mediator


$$\left[ \lambda^{ij} ar{d}_{Ri} \chi_j \phi 
ight]$$

## Assumptions:

- Dark Minimal Flavour Violation (DMFV) flavour symmetry  $U(3)_q \times U(3)_u \times U(3)_d \times U(3)_\chi$  only broken by the SM Yukawa couplings and the DM-quark coupling  $\lambda$
- ullet DM is bottom-flavoured:  $m_{\chi_b} < m_{\chi_d}, m_{\chi_s}$
- > rich and interesting phenomenology

## Bottom-flavoured DM pheno in a nutshell

- DMFV ansatz relates mass splitting to coupling matrix and guarantees DM stability
   see also BATELL, PRADLER, SPANNOWSKY (2011)
- K and  $B_{d,s}$  mixing constraint imply non-generic structure for coupling matrix  $\lambda$
- mediator mass constrained from LHC squark searches
- direct detection constraints require cancellation between various contributions



non-trivial interplay of constraints

Agrawal, MB, Gemmler (2014)

## The top-flavoured DM hunting team







Simon Kast

MB, Kast, arXiv:1702.08457 - Submitted to JHEP

## A simplified model of top-flavoured dark matter

Flavoured Dirac-fermionic DM  $\chi_j$  and couples to up-type quarks via a coloured scalar mediator MB, Kast (2017)

$$\mathcal{L}_{\mathrm{NP}} = i\bar{\chi}\partial\!\!\!/\chi - m_{\chi}\bar{\chi}\chi + (D_{\mu}\phi)^{\dagger}(D^{\mu}\phi) - m_{\phi}^{2}\phi^{\dagger}\phi - \lambda^{ij}\bar{u}_{Ri}\chi_{j}\phi + \lambda_{H\phi}\phi^{\dagger}\phi H^{\dagger}H + \lambda_{\phi\phi}\phi^{\dagger}\phi\phi^{\dagger}\phi$$

## **Assumptions:**

- ullet DMFV:  $\lambda$  constitutes the *only* new source of flavour violation
- DM is top-flavoured:  $m_{\chi_t} < m_{\chi_u}, m_{\chi_c}$

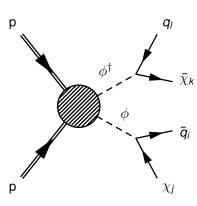
# Parametrisation of DM-quark coupling: $\lambda = U_{\lambda}D_{\lambda}$

 $U_{\lambda}$  unitary matrix, 3 mixing angles  $\theta_{12}$ ,  $\theta_{13}$ ,  $\theta_{23}$  and 3 phases  $D_{\lambda}$  real diagonal matrix, e.g.  $D_{\lambda} = \operatorname{diag}(D_{\lambda,11}, D_{\lambda,22}, D_{\lambda,33})$ 

## LHC constraints

- most stringent constraints from mediator pair production
- signatures similar to SUSY squarks

$$> t\bar{t} + E_T, jj + E_T$$

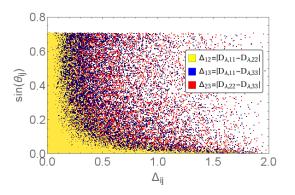

ightharpoonup also  $tj + E_T$ 

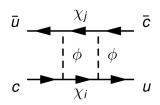
recall Flavoured Naturalness: MB,GIUDICE,PARADISI,PEREZ,ZUPAN (2014)

 imposing ATLAS run 1 cross-section limits on our model, we find

$$m_{\phi} \gtrsim 850\,\mathrm{GeV}$$

for DM couplings  $D_{\lambda,ii} \leq 2$ 



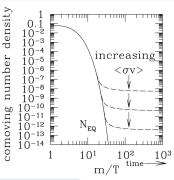


MB, Kast (2017)

## Flavour constraints

MB, Kast (2017)

- no impact on K and B meson decays
- contribution to  $D^0 \bar{D}^0$  mixing






large 12-mixing only for quasi-degenerate  $\chi_{u,c}$ :

$$\Delta_{12} \ll 1$$
 or  $\theta_{12} \sim 0$ 

## Dark matter as thermal relic

- WIMP production and annihilation in equilibrium in the early universe
- dark matter "freezes out" when annihilation rate  $\langle \sigma v \rangle$  drops below Hobble expansion rate
- relic abundance determined by solving Boltzmann equation for DM number density n at late times



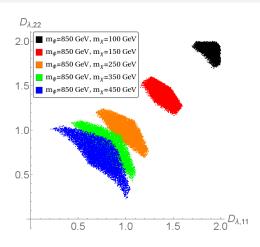
$$\frac{dn}{dt} + 3Hn = -\underbrace{\langle \sigma v \rangle_{eff}}_{2.2 \times 10^{-26} \text{cm}^3/\text{s}} \left(n^2 - n_{eq}^2\right)$$

n dark matter number density

H Hubble constant

 $n_{eq}$  equilibrium number density of  $\chi$ 

## Flavored dark matter freeze-out



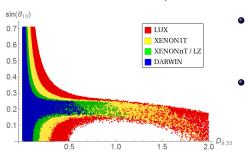

- freeze-out condition depends on life time of heavier dark flavours and on DM mass
- for significant mass splitting  $\gtrsim 10\%$  heavy flavours decay fast  $\succ$  only  $\chi_t$  contributes to relic abundance
- ullet for small mass splittings  $\lesssim 1\%$  multiple flavours  $\chi_{i,k}$  present at freeze-out temperature
  - > sum over all DM flavours that are still present this talk: small mass splitting assumed
- ullet only sum over final states  $q_{j,l}$  that are kinematically accessible

## Constraint from observed relic abundance

MB, Kast (2017)

- annihilation cross-section relates mediator mass  $m_{\phi}$ , DM mass  $m_{\chi}$ , and DM couplings  $D_{\lambda,ii}$
- for fixed mediator mass, smaller DM mass implies larger couplings
- $D_{\lambda,ii} > 2$  causes problems with LHC constraints




➤ lower bound on DM mass from combination of thermal relic condition and LHC data

## Constraints from direct detection experiments

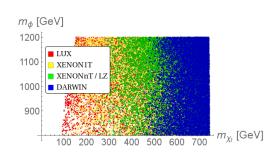
• with top-flavoured DM, Z-penguin contribution becomes relevant



➤ realisation of xenophobic DM scenario Feng, Kumar, Sanford (2013)



- cancellation between tree-level and Z-penguin contribution requires non-zero mixing angle  $\theta_{13}$
- for future experiments, cancellation not sufficiently effective for all xenon isotopes
  - > upper bound on coupling


MB, Kast (2017)

# Results of combined analysis

MB, Kast (2017)

#### Putting everything together:

- interesting interplay of different constraints
- non-trivial constraints on parameter space, i. e. masses, couplings, and mixing angles



 increasingly stringent lower bound on DM mass from future liquid xenon experiments

## **Conclusions**

 mechanism generating the flavour structure of the SM is unknown, assuming a similar mechanism in the dark sector suggests

"Dark Minimal Flavour Violation" additional  $U(3)_\chi$  flavour symmetry only broken by the new coupling matrix  $\lambda$ 

- DMFV (if exact) ensures stability of lightest dark flavour
- various simplified models possible, depending on coupling to SM quarks

#### Top-flavoured DM in DMFV

- constraints from relic abundance, direct detection, LHC searches and flavour physics exhibit a non-trivial interplay
- upcoming experiments have the potential to exclude major part of parameter space ...or to discover our model!

# **Backup slides**

# Dark matter stability in DMFV

Similar proof in MFV: BATELL, PRADLER, SPANNOWSKY (2011)

Consider  $\mathcal{O} \sim \chi \dots \bar{\chi} \dots \phi \dots \phi^{\dagger} \dots q_L \dots \bar{q}_L \dots u_R \dots \bar{u}_R \dots d_R \dots$ 

#### invariant under ...

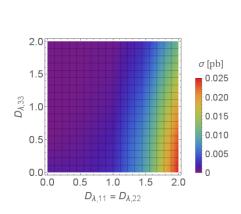
- ullet QCD if the number of  $SU(3)_c$  triplet minus the number of  $SU(3)_c$  antitriplets is a multiple of three
- flavour symmetry: include  $Y_u \dots Y_u^\dagger \dots Y_d \dots Y_d^\dagger \dots \lambda \dots \lambda^\dagger \dots$

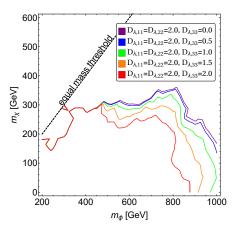
$$I \qquad SU(3)c \quad (N_{\phi} - N_{\phi^{\dagger}} + N_q + N_u + N_d - N_{\bar{q}} - N_{\bar{u}} - N_{\bar{d}}) \mod 3 = 0$$

II 
$$U(3)_q = (N_q - N_{\bar{q}} + N_{Y_u} - N_{Y_u^{\dagger}} + N_{Y_d} - N_{Y_d^{\dagger}}) \mod 3 = 0$$

III 
$$U(3)_u$$
  $(N_u - N_{\bar{u}} - N_{Y_u} + N_{Y_u^{\dagger}}) \mod 3 = 0$ 

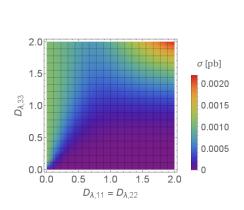
IV 
$$U(3)_d = (N_d - N_{\bar{d}} - N_{Y_d} + N_{Y_d^{\dagger}} + N_{\lambda} - N_{\lambda^{\dagger}}) \mod 3 = 0$$

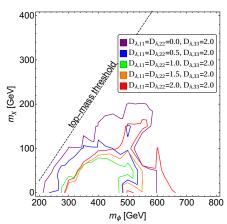

$$V U(3)_{\chi} (N_{\chi} - N_{\bar{\chi}} - N_{\lambda} + N_{\lambda^{\dagger}}) \mod 3 = 0$$


$$\sum II + III + IV + V - I \quad (N_{\chi} - N_{\bar{\chi}} - N_{\phi} + N_{\phi^{\dagger}}) \mod 3 = 0$$

 $ightharpoonup \mathbb{Z}_3$  symmetry forbids  $\chi$  and  $\phi$  decays into SM fields

# $t ext{-}\mathsf{DMFV}$ and $jj+\displaystyle{E_T}\hspace{-0.1cm}/\hspace{-0.1cm}$ at LHC8

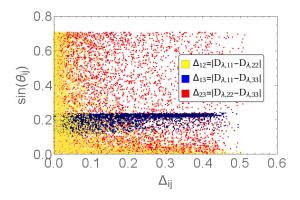





# $t ext{-}\mathsf{DMFV}$ and $tar{t}+ ot\!\!\!E_T$ at LHC8





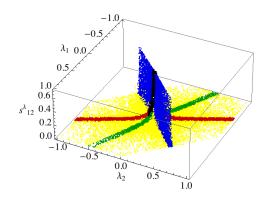



# t-DMFV: Constraints on mixing angles

MB, Kast (2017)

combination of constraints implies non-trivial structure of coupling matrix




 $\theta_{ij}$ : flavour mixing angles  $\Delta_{ij}$ : splitting in coupling strength

# b-DMFV: Lessons from meson mixing

Large contributions to  $K^0 - \bar{K}^0$  and  $B_{d,s} - \bar{B}_{d,s}$  mixing

## $\triangleright \lambda$ has to be non-generic

- **3-flavour universality** (black):  $\lambda_1 = \lambda_2 = 0$
- 2-flavour universalities (blue):  $\lambda_1 = \lambda_2$ (red):  $\lambda_2 = -2\lambda_1$ (green):  $\lambda_2 = -1/2\lambda_1$
- small mixing (yellow): arbitrary  $D_{\lambda}$



$$D_{\lambda} = \lambda_0 \cdot \mathbb{1} + \operatorname{diag}(\lambda_1, \lambda_2, -(\lambda_1 + \lambda_2))$$
 fixed:  $m_{\phi} = 850 \, \text{GeV}, m_{\chi} = 200 \, \text{GeV}, \lambda_0 = 1$ 

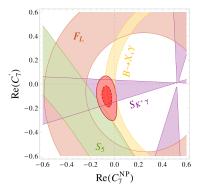
Agrawal, MB, Gemmler (2014)

# b-DMFV: What about rare B and K decays?

#### $b o s \gamma$ transition described by

$$\mathcal{H}_{\text{eff}} \sim (C_7 Q_7 + C_7' Q_7' + \cdots)$$

$$Q_7 \sim \bar{s}_L \sigma^{\mu\nu} b_R F_{\mu\nu}$$


$$Q_7' \sim \bar{s}_R \sigma^{\mu\nu} b_L F_{\mu\nu}$$

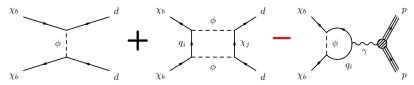
> new contribution

$$\delta C_7' \sim 0.04 \left[\frac{500\,\mathrm{GeV}}{m_\phi}\right]^2 \sum_{i=1}^3 \lambda_{si} \lambda_{bi}^*$$

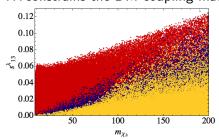
ightharpoonup negligible effects in  $b o s \gamma$ 

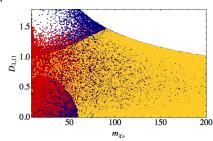
Figure from Altmannshofer, Straub (2013)




**No** new one-loop contribution to Z penguin and boxes:

negligible effects also in  $B_{s,d} \to \mu^+ \mu^-$ ,  $B \to K^{(*)} \mu^+ \mu^-$ ,  $K \to \pi \nu \bar{\nu} \dots$ 

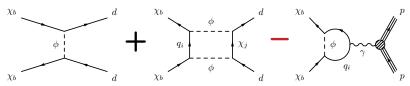

Agrawal, MB, Gemmler (2014)


## b-DMFV: Constraints from LUX & co.

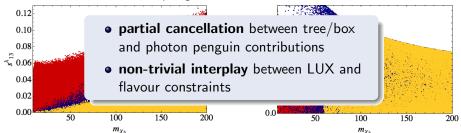
Dark matter scattering off nuclei...



 $\ldots$  constrains the DM coupling matrix  $\lambda$ 







constraints imposed: LUX only, flavour only , LUX & flavour

## b-DMFV: Constraints from LUX & co.

Dark matter scattering off nuclei...



 $\ldots$  constrains the DM coupling matrix  $\lambda$ 



constraints imposed: LUX only, flavour only , LUX & flavour

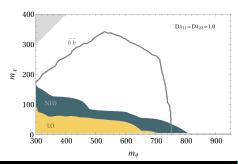
## b-DMFV at the LHC

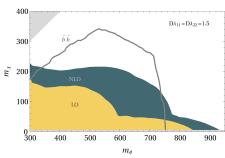
AGRAWAL, MB, GEMMLER (2014)

DMFV  $\triangleright$  unbroken  $\mathbb{Z}_3 \triangleright$  new particles have to be pair-produced

#### dark matter fermion $\chi_b$ and the heavier flavours $\chi_{d,s}$

- nearly degenerate due to DMFV
- $\chi_{d,s}$  decay to  $\chi_b$  produces soft particles (jets, photons) + missing  $E_T$ > LHC monojet+ $E_T$  searches sensitive to  $\chi$  pair production


#### coloured scalar mediator $\phi$

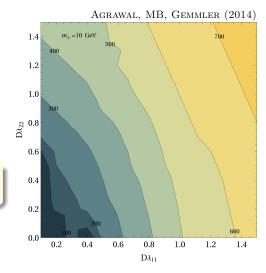

- ullet pair-produced through QCD and through t-channel  $\chi_d$  exchange
- decay  $\phi \to q_i \chi_i$  with branching ratios given by  $D_{\lambda,ii}^2$  $> bb + \cancel{E}_T, \ bj + \cancel{E}_T, \ jj + \cancel{E}_T \ \text{signatures}$

# b-DMFV: Constraints from $bb + E_T$

Agrawal, MB, Gemmler (2014)

- CMS (& ATLAS) put strong bounds on bottom squark pair-production from  $bb + E_T$  CMS-PAS-SUS-13-018
- bound on cross-section can be applied to DMFV
  - production cross section enhanced by t-channel  $\chi_d$  exchange
  - $bb + E_T$  signal suppressed by  $\phi \to b\chi_b$  branching ratio

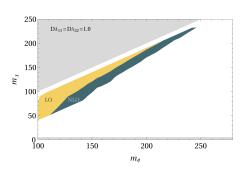


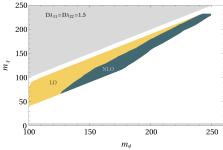



# b-DMFV: Constraints from monojet searches I

- monojet searches sensitive to  $\chi$  pair-production with ISR hard jet
- recasting exp. bounds

  ATLAS-CONF-2012-147


  CMS-PAS-EXO-12-048
- ullet rather independent of  $m_\chi$




## b-DMFV: Constraints from monojet searches II

Agrawal, MB, Gemmler (2014)

- monojet searches also sensitive to  $\phi$  pair-production if decay products are soft
- constraint on the compressed region  $m_{\chi} \lesssim m_{\phi}$



