Chiral Effective Theory of DM Direct Detection

Or, What is the size of the DM nucleus cross section?

Joachim Brod

technische universität dortmund

Talk at the 2017 Portorož workshop, Portorož, Slovenia April 20, 2017

With Fady Bishara, Aaron Gootjes-Dreesbach, Benjamin Grinstein, Michele Tammaro, Jure Zupan JCAP02(2017)009 [arxiv:1611.00368] & work in progress

Dark Matter Facts

• DM exists

- All evidence via its gravitation
- Particle nature?
- What we know about DM
 - DM is non-baryonic, cold, and neutral
 - Relic abundance $\Omega_{\rm DM} h^2 = 0.1198(26)$ [PLANCK / PDG 2014]

Thermal history motivates interaction with SM

Direct Detection Basics

- Direct detection scattering on nuclei
 - Complementary information, proves cosmological lifetime
 - Assume velocity distribution (Maxwell); $v \sim 10^{-3}$
 - Maximal momentum transfer is $q \lesssim 200 \text{ MeV}$

$$\frac{dR}{dE_R} = \frac{\rho_0}{m_A m_{\chi}} \int_{v_{min}} dv \, v \, f_1(v) \frac{d\sigma}{dE_R}(v, E_R) \, .$$

[Lewin & Smith, Astropart.Phys.6 (1996)]

LUX

Calculating the cross section

- Calculate cross section from nonrelativistic, Galilean-invariant interactions [Fitzpatrick et al., 1203.3542]
- Constructed from
 - momentum transfer $i\vec{q}$
 - relative transverse incoming DM velocity v_T^{\perp}
 - nucleon spin \vec{S}_N (DM spin \vec{S}_{χ})
- Lead to six nuclear responses, e.g.
 - Spin-independent ("M"): e.g. $\mathcal{O}_1^p = \mathbf{1}_{\chi} \mathbf{1}_N$
 - Spin-dependent (" Σ', Σ "): e.g. $\mathcal{O}_4^p = \vec{S}_{\chi} \cdot \vec{S}_N$
 - Nuclear angular momentum (" Δ "): e.g. $\mathcal{O}_{9}^{p} = \vec{S}_{\chi} \cdot (\vec{S}_{p} \times \frac{i\vec{q}}{m_{M}})$

Nuclear matrix elements

- $$\begin{split} \mathcal{O}_{1}^{N} &= \mathbf{1}_{\chi}\mathbf{1}_{N} \,, & \mathcal{O}_{2}^{N} &= (\mathbf{v}_{\perp})^{2}\,\mathbf{1}_{\chi}\mathbf{1}_{N} \,, & \mathcal{O}_{3}^{N} &= \mathbf{1}_{\chi}\,\vec{s}_{N} \cdot \left(\vec{v}_{\perp} \times \frac{i\vec{q}}{m_{N}}\right) \,, \\ \mathcal{O}_{4}^{N} &= \vec{s}_{\chi} \cdot \vec{s}_{N} \,, & \mathcal{O}_{5}^{N} &= \vec{s}_{\chi} \cdot \left(\vec{v}_{\perp} \times \frac{i\vec{q}}{m_{N}}\right)\mathbf{1}_{N} \,, & \mathcal{O}_{6}^{N} &= \left(\vec{s}_{\chi} \cdot \frac{\vec{q}}{m_{N}}\right) \left(\vec{s}_{N} \cdot \frac{\vec{q}}{m_{N}}\right) \,, \\ \mathcal{O}_{7}^{N} &= \mathbf{1}_{\chi} \left(\vec{s}_{N} \cdot \vec{v}_{\perp}\right) \,, & \mathcal{O}_{8}^{N} &= \left(\vec{s}_{\chi} \cdot \vec{v}_{\perp}\right)\mathbf{1}_{N} \,, & \mathcal{O}_{9}^{N} &= \vec{s}_{\chi} \cdot \left(\frac{i\vec{q}}{m_{N}} \times \vec{s}_{N}\right) \,, \\ \mathcal{O}_{10}^{N} &= -\mathbf{1}_{\chi} \left(\vec{s}_{N} \cdot \frac{i\vec{q}}{m_{N}}\right) \,, & \mathcal{O}_{11}^{N} &= -\left(\vec{s}_{\chi} \cdot \frac{i\vec{q}}{m_{N}}\right)\mathbf{1}_{N} \,, & \mathcal{O}_{12}^{N} &= \vec{s}_{\chi} \cdot \left(\vec{s}_{N} \times \vec{v}_{\perp}\right) \,, \\ \mathcal{O}_{13}^{N} &= -\left(\vec{s}_{\chi} \cdot \vec{v}_{\perp}\right) \left(\vec{s}_{N} \cdot \vec{v}_{\perp}\right) \,, & \mathcal{O}_{14}^{N} &= -\left(\vec{s}_{\chi} \cdot \frac{i\vec{q}}{m_{N}}\right) \left(\vec{s}_{N} \cdot \vec{v}_{\perp}\right) \,, \end{split}$$
- Calculation of nuclear response functions for all NR operators (available for F, Na, Ge, I, Xe)
 [Fitzpatrick et al. 1203.3542]
- Rough scaling:
 - $W_M \sim \mathcal{O}(A^2)$
 - $W_{\Sigma'}$, $W_{\Sigma''}$, W_{Δ} , $W_{\Delta\Sigma'} \sim \mathcal{O}(1)$

What is the input?

 Automatic calculation of pheno observables, given the coefficients of O^N_i [Mathematica package DMFormFactor, Anand et al. 1308.6288]

- Problems
 - Coefficients are not independent
 - Coefficients can be momentum dependent
 - Coefficients are specified at low energies
 - Explicit connection to UV models?
 - Combination with collider / indirect bounds?

Effective UV Lagrangian

$$\mathcal{L}^{\mathsf{eff}} = \mathcal{L}^{(4)}|_{n_f} + \mathcal{L}^{\mathsf{DM}}|_{n_f} + \sum \hat{\mathcal{C}}_j^{(5)}|_{n_f} \mathcal{Q}_j^{(5)} + \sum \hat{\mathcal{C}}_j^{(6)}|_{n_f} \mathcal{Q}_j^{(6)} + \sum \hat{\mathcal{C}}_j^{(7)}|_{n_f} \mathcal{Q}_j^{(7)} + \dots$$

• Dim.5:
$$Q_1^{(5)} = \frac{e}{8\pi^2} (\bar{\chi} \sigma^{\mu\nu} \chi) F_{\mu\nu}, \dots$$

• Dim.6: $\mathcal{Q}_{1,f}^{(6)} = (\bar{\chi}\gamma_{\mu}\chi)(\bar{f}\gamma^{\mu}f), \ \mathcal{Q}_{4,f}^{(6)} = (\bar{\chi}\gamma_{\mu}\gamma_{5}\chi)(\bar{f}\gamma^{\mu}\gamma_{5}f), \ldots$

• Dim.7:
$$\mathcal{Q}_{5,f}^{(7)} = m_f(\bar{\chi}\chi)(\bar{f}f), \dots$$

Low-energy limit

• Need "HQET" version of dark matter [Hill, Solon 1111.0016; 1409.8290]

- $\bar{\chi}\gamma^{\mu}\chi \rightarrow v^{\mu}\bar{\chi}_{\nu}\chi_{\nu} + \frac{1}{2m_{\chi}}\bar{\chi}_{\nu}i\overleftrightarrow{\partial}^{\mu}_{\perp}\chi_{\nu} + \frac{1}{2m_{\chi}}\partial_{\nu}(\bar{\chi}_{\nu}\sigma^{\mu\nu}_{\perp}\chi_{\nu}) + \cdots$
- $\bar{\chi}\gamma^{\mu}\gamma_{5}\chi \rightarrow 2\bar{\chi}_{\nu}S^{\mu}_{\chi}\chi_{\nu} \frac{i}{m_{\chi}}\nu^{\mu}\bar{\chi}_{\nu}S_{\chi} \stackrel{\leftrightarrow}{\partial}\chi_{\nu} + \cdots$

•
$$\bar{\chi}i\gamma_5\chi \to \frac{1}{m_\chi}\partial_\mu\bar{\chi}_\nu S^\mu_\chi\chi_\nu + \dots$$

• ...

- For hadronic current, can in principle use nuclear form factors
 - For instance, $\langle A' | \bar{q} \gamma^{\mu} q | A \rangle = \bar{u}'_A \Big[F_1(q^2) \gamma^{\mu} + \frac{i}{2m_A} F_2(q^2) \sigma^{\mu\nu} q_{\nu} \Big] u_A$
- However, these are not known for general hadronic currents
- Need low-energy "effective theory"

Chiral Effective Theory

- Recall maximum momentum transfer in DM scattering is $q_{max} \approx 200 \text{ MeV}$
- Expansion in $q/(4\pi f_{\pi})$ is good to $\mathcal{O}(20\%)$
- Can use (Heavy Baryon) Chiral Perturbation Theory (HBChPT) [Jenkins et al. Phys.Lett. B255 (1991) 558, see also Hoferichter et al. 1503.04811]
 - Hadronic degrees of freedom are pions, nucleons,...
- Treat DM currents as $SU(3)_L \times SU(3)_R$ spurions
- Can write hadronization of quark currents explicitly, e.g.:
 - Pseudo-scalar meson current: $\bar{q}i\gamma_5 q \rightarrow -B_0 f_\pi m_u (\pi^0 + \eta/\sqrt{3}) + \dots$
 - Nuclear vector current: $\bar{u}\gamma^{\mu}u \rightarrow v^{\mu}(2\bar{p}_{\nu}p_{\nu}+\bar{n}_{\nu}n_{\nu})+\ldots$
- Describe hadronic physics in terms of few parameters $(f_{\pi}, g_A, \mu_N, \sigma_{\pi N} \dots)$

Low-energy limit – Interactions

• Momentum / velocity independent:

•
$$Q_{1,p}^{(0)} = (\bar{\chi}_v \chi_v) (\bar{p}_v p_v)$$

•
$$Q_{2,p}^{(0)} = (\bar{\chi}_{v} S_{\chi}^{\mu} \chi_{v}) (\bar{p}_{v} S_{N,\mu} p_{v})$$

• Linear in momentum / velocity:

•
$$Q_{1,p}^{(1)} = (\bar{\chi}_v \chi_v) (\bar{p}_v i q \cdot S_N p_v)$$

•
$$Q_{2,p}^{(1)} = \left(\bar{\chi}_v i q \cdot S_\chi \chi_v\right) \left(\bar{p}_v p_v\right)$$

•
$$Q_{3,p}^{(1)} = m_N (\bar{\chi}_v \chi_v) (\bar{p}_v v_\perp \cdot S_N p_v)$$

• Quadratic in momentum / velocity:

•
$$Q_{1,p}^{(2)} = (\bar{\chi}_{\nu} i q \cdot S_{\chi} \chi_{\nu}) (\bar{p}_{\nu} i q \cdot S_N p_{\nu})$$

• $Q_{2,p}^{(2)} = i m_N \epsilon^{\alpha \beta \mu \nu} v_{\alpha} q_{\beta} v_{\perp,\mu} (\bar{\chi}_{\nu} S_{\chi,\nu} \chi_{\nu}) (\bar{p}_{\nu} p_{\nu})$

Joachim Brod (TU Dortmund)

Chiral power counting

• Power counting scheme: $M_{A,\chi} \sim p^{\nu}$

[Weinberg NP B363 (1991) 3; Kaplan, Savage, Wise, nucl-th/9605002; Cirigliano, Graesser, Ovanesyan 1205.2695]

- $\nu = 4 A 2C + 2L + \sum_{i} V_i(d_i n_i/2 2) + \epsilon_W$
- Resonances, shallow bound states etc. can upset power counting [Bedaque et al. nucl-th/0203055, Epelbaum et al. 0811.1338, Epelbaum 1001.3229, Valderrama et al. 1407.0437; see also de Vries et al., 1704.01150]

- Only leading diagram for most DM-SM interactions
- Leading diagram for $A \cdot A$ interaction

- Gives q-dependent "form factor" $1/(m_\pi^2 + \vec{q}^2)$
- Only leading diagram for $S \cdot P$ and $P \cdot P$
- Leading diagram for $A \cdot A$ interaction

Effect of NLO operators – meson exchange

- $\mathcal{Q}_{4,q}^{(6)} = (\bar{\chi}\gamma_{\mu}\gamma_{5}\chi)(\bar{q}\gamma^{\mu}\gamma_{5}q)$
 - Contact term: $\mathcal{O}_4^N = \vec{S}_{\chi} \cdot \vec{S}_N$
 - Previously neglected meson exchange contribution:

 $\mathcal{O}_6^N = \left(\vec{S}_{\chi} \cdot rac{\vec{q}}{m_N}
ight) \left(\vec{S}_N \cdot rac{\vec{q}}{m_N}
ight)$

• The coefficients are

•
$$c_{\mathrm{NR},4}^{p} \supset -4 \left(\Delta u_{p} \, \hat{C}_{4,u}^{(6)} + \Delta d_{p} \, \hat{C}_{4,d}^{(6)} + \Delta s \, \hat{C}_{4,s}^{(6)} \right)$$

• $c_{\mathrm{NR},6}^{p} \supset m_{N}^{2} \left\{ \frac{2}{3} \frac{(\Delta u_{p} + \Delta d_{p} - 2\Delta s)}{m_{\eta}^{2} + \vec{q}^{2}} \left(\hat{C}_{4,u}^{(6)} + \hat{C}_{4,d}^{(6)} - 2\hat{C}_{4,s}^{(6)} \right) + \frac{2g_{A}}{m_{\pi}^{2} + \vec{q}^{2}} \left(\hat{C}_{4,u}^{(6)} - \hat{C}_{4,d}^{(6)} \right) \right\}$

Effect of NLO operators – meson exchange

• Pion pole compensates for \vec{q}^2 suppression

Effect of NLO operators – meson exchange

•
$$\mathcal{Q}_{3}^{(7)} = \frac{\alpha_{s}}{8\pi} (\bar{\chi}\chi) G^{a\mu\nu} \widetilde{G}^{a}_{\mu\nu}, \qquad \mathcal{Q}_{4}^{(7)} = \frac{\alpha_{s}}{8\pi} (\bar{\chi}i\gamma_{5}\chi) G^{a\mu\nu} \widetilde{G}^{a}_{\mu\nu}$$

• Previously neglected meson exchange is leading contribution!

• Order-of-magnitude improvement in bound

Effect of NLO operators – fine tuning

- Chirally leading terms cancel in $(\bar{\chi}\gamma_{\mu}\chi)(\bar{q}\gamma^{\mu}\gamma_{5}q)$
 - Only velocity / momentum suppressed interactions
- Electroweak corrections can regenerate LO terms [Bishara, Brod, Grinstein, Zupan, work in progress]

Summary

- Established explicit connection between UV and nuclear physics
 - Meson exchange contributions can have significant impact
 - Electroweak mixing can have significant impact

- Provide public code for automatic running from UV to nuclear scale [Bishara, Brod, Grinstein, Zupan, work in progress]
 - Calculate NR coefficients $c_{NR,i}^N$ (NR operators)...
 - ... in terms of UV Wilson coefficients $C_{i,f}^{(d)}$ (UV operators)