The ϵ'_K anomaly: consequences for supersymmetry and $K \to \pi \nu \bar{\nu}$

Ulrich Nierste

Karlsruhe Institute of Technology Institute for Theoretical Particle Physics

Federal Ministry of Education and Research

New physics at the junction of flavor and collider phenomenology Portorož, 21 Apr 2017 Flavour-changing neutral current (FCNC) transitions of Kaons probe virtual effects of very high mass scales.

Example: ϵ_{K} quantifying CP violation in $K-\overline{K}$ mixing is dominated by loops with top quarks.

 \Rightarrow experiment at 0.5 GeV probes physics at 173 GeV

- (i) theoretical control of ϵ_{K} increases steadily (hadronic matrix elements and NNLO QCD under good control, $\epsilon_{K} \propto |V_{cb}|^{4}$ issue improving),
- (ii) ϵ'_{K} now tractable with lattice QCD,
- (iii) upcoming measurements of theoretically clean branching ratios $B(K^+ \to \pi^+ \nu \bar{\nu})$ (by NA62) and $B(K_L \to \pi^0 \nu \bar{\nu})$ (by KØTØ),
- (iv) no new particles found at LHC:
 - \Rightarrow weaker rationale for Minimal Flavour Violation (MFV)

If the flavour structure of new physics is unrelated to the SM Yukawa sector, one expects the largest effects in Kaon (and $\mu \rightarrow e$) FCNC processes.

CP violation in $K \rightarrow \pi \pi$

Combine decay amplitudes $A(K^0 \to \pi^+\pi^-)$ and $A(K^0 \to \pi^0\pi^0)$ into

 $A_0 \equiv A(K^0 \rightarrow (\pi\pi)_{I=0})$ and $A_2 \equiv A(K^0 \rightarrow (\pi\pi)_{I=2})$,

where *I* denotes the strong isospin.

CP violation in $K \rightarrow \pi \pi$

Combine decay amplitudes $A(K^0 \to \pi^+\pi^-)$ and $A(K^0 \to \pi^0\pi^0)$ into

 $A_0 \equiv A(K^0 \rightarrow (\pi\pi)_{I=0})$ and $A_2 \equiv A(K^0 \rightarrow (\pi\pi)_{I=2})$,

where I denotes the strong isospin.

Indirect CP violation (from $K-\overline{K}$ mixing):

 $\epsilon_{K} \equiv \frac{A(K_{L} \to (\pi\pi)_{I=0})}{A(K_{S} \to (\pi\pi)_{I=0})} = (2.228 \pm 0.011) \cdot 10^{-3} \cdot e^{i(0.97 \pm 0.02)\pi/4}$

discovered in 1964

Combine decay amplitudes $A(K^0 \to \pi^+\pi^-)$ and $A(K^0 \to \pi^0\pi^0)$ into

 $A_0 \equiv A(K^0 \rightarrow (\pi\pi)_{I=0})$ and $A_2 \equiv A(K^0 \rightarrow (\pi\pi)_{I=2}),$

where I denotes the strong isospin.

Indirect CP violation (from $K-\overline{K}$ mixing):

$$\epsilon_{\mathcal{K}} \equiv \frac{A(\mathcal{K}_{L} \to (\pi\pi)_{I=0})}{A(\mathcal{K}_{S} \to (\pi\pi)_{I=0})} = (2.228 \pm 0.011) \cdot 10^{-3} \cdot e^{i(0.97 \pm 0.02)\pi/4}$$

discovered in 1964

Direct CP violation (from decay amplitude):

$$\epsilon_{K}^{\prime} \simeq \frac{\epsilon_{K}}{\sqrt{2}} \left[\frac{\langle (\pi\pi)_{I=2} | K_{L} \rangle}{\langle (\pi\pi)_{I=0} | K_{L} \rangle} - \frac{\langle (\pi\pi)_{I=2} | K_{S} \rangle}{\langle (\pi\pi)_{I=0} | K_{S} \rangle} \right] = (16.6 \pm 2.3) \cdot 10^{-4} \cdot \epsilon_{K}$$

discovered in 1999

Experimentally well-known:

$$ReA_{0} = (3.3201 \pm 0.0018) \times 10^{-7} \text{ GeV},$$

$$ReA_{2} = (1.4787 \pm 0.0031) \times 10^{-8} \text{ GeV}$$

$$\uparrow$$
PDC convention for CKM elements

assumes PDG convention for CKM elements

Master equation for ϵ'_{K} :

$$\frac{\epsilon'_{\mathcal{K}}}{\epsilon_{\mathcal{K}}} = \frac{\omega_{+}}{\sqrt{2}|\epsilon_{\mathcal{K}}^{\exp}|\text{Re}A_{0}^{\exp}} \left\{ \frac{\text{Im}A_{2}}{\omega_{+}} - \left(1 - \hat{\Omega}_{\text{eff}}\right)\text{Im}A_{0} \right\}.$$

Here:

$$\omega_{\pm} \simeq rac{\mathrm{Re}A_2}{\mathrm{Re}A_0} = (4.53 \pm 0.02) \cdot 10^{-2}$$

 $\hat{\Omega}_{eff} = (14.8\pm8.0)\cdot10^{-2}$ quantifies isospin breaking.

Important theoretical ingredients: $\text{Im}A_0$ and $\text{Im}A_2$, calculated from the effective $|\Delta S| = 1$ hamiltonian describing $s \rightarrow dq\bar{q}$ decays.

The enhanced sensitivity to $\Delta I = 3/2$ transitions (such as electroweak penguins and boxes) is a special feature of ϵ'_{κ} .

 ImA_0 is dominated by gluon penguins:

Operator: $Q_6 = \overline{s}_L^j \gamma_\mu d_L^k \sum_q \overline{q}_R^k \gamma^\mu q_R^j$ Matrix element: $\langle (\pi \pi)_{I=0} | Q_6 | K^0 \rangle$

 ImA_2 is dominated by electroweak penguin and box diagrams:

Operator: $Q_8 = \frac{3}{2} \overline{s}_L^j \gamma_\mu d_L^k \sum_q e_q \overline{q}_R^k \gamma^\mu q_R^j$ Matrix element: $\langle (\pi \pi)_{I=2} | Q_8 | K^0 \rangle$

$$\frac{\epsilon'_{K}}{\epsilon_{K}} = (16.6 \pm 2.3) \times 10^{-4} \quad \text{(experiments: NA62, KTeV)}$$

$$\frac{\epsilon'_{K}}{\epsilon_{K}} = (1.1 \pm 4.7_{\text{lattice}} \pm 1.9_{\text{NNLO}} \pm 0.6_{\text{isosp. br.}} \pm 0.2_{m_{t}}) \times 10^{-4} \quad \text{(SM)}$$
Kitahara,UN,Tremper, JHEP 1612 (2016) 078
he prediction uses the lattice-QCD results from RBC-UKQCD,
Phys. Rev. Lett. **115** 212001 (2015).

Discrepancy with a significance of $2.8\sigma!$

Our prediction uses the methodology of Buras et al. (JHEP 1511 (2015) 202) (taking $\text{Re}A_{0,2}$ from data), NLO formulae from Buras et al., and a new formula for the RG evolution.

Buras, Jäger, Gorbahn (JHEP 1511 (2015) 202) find a 2.9σ deviation:

$$\frac{\epsilon'_{\kappa}}{\epsilon_{\kappa}} = (1.9 \pm 4.5) \times 10^{-4} \qquad (\text{SM})$$

т

Standard Model:

Cabibbo-Kobayashi-Maskawa (CKM) factor:

$$au = -rac{V_{td}V_{ts}^*}{V_{ud}V_{us}^*} \sim (1.5 - 0.6i) \cdot 10^{-3}$$

 $\epsilon_K^{\prime \,\text{SM}} \propto \text{Im}\, \tau$ and $\epsilon_K^{\text{SM}} \propto \text{Im}\, \tau^2$.

Generic loop-induced new physics:

some flavour-violating parameter δ with $|\delta| \gg |\tau|$ to compensate for suppression from heavy new-physics mass:

$$\epsilon_K^{\prime \,\text{NP}} \propto \text{Im}\,\delta$$
 and $\epsilon_K^{\text{NP}} \propto \text{Im}\,\delta^2$.

- $\Rightarrow \quad \text{If } \epsilon_{\mathcal{K}}^{\prime\,\text{NP}} \sim \epsilon_{\mathcal{K}}^{\prime\,\text{SM}} \text{, expect } \epsilon_{\mathcal{K}}^{\text{NP}} \gg \epsilon_{\mathcal{K}}^{\text{SM}} \text{.}$
- \Rightarrow Need clever ideas to suppress $\epsilon_{\mathcal{K}}^{\text{NP}}$.

Supersymmetry

The MSSM has a mechanism

 to enhance ReA₂, because it permits strong-isospin violation through splittings between right-handed up-squark and down-squark masses (Trojan penguins),

Grossman, Kagan, Neubert 1999.

 to suppress the K-K mixing amplitude thanks to the Majorana nature of the gluinos, with negative interference of two box diagrams. Crivellin, Davidkov 2010

The second feature makes the MSSM contribution to $K-\overline{K}$ mixing vanish for $M_{\tilde{q}} \sim 1.5 M_{\tilde{q}}$, it stays small for $M_{\tilde{q}} > 1.5 M_{\tilde{q}}$.

Teppei Kitahara, UN, Paul Tremper, Phys. Rev. Lett. 117 (2016) 091802

Choose:

Sparticle masses $M_S \sim 10$ TeV, $M_{\tilde{g}} > 1.5M_S$, flavour mixing in down-squark mass matrix only with arg $\Delta_{sd}^{LL} = \pi/4$.

Explain ϵ'_{K}

x-axis: generic sparticle mass, $M_{\tilde{g}} = 1.5 M_S$

y-axis: right-handed up-squark mass

red region: excluded by $\epsilon_{\mathcal{K}}$ if $|V_{cb}|$ from inclusive decays is correct

blue dashes: delimit allowed region, if $|V_{cb}|$ from exclusive decays is correct

$K \to \pi \nu \bar{\nu}$

The (near) future of Kaon physics:

$$\begin{split} & {\cal B}({\cal K}^+ \to \pi^+ \nu \bar{\nu}) \stackrel{\rm SM}{=} (8.3 \pm 0.5) \cdot 10^{-11} & \text{for NA62 (CERN)} \\ & {\cal B}({\cal K}_L \to \pi^0 \nu \bar{\nu}) \stackrel{\rm SM}{=} (2.9 \pm 0.2) \cdot 10^{-11} & \text{for KØTØ (J-PARC)} \end{split}$$

These branching ratios are theoretically extremely clean.

In our MSSM scenario: Contributions from wino-like chargino box:

Giancarlo D'Ambrosio, Andreas Crivellin, Teppei Kitahara, UN, 1703.05786

 $K \to \pi \nu \bar{\nu}$

Our MSSM scenario makes falsifiable predictions for $B(K^+ \to \pi^+ \nu \bar{\nu})$ and $B(K_L \to \pi^0 \nu \bar{\nu})$:

 $m_{\tilde{q}_1} = 1.5 \text{ TeV}$: mass of the lightest ($\tilde{s}_L - \tilde{d}_L$ -mixed) squark,

slepton mass $m_{\tilde{L}} \ge 300 \text{ GeV}$, M_3 : gluino mass, GUT relations for $M_{1,2}$,

 M_{S} : mass of all other sparticles.

The number in the squares show the value for M_3/M_S needed to cancel the MSSM contribution to ϵ_K .

In order to exhaust the bounds on $B(K^+ \to \pi^+ \nu \bar{\nu})$ and $B(K_L \to \pi^0 \nu \bar{\nu})$, one must fine-tune M_3 or the CP phase $\arg \Delta_{sd}^{LL}$: For $\arg \Delta_{sd}^{LL} = \pm \pi/2$ the MSSM contribution to ϵ_K vanishes, while ϵ'_K is maximised.

If you allow for at most 10% fine-tuning in ϵ_{K} , you find (for GUT relations between $M_{1,2,3}$):

$$\frac{B(K^+ \to \pi^+ \nu \bar{\nu})}{B(K^+ \to \pi^+ \nu \bar{\nu})_{\rm SM}} \le 1.1 \qquad \text{and} \qquad \frac{B(K_L \to \pi^0 \nu \bar{\nu})}{B(K_L \to \pi^0 \nu \bar{\nu})_{\rm SM}} \le 1.2.$$

 \rightarrow need upgrade KØTØ–step2, aiming at $\mathcal{O}(100)$ events.

Furthermore: if the new-physics contribution to $\epsilon'_{\mathcal{K}}$ is positive (as indicated by present data), find

 $\operatorname{sgn} \left[B(K_L \to \pi^0 \nu \overline{\nu}) - B^{\operatorname{SM}}(K_L \to \pi^0 \nu \overline{\nu}) \right] = \operatorname{sgn} \left(m_{\overline{U}} - m_{\overline{D}} \right)$

Here \overline{U} and \overline{D} denote the right-handed up and down squarks, respectively.

Could collider experiments ever achieve this?

Summary

- The new lattice results for the matrix element $\langle (\pi\pi)_{I=0} | Q_6 | K^0 \rangle$ from RBC-UKQCD points to a tension between the experimental value of ϵ'_{κ} and the Standard-Model prediction.
- If new physics enters through loops, a sizable effect in ϵ'_{K} requires a new source of flavour violation which is much larger then the CKM factor Im $\frac{V_{td}V_{ts}^{*}}{V_{ud}V_{us}^{*}} \sim 6 \cdot 10^{-4}$. But then the effect on ϵ_{K} will typically be too big.
- In the MSSM one can simultaneously enhance ϵ'_{κ} and suppress the new-physics contributions to ϵ_{κ} . This requires flavour mixing among left-handed squarks, masses of right-handed up-type squarks different from those of the down-type squarks, and a gluino mass above 1.5 times the mass of the left-handed squarks.
- $B(K \to \pi \nu \overline{\nu})$ data will test our scenario. $B(K_L \to \pi^0 \nu \overline{\nu})$ can determine, whether the right-handed up squark is heavier or lighter than the right-handed down squark.

Backup

Standard Model:

Cabibbo-Kobayashi-Maskawa (CKM) factor:

$$\tau = -\frac{V_{td}V_{ts}^*}{V_{ud}V_{us}^*} \sim (1.5 - 0.6i) \cdot 10^{-3}$$
$$\epsilon_K^{\prime \,\text{SM}} \propto \text{Im} \, \frac{\tau}{M_W^2} \qquad \text{and} \quad \epsilon_K^{\text{SM}} \propto \text{Im} \, \frac{\tau^2}{M_W^2}$$

Generic new physics:

Some flavour-violating parameter: δ

$$\epsilon_{K}^{\prime \,\text{NP}} \propto \text{Im} \, \frac{\delta}{M^{2}} \quad \text{and} \quad \epsilon_{K}^{\text{NP}} \propto \text{Im} \, \frac{\delta^{2}}{M^{2}}.$$

with new heavy particle mass $M \gg M_W$.

But data require $|\epsilon_{K}^{\text{NP}}| \leq |\epsilon_{K}^{\text{SM}}|$, so that

$$\left|\frac{\epsilon_{K}^{\prime \,\mathrm{NP}}}{\epsilon_{K}^{\prime \,\mathrm{SM}}}\right| \leq \frac{\left|\epsilon_{K}^{\prime \,\mathrm{NP}}/\epsilon_{K}^{\prime \,\mathrm{SM}}\right|}{\left|\epsilon_{K}^{\mathrm{NP}}/\epsilon_{K}^{\mathrm{SM}}\right|} = \mathcal{O}\left(\frac{\operatorname{Re}\tau}{\operatorname{Re}\delta}\right).$$

If new physics enters through loops, we need $|\delta| \gg |\tau|$ to compensate for $M \gg M_W$, but then ϵ_K prohibits large effects in ϵ'_K .

But data require $|\epsilon_{K}^{\text{NP}}| \leq |\epsilon_{K}^{\text{SM}}|$, so that

$$\left|\frac{\epsilon_{K}^{\prime \,\mathrm{NP}}}{\epsilon_{K}^{\prime \,\mathrm{SM}}}\right| \leq \frac{\left|\epsilon_{K}^{\prime \,\mathrm{NP}}/\epsilon_{K}^{\prime \,\mathrm{SM}}\right|}{\left|\epsilon_{K}^{\mathrm{NP}}/\epsilon_{K}^{\mathrm{SM}}\right|} = \mathcal{O}\left(\frac{\operatorname{Re}\tau}{\operatorname{Re}\delta}\right).$$

If new physics enters through loops, we need $|\delta| \gg |\tau|$ to compensate for $M \gg M_W$, but then ϵ_K prohibits large effects in ϵ'_K .

Solutions in the literature:

- tree-level new physics (e.g. Z') with $|\delta| \sim |\tau|$
- fine-tuning of the CP phase to get $\operatorname{Re} \delta \sim 0$
- exploit special features of supersymmetry (this talk).