Flavor without symmetries

Alex Pomarol, UAB & IFAE (Barcelona)

Broad view of New Physics effects in flavor physics

the promised land to see New Physics Flavor & CPV was supposed to be (specially for BSM solving the hierarchy problem)

We have a lot of null results to explain!

Where are the expected big effects:

"Cheap" ways to explain it:

"Cheap" ways to explain it:

Demand BSM is very heavy ~10³ TeV but... hierarchy problem?

"Cheap" ways to explain it:

- Demand BSM is very heavy ~10³ TeV but... hierarchy problem?
- Demand similar BSM flavor-structure as in the SM:

Imposed CP & Flavor Symmetries in the BSM

Steven Weinberg

command of nature, we were exaggerating their importance, the extent that these symmetries were our spies in the high as also often happens with real spies"

"...<u>symmetry and its generalizations are not fundamental at all, but</u> <u>just accidents, approximate consequences of deeper principles</u>. To

"Cheap" ways to explain it:

Demand BSM is very heavy ~10³ TeV but... hierarchy problem?

Demand similar BSM flavor-structure as in the SM:

Imposed CP & Flavor Symmetries in the BSM

Nevertheless...

This is also the lesson from the SM: Not based on symmetries!

gauge symmetries 🖛 redundancies of the theory arise as a consequence of Lorentz symmetry Weinberg's Book 1, page 246

CP & flavor symmetries in the BSM should arise from dynamics!

Symmetries from dynamics

Only few examples known:

Symmetries from dynamics

Only few examples known:

SUSY: Gauge Mediated Susy Breaking (GMSB)

soft-masses through gauge interactions (flavor blind)

but today minimal GMSB highly tuned to reproduce M_H~125 GeV

Beyond minimal models... EDMs are sizable! $d_e \sim 10^{-28} \mathrm{cm\,e} \left(\frac{10}{10} \mathrm{TeV} \right)$ M_S \mathbf{N} aneta

Symmetries from dynamics

Only few examples known:

Composite Higgs:

Yukawas from linear mixing to operators of the strong sector:

$$\mathcal{L}_{ ext{lin}} = \epsilon_{f_i} \, ar{f_i} \, \mathcal{O}_{f_i}$$
 partial-compositeness

✓ portal to the strong sector

Possible? lattice could tell us!

Geometric perspective

$\mu \rightarrow e\gamma$ bound: $\Lambda_{IR} > 60 \text{ TeV}\left(\frac{g_*}{3}\right)$ EDM bound: $\Lambda_{\mathrm{IR}} > 100 \; \mathrm{TeV}$ (

$$\frac{g_*^2}{16\pi^2} \frac{g_* v}{\Lambda_{\rm IR}^2} \epsilon_{f_i} \epsilon_{f_j} \, \bar{f}_i \sigma_{\mu\nu} f_j \, g F^{\mu\nu}$$

$$\epsilon_{\rm K}$$
 bound: $\Lambda_{\rm IR} > 10~{
m TeV}$

$$\frac{*}{2} \epsilon_{f_i} \epsilon_{f_j} \epsilon_{f_k} \epsilon_{f_l} \, \bar{f_i} \gamma^{\mu} f_j \bar{f_k} \gamma_{\mu} f_l$$
IR

$$\frac{g_*^2}{\Lambda_{\rm IR}^2} \epsilon_{f_i} \epsilon_{f_j} \epsilon_{f_k} \epsilon_{f_l} \, \bar{f_i} \gamma^\mu f_j \bar{f_k} \gamma_\mu f_l$$

Flavor & CP-violation constraints

The larger the scale of decoupling, e.g. ${\cal O}_H\sim ar{\psi}\psi$	$0 \neq \langle H H O 0 \rangle$	\checkmark Operator of the strong sector that at projects into the Higgs:	${\cal L}_{ m bil}\sim ar{f}_i{\cal O}_H f_j$ bilinear mixing generated at $\Lambda_{ m f}$	e.g. if a constituent get a mass \sim /	portal decouples at higher energie	$\mathcal{L}_{ ext{lin}} = \epsilon_{f_i} ar{f_i} \mathcal{O}_{f_i}$ (also related work by Matsedonskyi 15, Cacciapaglia	Possibility considered here: G.Panico, AP 1603.06609
•		or that at Λ_{IR}	:ed at $\Lambda_{\rm f}$	a mass $\sim \Lambda_{f}$	er energies:	yi 15, Cacciapaglia etal	03.06609

energy scale Decoupling **Down-quark sector** $A_t \approx A_{HR}$ $\Lambda_s \mathbb{A}_{\mathscr{E}}$ $\Lambda_d \mathbb{A}_s$ $\Lambda_{
m IR}$ \mathbb{A}^{b} \mathcal{O}_{u_R} ${\cal O}_{m heta_R}$ Operator L1 $\mathcal{O}_{d_{\mathbf{R}}}, \mathcal{O}_{Q_{L1}}$ $oldsymbol{arphi}_R, \mathcal{O}_{Q_{L3}}$ $\mathscr{O}_{\mathrm{SR}}, \mathscr{O}_{\mathrm{QL2}}$

small masses by small overlapping with the Higgs

Emergent flavor structure

Emergent flavor structure

"Onion" structure:

$$\mathcal{Y}_{
m down} \simeq \left(egin{array}{ccc} Y_d & lpha_R^{ds}Y_d & lpha_R^{ds}Y_s & ec{Y}_b \end{array}
ight)$$

Mixing angles suppressed by Yukawas: $\theta_{ij} \sim Y_i / Y_j$

Smaller Yukawas for large decoupling scale!

$$Y_{f} \equiv g_{*} \epsilon_{f_{Li}}^{(i)} \epsilon_{f_{Ri}}^{(i)} \left(\frac{\Lambda_{\mathrm{IR}}}{\Lambda_{f}}\right)^{d_{H}-1} \simeq m_{f}/v$$

<u>CKM mostly the rotation in the down-quark sector!</u>

Similarly for the up-quark sector (and lepton sector)

Scales of decoupling:

Scales of decoupling:

Flavor and CP-violating effects

\mathcal{Q}_4^{cu}	\mathcal{Q}_2^{cu}	\mathcal{Q}_1^{cu}	\mathcal{Q}_4^{bs}	$\widetilde{\mathcal{Q}}_2^{bs}$	\mathcal{Q}_1^{bs}	\mathcal{Q}_4^{bd}	$\widetilde{\mathcal{Q}}_2^{bd}$	\mathcal{Q}_1^{bd}	\mathcal{Q}_4^{sd}	$\widetilde{\mathcal{Q}}_2^{sd}$	\mathcal{Q}^{sd}_2	\mathcal{Q}_1^{sd}	$\Delta F = 2$
					$\Lambda_{ m IR}\gtrsim 5x_t$			$\Lambda_{ m IR} \gtrsim 5 x_t$				$\Lambda_{ m IR}\gtrsim 5x_t$	t partly-comp.
		•	$\Lambda_{ m IR}\gtrsim 1$	$\Lambda_{ m IR}\gtrsim 0.4\sqrt{g_*}$	$\Lambda_{ m IR}\gtrsim 7x_t$	$\Lambda_{ m IR}\gtrsim 0.4\sqrt{lpha_L^{sd}}$	$\Lambda_{ m IR}\gtrsim 0.3\sqrt{g_*lpha_L^{ds}}$	$\Lambda_{ m IR}\gtrsim 6x_t$	$\Lambda_{ m IR}\gtrsim 5\sqrt{lpha_L^{ds}}$	$\Lambda_{ m IR}\gtrsim 0.5\sqrt{g_*lpha_L^{ds}}$	$\Lambda_{ m IR}\gtrsim 1\sqrt{g_*}$	$\Lambda_{ m IR} \gtrsim 4 x_t$	s partly-comp.
			$\Lambda_{ m IR}\gtrsim 0.1\sqrt{lpha_L^{sb}}$		$\Lambda_{ m IR}\gtrsim 0.6lpha_R^{cb}x_c$	$\Lambda_{ m IR}\gtrsim 0.3\sqrt{lpha_L^{db}}$			$\Lambda_{ m IR}\gtrsim 5\sqrt{lpha_L^{ds}}$			$\Lambda_{ m IR}\gtrsim 1.8 x_c \sqrt{lpha_L^{ct}}$	bilin. mixing (2nd fam.)
						-			$\Lambda_{ m IR}\gtrsim 5\sqrt{lpha_L^{ds}}$			$\Lambda_{ m IR}\gtrsim 0.2 x_d$	bilin. mixing (1st fam.)
$\Lambda_{ m IR}\gtrsim 1.1$	$\Lambda_{ m IR}\gtrsim 0.7\sqrt{g_*}$	$\Lambda_{ m IR}\gtrsim 1x_t$	$\Lambda_{ m IR}\gtrsim 1$	$\Lambda_{ m IR}\gtrsim 0.4\sqrt{g_*}$	$\Lambda_{ m IR}\gtrsim 7x_t$	$\Lambda_{ m IR}\gtrsim 0.8$	$\Lambda_{ m IR}\gtrsim 0.6\sqrt{g_*}$	$\Lambda_{ m IR}\gtrsim 6x_t$	$\Lambda_{ m IR}\gtrsim 10$	$\Lambda_{ m IR}\gtrsim 1\sqrt{g_*}$	$\Lambda_{ m IR}\gtrsim 1\sqrt{g_*}$	$\Lambda_{ m IR} \gtrsim 4 x_t$	Anarchic

scale Λ_f at which the second and first families get bilinear mixings to the Higgs. The results are given in TeV. Entries with a "." correspond to negligible bounds, while "-" means that the corresponding operator is not generated. The most relevant constraints are highlighted in boldface. according to their origin: from the top (or strange) partial compositeness at Λ_{IR} , or from the UV Table 2: Bounds on Λ_{IR} for the different scenarios considered in the text. The effects are separated

 $x_t = \epsilon_{t_L}^{(3)} / \epsilon_{t_R}^{(3)}$

Table 3: Bounds on Λ_{IR} from assuming that the top, bottom, etc. are partly composite at Λ_{IR} . The results are given in TeV. Entries with a "." correspond to negligible bounds, while "-" means are absent. boldface. If a custodial P_{LR} symmetry [31] is present in the top mixings, the bounds denoted by (*)that the corresponding operator is not generated. The most relevant constraints are highlighted in

$\left. \overline{\tau} \sigma^{\mu u} e F_{\mu u} e_{L,R} \right $	$\overline{ au}\sigma^{\mu u}eF_{\mu u}\mu_{L,R}$	$\overline{\mu}\sigma^{\mu u}eF_{\mu u}e_{L,R}$	$\overline{e}_L \sigma^{\mu u} e F_{\mu u} e_R$ Λ_{IR}	Leptons t	$\overline{t}_L \sigma^{\mu u} g_s G_{\mu u} t_R$ Λ	$ar{b}_L \sigma^{\mu u} g_s G_{\mu u} b_R$	$\overline{c}_L \sigma^{\mu u} g_s G_{\mu u} c_R$	$\overline{u}_L \sigma^{\mu u} g_s G_{\mu u} u_R$	$\overline{d}_L \sigma^{\mu u} g_s G_{\mu u} d_R$	$\overline{u}_L \sigma^{\mu u} e F_{\mu u} u_R$	$\overline{d}_L \sigma^{\mu u} e F_{\mu u} d_R$	Neutron EDM t	$\overline{b}_L \gamma^\mu b_L H^\dagger i \overleftrightarrow{D}_\mu H \Lambda_{IR}$	$\Delta F = 0$ t	$\overline{s}_L \gamma^\mu d_L H^\dagger i \overleftrightarrow{D}_\mu H \left[\Lambda_{IR} \right]$	$\left.\overline{s}_L\gamma^\mu b_L H^\dagger i\overleftrightarrow{D}_\mu H \right. \left \left. \mathbf{\Lambda}_{\mathbf{IR}} \right. \right.$	$\overline{s}_R \sigma^{\mu u} g_s G_{\mu u} d_L$	$\overline{s}_L \sigma^{\mu u} g_s G_{\mu u} d_R$	$\overline{s}_R \sigma^{\mu u} e F_{\mu u} b_L$	$\overline{s}_L \sigma^{\mu\nu} e F_{\mu\nu} b_R$	$\Delta F = 1$ t j
			$lpha\gtrsim 1.6\sqrt{g_*x_t}$	party comp.	$\Lambda_{ m IR}\gtrsim 0.24g_*$				I			partly-comp.	$\gtrsim 5\sqrt{g_*x_t}\;(*)$	partly-comp.	$\gtrsim 4\sqrt{g_*x_t} \; (*)$	$\gtrsim 3\sqrt{g_*x_t} \; (*)$	1		1	-	partly comp.
	$\Lambda_{ m IR}\gtrsim 0.7g_*\sqrt{lpha_{L,R}^{\mu au}}$	$\Lambda_{ m IR} \gtrsim 1.2 g_* \sqrt{lpha_{L,R}^{e au} lpha_{R,L}^{\mu au}}$	$\Lambda_{ m IR}\gtrsim 0.5g_{*}\sqrt{lpha_{L}^{e au}lpha_{R}^{e au}}$	τ partly-comp.		$\Lambda_{ m IR}\gtrsim 0.6g_*$			$\Lambda_{ m IR}\gtrsim 0.3g_*\sqrt{lpha_L^{db}}$		$\Lambda_{ m IR}\gtrsim 0.24g_*\sqrt{lpha_L^{db}}$	b partly-comp.	$\Lambda_{ m IR}\gtrsim 0.6\sqrt{g_*x_b}$	b partly-comp.	$\Lambda_{ m IR}\gtrsim 0.50\sqrt{g_*x_b}$	$\Lambda_{ m IR}\gtrsim 0.4\sqrt{g_*x_b}$				$\Lambda_{ m IR}\gtrsim 0.12g_*$	b partly comp.
$\Lambda_{ m IR}\gtrsim 0.1g_*\sqrt{lpha_{L,R}^{e\mu}}$	$\Lambda_{ m IR}\gtrsim 1.3g_*$	$\Lambda_{ m IR}\gtrsim 5g_*\sqrt{lpha_{L,R}^{e\mu}}$	$\Lambda_{ m IR}\gtrsim 2g_*\sqrt{lpha_L^{e\mu}lpha_R^{e\mu}}$	μ partly-comp.					$\Lambda_{ ext{IR}} \gtrsim 1.5 g_* \sqrt{lpha_L^{ds}}$		$\Lambda_{ m IR}\gtrsim 1.2g_*\sqrt{lpha_L^{ds}}$	s partly-comp.	$\Lambda_{ m IR}\gtrsim 0.6\sqrt{g_*x_b}$	s partly-comp.	$\Lambda_{ m IR}\gtrsim 0.5\sqrt{g_*x_b}$	$\Lambda_{ m IR}\gtrsim 0.4\sqrt{g_*x_b}$	$\Lambda_{ m IR} \gtrsim 1.1g_*$	$\Lambda_{ m IR}\gtrsim 0.5g_*$	$\Lambda_{ m IR} \gtrsim 0.8 g_*$	$\Lambda_{ m IR}\gtrsim 0.12g_*$	s partly comp.
$\Lambda_{ m IR}\gtrsim 0.4g_*$	$\Lambda_{ m IR}\gtrsim 1.3g_*$	$\Lambda_{ m IR}\gtrsim 19g_*$	$\Lambda_{ m IR}\gtrsim 32g_*$	Anarchic	$\Lambda_{ m IR}\gtrsim 0.24g_*$	$\Lambda_{ m IR}\gtrsim 0.6g_*$	$\Lambda_{ m IR}\gtrsim 1g_*$	$\Lambda_{ m IR}\gtrsim 1.2g_*$	$\Lambda_{ m IR}\gtrsim 3.2g_*$	$\Lambda_{ m IR}\gtrsim 0.9g_*$	$\Lambda_{ m IR}\gtrsim 2.5g_*$	Anarchic	$\Lambda_{\mathrm{IR}}\gtrsim5\sqrt{g_*x_t}$	Anarchic	$\Lambda_{ m IR}\gtrsim 4\sqrt{g_*x_t}$	$\Lambda_{ m IR}\gtrsim 3\sqrt{g_*x_t}$	$\Lambda_{ m IR}\gtrsim 1.1g_*$	$\Lambda_{ m IR}\gtrsim 1.1g_*$	$\Lambda_{ m IR}\gtrsim 0.8g_*$	$\Lambda_{ m IR}\gtrsim 0.12g_*$	Anarchic

- EDM of u,d,e suppressed by $\Lambda_{d,u,e} > 10^9 \text{ GeV}$
- Largest constraint from the top EDM:

Two-loop Barr-Zee-like diagrams to de:

Image: dN & de around the present bound for $\Lambda_{IR} \sim TeV$

Always EDM!

Splittings within a giv explained by different mixings	$\Lambda_t \sim \Lambda_b \sim \Lambda_{ au}$	$\Lambda_c \sim \Lambda_s \sim \Lambda_\mu$	$\Lambda_u \sim \Lambda_d \sim \Lambda_e$	Decoupling scale	If only one scale f
ren family must be (Ef) at the respective scales	$- \mathcal{O}_{t_R}, \mathcal{O}_{Q_{L3}} \mathcal{O}_{b_R}$	- $\mathcal{O}_{s_R} \mathcal{O}_{c_R}, \mathcal{O}_{Q_{L2}}$	- $\mathcal{O}_{d_R}, \mathcal{O}_{Q_{L1}} \mathcal{O}_{u_R}$	Operator	or each family:

<u>Only main difference</u>: $\mu \rightarrow e\gamma$ gets close to the exp. bound

Other issues:

Modifications to Higgs couplings:

Similar effects as with linear mixing

Neutrino masses:

dimension-7 operator
$$m_
u \sim 0.1-0.01~{
m eV}~{
m for}~\Lambda_
u \sim 0.8-1.5 imes 10^8~{
m GeV}$$

Dirac:
$$rac{1}{\Lambda_{
u}^{d_H-1}} \mathcal{O}_H ar{L}
u_R$$
 for d_H~2, dimension-5 operator as in the SM

Summary

- Flavor symmetries must be an emergent phenomena
- A working example: Flavor from mixing to the BSM at different dynamical scales (different branes)
- Consistent with all experiments for TeV new-physics scale:

