Higgs Sector of the Left-Right Symmetric Theory

Alessio Maiezza

Ruđer Bošković Institute

General Motivations

- Open problem in SM: the origin of neutrino masses.
- A key is a nonstandard gauge symmetry spontaneously broken. (new Higgs boson → a larger scalar sector).

LR extension of the SM.

- Impact on Higgs physics.
- Test: Lepton number violation (LNV). (Majorana neutrino, neutrinoless 2-beta decay, Keung-Senjanovic process...)

Higgs boson in the Standard Model

The Higgs boson (h) discovery is the last triumph of the SM:

- it provides the masses of all charged fermions
- the essence of the Higgs mechanism is that the decay rate of h to two (charged) fermions f's is $\propto m_f^2$

No coupling with neutrino

$$m_{\nu} = 0 \quad \longleftrightarrow \quad \Gamma_{h \to \nu \nu} = 0$$

Neutrino mass in the Standard Model

In the SM the neutrino mass can be built by the non-renormalizable operator (dimension 5):

A UV completion of the SM is required

A Left-Right symmetry?

LR Symmetric Model

[Pati-Salam '74, Mohapatra-Senjanovic '75]

From SM to a theory of the neutrino mass: highlights of the model

$$SU(3)_c \otimes SU(2)_L \otimes SU(2)_R \otimes U(1)_{B-L} \Rightarrow SU(3)_c \otimes SU(2)_L \otimes U(1)_Y$$

new Higgs boson

[Pati-Salam '74, Mohapatra-Senjanovic '75]

Plus a generalized Parity relating left and right: $\mathcal{G}_L = \mathcal{G}_R \equiv \mathcal{G}$

$$Q_{el} = T_{3L} + T_{3R} + \frac{B-L}{2}$$

$$Q_L \in (3, 2, 1, 1/3)$$

$$Q_R \in (3, 1, 2, 1/3)$$

$$Q_R = \begin{pmatrix} u \\ d \end{pmatrix}_L$$

$$Q_R = \begin{pmatrix} u \\ d \end{pmatrix}_R \underbrace{\Psi_L \in (1, 2, 1, -1)}_{\Psi_R \in (1, 1, 2, -1)}$$

$$\Psi_L = \begin{pmatrix} \nu_l \\ l \end{pmatrix}_L$$

$$\Psi_R = \begin{pmatrix} \nu_l \\ l \end{pmatrix}_R \xrightarrow{\text{interacting neutrino}}$$
 A RH gauge interacting neutrino

Highlights of the model: gauge sector RH current \longrightarrow NP Photon

[Mohapatra, Senjanovic '81] Z_{I}, W_{I}^{\pm} Standard weak bosons [Tello, Nemevsek, Nesti, Senjanovic,

"Right-handed twins" bosons

contributions to $0\nu2\beta$ decay

 $Z_{\rm p},W_{\rm p}^{\pm}$

$$L_{c.c.} = \frac{g}{2\sqrt{2}} [\overline{\nu} \gamma^{\mu} (1 - \gamma^5) e] W_{\mu L}^{+} + \frac{g}{2\sqrt{2}} [\overline{\nu} \gamma^{\mu} (1 + \gamma^5) e] W_{\mu R}^{+} + h.c.$$

$$L_{n.c.}^{SM} = \frac{g}{c_w} Z_L (J_{3L} - \frac{s_W^2}{e} J^0) \qquad L_{n.c.}^{N.P.} = \frac{g \sqrt{c_W^2 - s_W^2}}{c_w} Z_R (J_{3R} - J_Y \frac{s_W^2}{c_W^2 - s_W^2})$$

$$L_{n.c.}^{N.P.} = rac{g\sqrt{c_W^2 - c_W^2}}{c_W^2}$$

$$\mathfrak{ght}$$
 and \mathfrak{ght}

$$L_{n.c.} = \frac{1}{c_W} Z_L(J_{3L} - J_Y) \frac{1}{c_W^2 - s_W^2}$$

$$J^0, J_{3L}, J_{3R}, J_Y = \text{Electric, left, right and Hyper-charge currents}$$

$$\text{with normalization:}$$

$$\frac{1}{c_W} J_{3R} - J_Y \frac{1}{c_W^2 - s_W^2}$$

The **potential** has to contain all the possible quadratic and quartic terms in Φ and Δ allowed by symmetry

The scalar potential

$$\begin{split} \mathcal{V} &= -\mu_1^2 \mathrm{Tr}[\phi^\dagger \phi] - \mu_2^2 \left(\mathrm{Tr} \left[\tilde{\phi} \phi^\dagger \right] + \mathrm{Tr} \left[\tilde{\phi}^\dagger \phi \right] \right) - \mu_3^2 \left(\mathrm{Tr} \left[\Delta_L \Delta_L^\dagger \right] + \mathrm{Tr} \left[\Delta_R . \Delta_R^\dagger \right] \right) \\ &+ \lambda_1 (\mathrm{Tr}[\phi^\dagger \phi])^2 + \lambda_2 \left(\left(\mathrm{Tr} \left[\tilde{\phi} \phi^\dagger \right] \right)^2 + \left(\mathrm{Tr} \left[\tilde{\phi}^\dagger \phi \right] \right)^2 \right) + \lambda_3 \mathrm{Tr} \left[\tilde{\phi} \phi^\dagger \right] \mathrm{Tr} \left[\tilde{\phi}^\dagger \phi \right] \\ &+ \lambda_4 \mathrm{Tr}[\phi^\dagger \phi] \left(\mathrm{Tr} \left[\tilde{\phi} \phi^\dagger \right] + \mathrm{Tr} \left[\tilde{\phi}^\dagger \phi \right] \right) + \rho_1 \left(\left(\mathrm{Tr} \left[\Delta_L . \Delta_L^\dagger \right] \right)^2 + \left(\mathrm{Tr} \left[\Delta_R . \Delta_R^\dagger \right] \right)^2 \right) \\ &+ \rho_2 \left(\mathrm{Tr} \left[\Delta_L \Delta_L \right] \mathrm{Tr} \left[\Delta_L^\dagger \Delta_L^\dagger \right] + \mathrm{Tr} \left[\Delta_R \Delta_R \right] \mathrm{Tr} \left[\Delta_R^\dagger \Delta_R^\dagger \right] \right) \\ &+ \rho_3 \mathrm{Tr} \left[\Delta_L \Delta_L^\dagger \right] \mathrm{Tr} \left[\Delta_R \Delta_R^\dagger \right] + \rho_4 \left(\mathrm{Tr} \left[\Delta_L \Delta_L \right] \mathrm{Tr} \left[\Delta_R^\dagger \Delta_R^\dagger \right] \right) \\ &+ \mathrm{Tr} \left[\Delta_L^\dagger \Delta_L^\dagger \right] \mathrm{Tr} \left[\Delta_R \Delta_R \right] \right) + \alpha_1 \mathrm{Tr}[\phi^\dagger \phi] \left(\mathrm{Tr} \left[\Delta_L \Delta_L^\dagger \right] + \mathrm{Tr} \left[\Delta_R \Delta_R^\dagger \right] \right) \\ &+ \alpha_2 e^{i\delta_2} \left(\mathrm{Tr} \left[\tilde{\phi} \phi^\dagger \right] \mathrm{Tr} \left[\Delta_L \Delta_L^\dagger \right] + \mathrm{Tr} \left[\tilde{\phi}^\dagger \phi \right] \mathrm{Tr} \left[\Delta_R \Delta_R^\dagger \right] \right) \\ &+ \alpha_3 \left(\mathrm{Tr} \left[\phi \phi^\dagger \Delta_L . \Delta_L^\dagger \right] + \mathrm{Tr} \left[\phi^\dagger \phi \Delta_R \Delta_R^\dagger \right] \right) \\ &+ \alpha_3 \left(\mathrm{Tr} \left[\phi \phi^\dagger \Delta_L . \Delta_L^\dagger \right] + \mathrm{Tr} \left[\phi^\dagger \phi \Delta_R \Delta_R^\dagger \right] \right) \\ &+ \beta_1 \left(\mathrm{Tr} \left[\phi \Delta_R \phi^\dagger \Delta_L^\dagger \right] + \mathrm{Tr} \left[\phi^\dagger \Delta_L \phi \Delta_R^\dagger \right] \right) \end{aligned}$$

 $+ \beta_2 \left(\operatorname{Tr} \left[\tilde{\phi} \Delta_R \phi^{\dagger} \Delta_L^{\dagger} \right] + \operatorname{Tr} \left[\tilde{\phi}^{\dagger} \Delta_L \phi \Delta_R^{\dagger} \right] \right)$

 $+ \beta_3 \left(\operatorname{Tr} \left[\phi \Delta_R \tilde{\phi}^\dagger \Delta_L^\dagger \right] + \operatorname{Tr} \left[\phi^\dagger \Delta_L \tilde{\phi} \Delta_R^\dagger \right] \right)$

VL ≅ 0

the **seesaw picture**:

The choice of Left-Right symmetry is not univocal

$$\mathcal{P}: \left\{ \begin{array}{l} Q_L \leftrightarrow Q_R \\ \Phi \to \Phi^{\dagger} \end{array} \right. \qquad \mathcal{C}: \left\{ \begin{array}{l} Q_L \leftrightarrow (Q_R)^c \\ \Phi \to \Phi^T \end{array} \right.$$

Which leads respectively to

$$\mathcal{P}: Y = Y^{\dagger}, \qquad \mathcal{C}: Y = Y^{T}$$

[A.M., Nemevsek, Nesti, Senjanovic, 2010]

- The case of "P" is the original one, hence it is the most known in literature.
- Features: offers an insight on "strong CP problem".
- The case of "C" should be considered equally.

Features: interesting in SO(10) GUT scenario, where charge conjugation enters automatically in the algebra.

Some quartics in the **potential** become complex (**phase**): λ **2 (d2)**, λ **4 (d4)**, ρ **4 (r4)**, and β 's (irrelevant).

Scalar mass spectrum

Diagonalization of the mass matrix from the notantial The chactrum contains:

potential	. The spectrum contains.
	Physical scalars
Higgs	$h \simeq c_{\theta} h_{SM} - s_{\theta} \Re e(\delta_R^0)$
Bosons	$\delta_R \simeq c_\theta \Re e(\delta_R^0) + s_\theta h_{SM}$
	ϕ_{FV} (FV heavy doublet)

$$e(\delta_R^0)$$

$$ext{Mass}^2 ext{ (case } \mathcal{C})$$

 $\frac{4(\lambda_{\Phi} - \frac{\alpha^2}{4\rho_1})v^2}{4\rho_1 v_R^2 + \frac{\alpha^2}{\rho_1} v^2}$ $\frac{\frac{\alpha_3}{c_2\beta} v_R^2}{}$

 $(\rho_3 - 2\rho_1)v_R^2 + 4\tilde{\alpha}v^2$

 $(\rho_3 - 2\rho_1)v_R^2 + (\frac{1}{2}\alpha_3c_{2\beta} + 4\tilde{\alpha})v^2$ $(\rho_3 - 2\rho_1)v_R^2 + (\alpha_3 c_{2\beta} + 4\tilde{\alpha})v^2$

 $\alpha \equiv \alpha_1 + 2\alpha_2 s_{2\beta} c_{a+c} + \alpha_3 s_{\beta}^2 \,,$ $\tilde{\alpha} \equiv \alpha_2 s_{2\beta} s_a s_c \simeq -4\alpha_3 c_{2\beta} (t_{2\beta} s_a)^2$

2015]

[Falkowski, Gross, Lebedev

$$\lambda_{\Phi} \equiv \lambda_1 + s_{2\beta}^2 (2\lambda_2 c_{d_2+2a} + \lambda_3) + 2s_{2\beta} \lambda_4 c_{d_4+a}$$

$$\frac{\frac{\delta_L}{\delta_L^{--}}}{\delta_R^{--}}$$

 $\underline{\delta_L} = \Re e(\delta_L^0) \sim \Im m(\delta_L^0)$

$$\frac{\delta_L^{--}}{\delta_R^{--}}$$
 [Senjanovic '79] [Gunion, Kayser, Olness' 89]

[Duka, Gluza, Zralek 2000]

[Zhang, An, Ji, Mohapatra 2007]

[Kiers, Assis, Petrov 2005]

[A.M., Nemevsek, Nesti]

[A.M.,Senjanovic,Vasquez]

And recently

$$\frac{\frac{\delta_L}{\delta_L^{--}}}{\frac{\delta_R^{--}}{\delta_R^{--}}}$$

Mixing the two Higgs bosons $\theta \cong \frac{\alpha k}{2\rho_1 v_R}$ < 40% 2-sigma C.L. The new Higgs boson $L_{vuk} = (y_{\delta} \overline{\psi}_{R} \psi_{R}^{c} \Delta_{R} + R \leftrightarrow L) + h.c.$ Majorana terms

Possible impact of mixing on probing neutrino masses

 $m_N = 2 y_s v_R$ $M_{W_n} = gv_R$ $\Gamma_{\delta \to NN} \propto y_{\delta}^{2}$

See-saw [Minkowski '77, Mohapatra Senjanovic '79, Glashow '79; Yanagida '791

 $m_{\nu} = -m_{D}^{T} m_{N}^{-1} m_{D}$

Via the mixing even h can decay to NN $\frac{\Gamma_{NN}}{\Gamma_{b\bar{b}}} \simeq \frac{\tan \theta^2}{3} \left(\frac{m_N}{m_b}\right)^2 \left(\frac{M_W}{M_{W_0}}\right)^2 \left(1 - \frac{4m_N^2}{m_c^2}\right)^{\frac{3}{2}} \qquad (c\,\tau_N^0)^{-1} \simeq \frac{G_F^2 m_N^5}{16\pi^3} \left(\frac{M_W}{M_W}\right)^4$

[A.M., Nemevsek, Nesti, 2015] [Nemevsek, Nesti, Senjanovic, Zhang 2011]

Possible Impact of mixing on probing neutrino masses

Invariant mass m_N

Higgs data

[A.M., Nemevsek, Nesti 2015]

LNV

Ideally KS→ MwR,MN→ predict YD, then N decay: it is possible to determine the Yukawa coupling from the neutrino masses and mixing.

The complete understanding of neutrino mass origin, requires to observe even δR .

→ [Nemevsek, Senjanovic, Tello PRL 2012]

And see the recent (P case):

[Senjanovic, Tello]

→ See the recent:

[Nemevsek, Nesti, Vasquez]

LNV Higgs decay could be a complementary process

Other impact of mixing: deviation form SM-like h self-interaction

Physical couplings	Quartic couplings			
$\overline{\lambda_{hhhh}}$	$\lambda_{\Phi}/4$			
$\overline{\lambda_{\delta_R\delta_R\delta_R\delta_R}}$	$\rho_1/4$			
$\overline{\lambda_{\delta_R^{++}\delta_R^{++}\delta_R^{}\delta_R^{}}}$	$ ho_1$			
$\overline{\lambda_{\delta_L^+\delta_L^-\delta_L^+\delta_L^-} - \lambda_{\delta_R^{++}\delta_R^{}\delta_R^{++}\delta_R^{}}}$	$ ho_2$			
$\lambda_{\delta_R^{++}\delta_R^{++}\delta_L^{}\delta_L^{}}$	$ ho_3$			
$4\lambda_{\phi_{FV}^{\dagger}\phi_{FV}\delta_{L}^{*}\delta_{L}} - \lambda_{\phi_{FV}^{\dagger}\phi_{FV}\delta_{R}^{++}\delta_{R}^{}}$	$c_{2\beta}\alpha_3$			

Also, more sensitive at LHC

[Baglio, Djouadi, Grober, Muhlleitner, Quevillon, Spira,2013]

[A.M.,Senjanovic,Vasquez]

But let us focus on tri-linear

Effectively as **SM+singlet**

[see Gupta, Rzehak, Wells]

Tri-linear couplings	Expression			
λ_{hhh}	$rac{m_h^2}{2\sqrt{2}}rac{c_ heta^3}{v}$			
$\lambda_{\delta_R\delta_R\delta_R}$	$=rac{m_{\delta_R}^2}{2\sqrt{2}}\left(rac{s_{ heta}^3}{v}+rac{c_{ heta}^3}{v_R} ight)$			
$\lambda_{hh\delta_R}$	$\frac{s_{2\theta}c_{\theta}(m_{\delta_R}^2 + 2m_h^2)}{4\sqrt{2}v}$			
$\lambda_{h\delta_R\delta_R}$	$\frac{s_{2\theta}(2m_{\delta_R}^2 + m_h^2)}{4\sqrt{2}} \left(\frac{s_\theta}{v} - \frac{c_\theta}{v_R}\right)$			

SM deviation

$$\Delta \lambda_{hhh} \equiv \frac{\lambda_{hhh}^{SM} - \lambda_{hhh}}{\lambda_{hhh}^{SM}} \simeq 3/2\theta^2$$

But what about the quantum corrections?

• Any vertex is affected by the corrections, for instance from a rich scalar sectors.

There may be dominant quantum corrections.

LR-scale dependent and strictly related to the **bounds** (predictivity) on the model.

Theoretical constrains: quark mixing

$$L_Y^{had.} = [\overline{Q}_{Li}(Y_{ij}\Phi + \widetilde{Y}_{ij}\widetilde{\Phi})Q_{Rj}] + h.c.$$

$$M_u = Yv_1 + \widetilde{Y}v_2e^{-i\alpha}$$

$$M_d = Yv_2e^{i\alpha} + \widetilde{Y}v_1.$$

$$L_{cc} = \frac{g}{2\sqrt{2}} \{ [\bar{u}V_L \gamma^{\mu} (1 - \gamma_5) d] W_{L\mu} + [\bar{u}V_R \gamma^{\mu} (1 + \gamma_5) d] W_{R\mu} \} + h.c.$$

Left and Right CKM mixing matrices

$$\begin{cases} V_L = U_{uL}^{\dagger} U_{dL} \\ V_R = U_{uR}^{\dagger} U_{dR} \end{cases}$$

Predictivity of the model

Analytic solution for VR

[Senjanovic, Tello PRL 2014]

Previous numerical analysis

[A.M.,Nemevsek,Nesti,Senjanovic 2010]

Theoretical constrains: flavor changing

Again the spectrum

Flavor Violating	Physical scalars	${f Mass}^2 \; ({f case} \; {\cal C})$			
	$h \simeq c_{\theta} h_{SM} - s_{\theta} \Re e(\delta_R^0)$	$4(\lambda_{\Phi} - \frac{\alpha^2}{4\rho_1})v^2$			
	$\delta_R \simeq c_\theta \Re e(\delta_R^0) + s_\theta h_{SM}$	$4\rho_1 v_R^2 + \frac{\alpha^2}{\rho_1} v^2$			
	ϕ_{FV} (FV heavy doublet)	$\left(\frac{\alpha_3}{c_{2\beta}}v_R^2\right)$			
	$\delta_L = \Re e(\delta_L^0) \sim \Im m(\delta_L^0)$	$(\rho_3 - 2\rho_1)v_R^2 + 4\tilde{\alpha}v^2$			
	$\overline{\delta_L^-}$	$(\rho_3 - 2\rho_1)v_R^2 + (\frac{1}{2}\alpha_3c_{2\beta} + 4\tilde{\alpha})v^2$			
	$\delta_L^{}$	$(\rho_3 - 2\rho_1)v_R^2 + (\alpha_3 c_{2\beta} + 4\tilde{\alpha})v^2$			
	$\delta_R^{}$	$4\rho_2 v_R^2 + \alpha_3 c_{2\beta} v^2$			
		Possible mixing of δ R with FV			

α3 has to be large enough.

And how can it be large to leave a **perturbative** theory?

Notice: a large $tan(\beta)$ worsens the issue (increasing the coupling of FV with quarks)

only if quasi-degenerate \implies very

heavy δ R

Theoretical constrains: meson oscillations

Meson oscillations: Bq=d,s mixing

[Bertolini, A.M., Nesti ,2014]

 B_d and B_s mixings obtained in the \mathcal{P} parity case from the

numerical fit of the Yukawa sector of the model.

But is α3 perturbative within the whole theory? And what is its impact on the (effective) potential?

Theoretical constrains: perturbativity

At this purpose consider the loop

- divergent

Renormalization scheme:

reabsorbing in counterterms the **tadpole** and the **one-loop mass terms** (so the mass is just the treelevel one), then keeping the correction to cubic, quartic...

Matching the one-loop self-generated vertex of a given quartic, with tree-level equivalent.

[A.M., Nemevsek, Nesti 2016]

Theoretical constrains: perturbativity (unitarity)

Divergent loop \longrightarrow RGE's

(sharpening the perturbativity issue)

We choose Mwr = 6 TeV corresponding to \sim an α 3 within 10% of perturbativity;

Vary randomly the "free" quartics within [0,0.1] [A.M.,Senjanovic,Vasquez]

FIG. 1. Left. Running of λ_1 , α_3 (the other λ and α couplings exhibit a similar behavior), they become non-perturbative around 10^5 GeV. Center. Running of $\rho_3 - 2\rho_1$ which provides the leading masses for the Δ_L multiplets. The values for the cut-off are read off from the point where $\rho_3 - 2\rho_1$ goes to zero. Right. The same for $4\rho_2$ which provides the leading mass term for δ_R^{++} . In all plots the bands denote the dependence on the random initial choices consistent with the mass spectrum.

Stronger than the limit from S,T e.w. parameters and $h \longrightarrow \gamma \gamma$ [A.M., Nemevsek , Nesti 2016]

A cutoff ~10 Mwr is the smallest to require for holding the consistency of the theory.

RGE's

(for LR at next hadron collider)

Same logic as before – but now

- -we choose Mw_R = 20 TeV (α 3 is now \approx 0.35, "rather small");
- -again vary randomly the "free" quartics within [0,0.1]

FIG. 2. Left. Running of $\lambda_{Higgs} \equiv 4\lambda_h$ defined in (19) for $t_{\beta}=0$ Right. The same for $t_{\beta}=0.3$ giving a lower cut-off. The cut-offs are defined in the same manner as in the Fig. 1

Now the cut-off (due both to Landau pole or perturbativity of quartics) is far away form the right-hand scale. The theory becomes more relaxed.

Comment: because of the heaviness of the FV, the proper machine to test the whole

model is at least a next generation collider, anyway.

[A.M.,Senjanovic,Vasquez]

RGE's

(for LR at very high energy)

Running the model all together: while unifying gauge couplings, the potential has to remain perturbative and stable.

 $\chi_{Higgs} = \lambda_{\Phi} - \frac{\alpha^2}{4\rho_1}$

\implies quartics rather small \approx order percent

FIG. 3. Left. Running of $\lambda_{Higgs} \equiv 4\lambda_h$ defined in (19) for $t_{\beta}=0$. Right. The same for $t_{\beta}=0.3$ which shows a lower cut-off and λ_{Higgs} can become slightly large at GUT scale. The cut-offs are defined as in the previous figures.

All fine with the usual **GUT picture**: just the scalars tend to live slightly below **vr**

[A.M.,Senjanovic,Vasquez]

Higher order effects?

Notice that the largest coefficients come from the pure scalar sector—compute the **two-loop** β -function within the quartics only

(here same $(4\pi)^2$ for direct matching of the coefficient size - λ_1 sample)

$$\begin{aligned} & (4\pi)^2 \beta_{(1-loop)}^{\lambda_1} = 6\alpha_1^2 + 6\alpha_3\alpha_1 + 2.5\alpha_3^2 + 32\lambda_1^2 + 64\lambda_2^2 + 16\lambda_3^2 + 48\lambda_4^2 + 16\lambda_1\lambda_3 \,; \\ & (4\pi)^2 \beta_{(2-loop)}^{\lambda_1} = \frac{1}{384\pi^2} \left\{ -36\alpha_1^2 \left(\alpha_3 - 30\lambda_1\right) - 2\alpha_1 \left[\alpha_3 \left(19\alpha_3 - 540\lambda_1\right) + 48\alpha_2 \left(\alpha_2 + 3\lambda_4\right)\right] + 826\alpha_3^2\lambda_1 \right. \\ & \left. - 48\alpha_2^2 \left(\alpha_3 - 94\lambda_1 + 8\lambda_2 + 4\lambda_3\right) - 144\alpha_2\alpha_3\lambda_4 - 24\alpha_1^3 - 13\alpha_3^3 + 2304\lambda_1\rho_1^2 + 3456\lambda_1\rho_2^2 \right. \\ & \left. + 432\lambda_1\rho_3^2 + 2304\lambda_1\lambda_4^2 + 3456\lambda_1\rho_4^2 + 2304\lambda_1\rho_1\rho_2 + 1424\lambda_1^3 - 384\lambda_3^3 + 14592\lambda_1\lambda_2^2 \right. \\ & \left. + 2304\lambda_1\lambda_3^2 - 3328\lambda_2\lambda_4^2 - 1792\lambda_3\lambda_4^2 + 1152\lambda_1^2\lambda_3 - 5632\lambda_2^2\lambda_3 \right\}. \end{aligned}$$

-Our results for next collider and very high energy **remain quite stable** (with that choice of small initial quartics);

-the delicate case is the one of **low LR-scale at (the edge of) LHC** – here some larger quartics appear. However, the running range is already short and surprisingly the corrections do not modify drastically the plot.

[A.M.,Senjanovic,Vasquez]

Vertex modification

Going back to the SM deviation of the Self-interactions of the Higgs.

$$\Delta \lambda_{hhh} \equiv \frac{\lambda_{hhh}^{SM} - \lambda_{hhh}}{\lambda_{hhh}^{SM}} \simeq 3/2\theta^2$$

It is expected to be Measured with $\pm^{30\%}_{20\%}$ accuracy at LHC,

and 14% at 100TeV collider

Tri-linear couplings	Expression			
λ_{hhh}	$rac{m_h^2}{2\sqrt{2}}rac{c_ heta^3}{v}$			
$\lambda_{\delta_R\delta_R\delta_R}$	$\frac{m_{\delta_R}^2}{2\sqrt{2}} \left(\frac{s_\theta^3}{v} + \frac{c_\theta^3}{v_R} \right)$			
$\lambda_{hh\delta_R}$	$\frac{s_{2\theta}c_{\theta}(m_{\delta_R}^2 + 2m_h^2)}{4\sqrt{2}v}$			
$\lambda_{h\delta_R\delta_R}$	$\frac{s_{2\theta}(2m_{\delta_R}^2 + m_h^2)}{4\sqrt{2}} \left(\frac{s_\theta}{v} - \frac{c_\theta}{v_R}\right)$			

[Goertz, Papaefstathiou, Yang , Zurita,2013]
$$\begin{bmatrix} \lambda_{hhh}^{approx} = \lambda_{hhh} + \\ \frac{1}{\pi^2} \left[\frac{v^3}{v_R^2} \left(\frac{\sqrt{2}\lambda_\Phi^3}{3\alpha_3} + \frac{\alpha_3^3}{96\sqrt{2}\rho_2} + \frac{3\alpha_3^3}{64\sqrt{2}\rho_3} \right) + \frac{9\lambda_\Phi^2 v}{8\sqrt{2}} \right]$$
 and 14% at **100TeV collider**

$$\lambda_{hh\delta_R}^{approx} = \lambda_{hh\delta_R} + \frac{v^2 \left(9\alpha_3^2 + 32\lambda_{\Phi}^2\right)}{32\sqrt{2}\pi^2 v_R},$$

$$\cos v \left(8\left(\lambda_L + \alpha_2\right) + \frac{v^2 \left(9\alpha_3^2 + 32\lambda_{\Phi}^2\right)}{32\sqrt{2}\pi^2 v_R}\right)$$

$$\lambda_{h\delta_R\delta_R}^{approx} = \lambda_{h\delta_R\delta_R} + \frac{\alpha_3 v \left(8 \left(\lambda_{\Phi} + \rho_2\right) + 3\rho_3\right)}{16\sqrt{2}\pi^2},$$

$$\left(2\alpha_2^2 + 16\rho_2^2 + 3\rho_2^2\right) v_R$$

$$\lambda_{\delta_R \delta_R \delta_R \delta_R}^{approx} = \lambda_{\delta_R \delta_R \delta_R} + \frac{\left(2\alpha_3^2 + 16\rho_2^2 + 3\rho_3^2\right)v_R}{24\sqrt{2}\pi^2}.$$

Vertex modification

Plotting the full expressions

FIG. 4. Plots for the quantities shown in (26) (in %) for $M_{W_R} = 6$ TeV (Top) and $M_{W_R} = 20$ TeV (Bottom). For the sake of clearness the plots run up to $\theta \simeq 0.7$, although some regions are ruled out phenomenologically [40].

Outlook

- An in-depth analysis of the **Higgs sector of the Left- Right model**, in all the relevant parameter space.
- Discussion of the **quantum corrections** within the **constraints** on the model at low energy, and at high scale in the light of a natural **UV completion** of the model.
- The LR-scale is not strictly ruled out from LHC, but the **model lives at the edge** there ⇒ conversely without tensions at (expected) reach of **next collider**.
- Discussion on the implications of Higgs physics and Higgs self-interaction.
- Implications on probing the **origin of neutrino mass**.

Back up slides

nEDM: strong source θ

For this issue the choice of **discrete symmetry** is more fundamental and the difference goes beyond the parameterization of the right-handed CKM matrix.

A restored "P" at high scale can be an alternative to PQ symmetry to solve the strong CP problem: it rules out automatically the strong CP-odd term $G\widetilde{G}$

[Mohapatra, Senjanovic, '79]

$$ar{ heta} = rg \det M_u M_d$$
 It becomes computable and depends by the same parameters of the weak contributions (i.e. $lpha$ and VEVs ratio.)

[AM, Nemevsek 2014]

This contribution in chiral loop is dominant over the weak induced one. Imposing the stringent constraint from nEDM, while fitting together the quark mass spectrum:

$$(tan(\beta) \alpha) \sim 0$$

Theoretical constrains: nEDM & ϵ with strong CP problem

This depends by the UV completion of the theory, thus it is not a pure phenomenological bound.

FIG. 2. The bound on the LR scale in the minimal LRSM- \mathcal{P} from ε_K in the limit of vanishing spontaneous CPV. The shaded area delineates the perturbative limit, since M_H and M_{W_R} cannot be decoupled.

Explicit seesaw II relation

$$v_{L} = \frac{k^{2} \left(\beta_{2} \cos(\theta_{L}) + \beta_{3} x^{2} \cos(2\alpha - \theta_{L})\right)}{v_{R}(2\rho_{1} - \rho_{3})} + \frac{\beta_{1} x \cos(\alpha - \theta_{L})}{v_{R}(2\rho_{1} - \rho_{3})}$$

LNV Higgs decay at LHC

Same sign muons: $h \rightarrow \mu \mu + jets$

- **Signal vs SM background**: same sign muons vs *WZ+ZZ+WW2j+ttbar (simulated), QCD (estimated as x2.5)*
- Collider simulation: Madgraph5 (event generator) + Pythia6(hadronization) + Delphes3(detector)

[A.M., Nemevsek, Nesti 2015]

Process	No cuts	Imposed cuts				
1100035		$\mu^{\pm}\mu^{\pm} + n_j$	${E_T\!\!\!\!/}$	p_T	m_T	$m_{ m inv}$
WZ	2 M	544	143	78	40	20
ZZ	1 M	55	29	16	12	8
$W^{\pm}W^{\pm}2j$	389	115	16	5	3	1
$t \overline{t}$	10 M	509	97	40	22	14
Signal (40)	543	44	43	41	38	37

TABLE I. Number of expected events at the 13 TeV LHC run with $\mathcal{L} = 100 \, \text{fb}^{-1}$ after cuts described in the text. The signal is generated with 40 GeV, $\sin \theta = 10 \,\%$, $M_{W_R} = 3 \,\text{TeV}$ and $n_i = 1, 2, 3$.

Model-file available to:

Modified from the version in:

[Roitgrund, Eilam, Bar-Shalom 2014]

LNV Higgs decay at LHC

Taking advantage of displaced vertex.

• Muons are both displaced: N lifetime depending on mN and MWR

$$(c\,\tau_N^0)^{-1} \simeq \frac{G_F^2 m_N^5}{16\pi^3} \left(\frac{M_W}{M_{W_R}}\right)^4$$

We require two displacements and employ a sliding window cut:

 $L/10 < d_T < 5xL$

[A.M.,Nemevsek,Nesti 2015]