Spontaneous symmetry breaking in three-Higgs-doublet S3-symmetric models

M. N. Rebelo CFTP/IST, U. Lisboa

 18 April 2017New physics at the junction of flavor and collider phenomenology, 18-21 Apr 2017. Portoroz, Slovenia

Work done in collaboration with D. Emmanuel-Costa, 0 . M. Ogreid and P. Osland, arXiv:1 601.04654 , more work in progress.

JHEP 1602 (2016) 154, Erratum: JHEP 1608 (2016) 169

Work Partially supported by:

FCT Fundação para a Ciência e a Tecnologia

 MINISTÉRIO DA EDUCAÇÃO E CIÊNCIA

European Union

EUROPEAN COOPERATION
IN SCIENCE AND TECHNOLOGY

Fundação para a Ciência e a Tecnologia
MINISTÉRIO DA EDUCAÇÃO E CIÊNCIA

Motivation for three Higgs doublets

Three fermion generations may suggest three doublets
Interesting scenario for dark matter
Possibility of having a discrete symmetry and still having spontaneous CP violation

Rich phenomenology

Motivation for imposing discrete symmetries

Symmetries reduce the number of free parameters leading to (testable) predictions

Symmetries help to control HFCNC
Example: NFC, no HFCNC due to Z_{2} symmetry(ies)
Example: MFV suppression of HFCNC, BGL models

Symmetries are needed to stabilise dark matter

Three Higgs doublet models with S_{3} Symmetry

 (extended to flavour)
Despite

many works aiming at explaining neutrino masses and leptonic mixing

Ma, Koide, Kubo, Mondragon, Rodriguez-Jauregui, Chen, Wolfenstein, Mohapatra, Nasri, Yu, Harrison, Scott, Frigerio, Grimus, Lavoura, Branco, Silva-Marcos...
several works addressing masses and mixing in the quark sector
Harari, Haut, Weyers, Meloni, Teshima, Melic, Canales, S Salazar, Velasco-Sevilla ,...
a lot of work already done analysing the Higgs potential
Derman, Tsao, Pakvasa, Sugawra, Wyler, Branco, Gerard, Grimus, Das, Dey, Bhattacharyya, Leser, Pas, Ivanov, Nishi...
inert dark matter candidates from S_{3} 3HDM considered
Fortes, Machado, Montano, Pleitez...

Interesting open questions still remain!

The Scalar potential

S_{3} is the permutation group involving three objects, $\phi_{1}, \phi_{2}, \phi_{3}$

$$
\begin{aligned}
V_{2}= & -\lambda \sum_{i} \phi_{i}^{\dagger} \phi_{i}+\frac{1}{2} \gamma \sum_{i<j}\left[\phi_{i}^{\dagger} \phi_{j}+\mathrm{hc}\right] \\
V_{4} & =A \sum_{i}\left(\phi_{i}^{\dagger} \phi_{i}\right)^{2}+\sum_{i<j}\left\{C\left(\phi_{i}^{\dagger} \phi_{i}\right)\left(\phi_{j}^{\dagger} \phi_{j}\right)+\bar{C}\left(\phi_{i}^{\dagger} \phi_{j}\right)\left(\phi_{j}^{\dagger} \phi_{i}\right)+\frac{1}{2} D\left[\left(\phi_{i}^{\dagger} \phi_{j}\right)^{2}+\mathrm{hc}\right]\right\} \\
& +\frac{1}{2} E_{1} \sum_{i \neq j}\left[\left(\phi_{i}^{\dagger} \phi_{i}\right)\left(\phi_{i}^{\dagger} \phi_{j}\right)+\mathrm{hc}\right]+\sum_{i \neq j \neq k \neq i, j<k}\left\{\frac{1}{2} E_{2}\left[\left(\phi_{i}^{\dagger} \phi_{j}\right)\left(\phi_{k}^{\dagger} \phi_{i}\right)+\mathrm{hc}\right]\right. \\
& \left.+\frac{1}{2} E_{3}\left[\left(\phi_{i}^{\dagger} \phi_{i}\right)\left(\phi_{k}^{\dagger} \phi_{j}\right)+\mathrm{hc}\right]+\frac{1}{2} E_{4}\left[\left(\phi_{i}^{\dagger} \phi_{j}\right)\left(\phi_{i}^{\dagger} \phi_{k}\right)+\mathrm{hc}\right]\right\}
\end{aligned}
$$

here all fields appear on equal footing
this representation is not irreducible, for instance, the combination

$$
\phi_{1}+\phi_{2}+\phi_{3}
$$

remains invariant, it splits into two irreducible representations,
doublet and singlet: $\quad\binom{h_{1}}{h_{2}}, h_{S}$

Decomposition into these two irreducible representations

$$
\left(\begin{array}{l}
h_{1} \\
h_{2} \\
h_{S}
\end{array}\right)=\left(\begin{array}{ccc}
\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & 0 \\
\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{6}} & -\frac{2}{\sqrt{3}} \\
\frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}}
\end{array}\right)\left(\begin{array}{l}
\phi_{1} \\
\phi_{2} \\
\phi_{3}
\end{array}\right)
$$

This definition does not treat equally $\phi_{1}, \phi_{2}, \phi_{3}$, they could be interchanged
Notice similarity with tribimaximal mixing:

$$
(F=)\left(\begin{array}{ccc}
-\frac{2}{\sqrt{6}} & \frac{1}{\sqrt{3}} & 0 \\
\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{2}}
\end{array}\right)
$$

The matrix F diagonalizes the democratic matrix , Δ

$$
F^{\prime T}\left(\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right) F^{\prime}=\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 3
\end{array}\right) \quad \Delta=\left(\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right)
$$

The democratic mass matrix can be obtained from S_{3} flavour symmetries

$$
\mathbf{S}_{\mathbf{3 L}} \mathbf{x} \mathbf{\mathbf { S } _ { 3 \mathrm { R } } : \quad M _ { l } = \lambda ^ { \prime } \Delta \quad ; \quad M _ { D } = \lambda \Delta \quad ; \quad M _ { R } = \mu (\Delta + a \mathbb { I }) , ~ () ^ { 2 })}
$$

Very interesting alternative, democratic with phases (USY)

The scalar potential in terms of fields from irreducible representations

$$
\begin{aligned}
V_{2} & =\mu_{0}^{2} h_{S}^{\dagger} h_{S}+\mu_{1}^{2}\left(h_{1}^{\dagger} h_{1}+h_{2}^{\dagger} h_{2}\right), \\
V_{4} & =\lambda_{8}\left(h_{S}^{\dagger} h_{S}\right)^{2}+\lambda_{5}\left(h_{S}^{\dagger} h_{S}\right)\left(h_{1}^{\dagger} h_{1}+h_{2}^{\dagger} h_{2}\right)+\lambda_{1}\left(h_{1}^{\dagger} h_{1}+h_{2}^{\dagger} h_{2}\right)^{2} \\
& +\lambda_{2}\left(h_{1}^{\dagger} h_{2}-h_{2}^{\dagger} h_{1}\right)^{2}+\lambda_{3}\left[\left(h_{1}^{\dagger} h_{1}-h_{2}^{\dagger} h_{2}\right)^{2}+\left(h_{1}^{\dagger} h_{2}+h_{2}^{\dagger} h_{1}\right)^{2}\right] \\
& +\lambda_{6}\left[\left(h_{S}^{\dagger} h_{1}\right)\left(h_{1}^{\dagger} h_{S}\right)+\left(h_{S}^{\dagger} h_{2}\right)\left(h_{2}^{\dagger} h_{S}\right)\right] \\
& +\lambda_{7}\left[\left(h_{S}^{\dagger} h_{1}\right)\left(h_{S}^{\dagger} h_{1}\right)+\left(h_{S}^{\dagger} h_{2}\right)\left(h_{S}^{\dagger} h_{2}\right)+\text { h.c. }\right] \\
& +\lambda_{4}\left[\left(h_{S}^{\dagger} h_{1}\right)\left(h_{1}^{\dagger} h_{2}+h_{2}^{\dagger} h_{1}\right)+\left(h_{S}^{\dagger} h_{2}\right)\left(h_{1}^{\dagger} h_{1}-h_{2}^{\dagger} h_{2}\right)+\text { h.c. }\right]
\end{aligned}
$$

no symmetry under the interchange of $\quad h_{1}$ and h_{2}
however there is symmetry for $\quad h_{1} \rightarrow-h_{1}$
equivalent doublet representation $\quad\binom{\chi_{1}}{\chi_{2}}=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}i & 1 \\ -i & 1\end{array}\right)\binom{h_{1}}{h_{2}}$
now there is symmetry for $\quad \chi_{1} \leftrightarrow \chi_{2}$
In the special case $\quad \lambda_{4}=0 \quad$ the potential has $\mathbf{S O}(2)$ symmetry:

$$
\binom{h_{1}^{\prime}}{h_{2}^{\prime}}=\left(\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right)\binom{h_{1}}{h_{2}} \quad \text { Danger: massless scalar! }
$$

Alternative choice of irreducible representations

S_{3} has three irreducible representations, doublet, singlet and pseudo singlet, h_{A}

Take S_{3} doublet and h_{A}
No direct translation into initial fields $\Phi_{1}, \Phi_{2}, \Phi_{3}$

New potential (only term in λ_{4} changes):

$$
\begin{align*}
V_{2} & =\mu_{0}^{2} h_{A}^{\dagger} h_{A}+\mu_{1}^{2}\left(h_{1}^{\dagger} h_{1}+h_{2}^{\dagger} h_{2}\right), \tag{2.75a}\\
V_{4} & =\lambda_{1}\left(h_{1}^{\dagger} h_{1}+h_{2}^{\dagger} h_{2}\right)^{2}+\lambda_{2}\left(h_{1}^{\dagger} h_{2}-h_{2}^{\dagger} h_{1}\right)^{2}+\lambda_{3}\left[\left(h_{1}^{\dagger} h_{1}-h_{2}^{\dagger} h_{2}\right)^{2}+\left(h_{1}^{\dagger} h_{2}+h_{2}^{\dagger} h_{1}\right)^{2}\right] \\
& +\lambda_{4}\left[\left(h_{A}^{\dagger} h_{2}\right)\left(h_{1}^{\dagger} h_{2}+h_{2}^{\dagger} h_{1}\right)-\left(h_{A}^{\dagger} h_{1}\right)\left(h_{1}^{\dagger} h_{1}-h_{2}^{\dagger} h_{2}\right)+\text { h.c. }\right]+\lambda_{5}\left(h_{A}^{\dagger} h_{A}\right)\left(h_{1}^{\dagger} h_{1}+h_{2}^{\dagger} h_{2}\right) \\
& +\lambda_{6}\left[\left(h_{A}^{\dagger} h_{1}\right)\left(h_{1}^{\dagger} h_{A}\right)+\left(h_{A}^{\dagger} h_{2}\right)\left(h_{2}^{\dagger} h_{A}\right)\right]+\lambda_{7}\left[\left(h_{A}^{\dagger} h_{1}\right)\left(h_{A}^{\dagger} h_{1}\right)+\left(h_{A}^{\dagger} h_{2}\right)\left(h_{A}^{\dagger} h_{2}\right)+\text { h.c. }\right] \\
& +\lambda_{8}\left(h_{A}^{\dagger} h_{A}\right)^{2} . \tag{2.75b}
\end{align*}
$$

reduces to the same potential we had before with h_{1} and h_{2} interchanged, no new physics!

Constraining the potential by the vevs

Possibility of SCPV - real parameters

Let us start with real vacua (no CP violation)

Three minimisation conditions:

can be solved to give μ_{0}^{2} and μ_{1}^{2} in terms of the quartic coefficients:

$$
\begin{align*}
& \mu_{0}^{2}=\frac{1}{2 w_{S}}\left[\lambda_{4}\left(w_{2}^{2}-3 w_{1}^{2}\right) w_{2}-\left(\lambda_{5}+\lambda_{6}+2 \lambda_{7}\right)\left(w_{1}^{2}+w_{2}^{2}\right) w_{S}-2 \lambda_{8} w_{S}^{3}\right] \tag{4.2a}\\
& \mu_{1}^{2}=-\frac{1}{2}\left[2\left(\lambda_{1}+\lambda_{3}\right)\left(w_{1}^{2}+w_{2}^{2}\right)+6 \lambda_{4} w_{2} w_{S}+\left(\lambda_{5}+\lambda_{6}+2 \lambda_{7}\right) w_{S}^{2}\right] \tag{4.2b}\\
& \mu_{1}^{2}=-\frac{1}{2}\left[2\left(\lambda_{1}+\lambda_{3}\right)\left(w_{1}^{2}+w_{2}^{2}\right)-3 \lambda_{4}\left(w_{2}^{2}-w_{1}^{2}\right) \frac{w_{S}}{w_{2}}+\left(\lambda_{5}+\lambda_{6}+2 \lambda_{7}\right) w_{S}^{2}\right] . \tag{4.2c}
\end{align*}
$$

Eqs (4.2b) and (4.2c) obtained dividing by w_{1} and w_{2} respectively

Consistency requires:

$$
\lambda_{4}=4 A-2(C+\bar{C}+D)-E_{1}-E_{2}+E_{4}=0
$$

- for $w_{1}=0$ the corresponding derivative is zero - no clash
- or else $\quad \lambda_{4}\left(3 w_{2}^{2}-w_{1}^{2}\right) w_{S}=0 \quad$ i. e., $\quad \lambda_{4}=0 \quad$ or $w_{1}= \pm \sqrt{3} w_{2}$ or $w_{S}=0$.
- for $w_{S}=0$. special condition: $\lambda_{4} w_{2}\left(3 w_{1}^{2}-w_{2}^{2}\right)=0$, i. e., in addition:

$$
\lambda_{4}=0 \text { or } w_{2}= \pm \sqrt{3} w_{1}, \text { or else } w_{2}=0
$$

SSB, real vacua, residual symmetries

Derman, Tsao Phys. Rev. D20 (1979) 1207:
($\mathrm{x}, \mathrm{x}, \mathrm{x}$) S_{3};
($\mathrm{x}, \mathrm{x}, \mathrm{y}$) S_{2};
$(x, y, z)=(x,-x, 0) S_{2}$
$\lambda_{4} \neq 0$

Translation into doublet singlet notation

$$
\begin{aligned}
& \left.(\mathrm{x}, \mathrm{x}, \mathrm{x}) \quad \rightarrow \quad\left(0,0, \omega_{S}\right) \quad w_{1}=0 \text { (also verifies } w_{1}= \pm \sqrt{3} w_{2}\right) \\
& (\mathrm{x},-\mathrm{x}, 0) \rightarrow\left(\omega_{1}, 0,0\right) \quad w_{S}=0 \text { together with } w_{2}=0 \text {. } \\
& (x, 0,-\mathrm{x}) \rightarrow\left(\omega_{1}, \omega_{2}, 0\right) \quad w_{S}=0 \text { together } w_{2}=\sqrt{3} w_{1} \\
& (0, \mathrm{x},-\mathrm{x}) \quad \rightarrow \quad\left(\omega_{1}, \omega_{2}, 0\right) \quad w_{S}=0 \text { together with } w_{2}=-\sqrt{3} w_{1}
\end{aligned}
$$

(x, x, y) translates into $\left(0, w_{2}, w_{S}\right)$; consistency condition: $w_{1}=0$.
(x, y, x) translates into $\left(w_{1},-\frac{1}{\sqrt{3}} w_{1}, w_{S}\right)$; consistency condition: $w_{1}=-\sqrt{3} w_{2}$
(y, x, x) translates into $\left(w_{1}, \frac{1}{\sqrt{3}} w_{1}, w_{S}\right)$; consistency condition: $w_{1}=\sqrt{3} w_{2}$

For $\quad \lambda_{4}=0 \quad \mathrm{SO}(2)$ symmetry implies $(\mathrm{x}, \mathrm{y}, \mathrm{z})$ possible solution

$$
\begin{aligned}
\lambda_{a} & =\lambda_{5}+\lambda_{6}+2 \lambda_{7}, \\
\lambda_{b} & =\lambda_{5}+\lambda_{6}-2 \lambda_{7} .
\end{aligned}
$$

Complex vacua

Table 2: Complex vacua. Notation: $\epsilon=1$ and -1 for C-III-d and C-III-e, respectively; $\xi=\sqrt{-3 \sin 2 \rho_{1} / \sin 2 \rho_{2}}, \psi=\sqrt{\left[3+3 \cos \left(\rho_{2}-2 \rho_{1}\right)\right] /\left(2 \cos \rho_{2}\right)}$. With the constraints of Table 4 the vacua labelled with an asterisk $\left(^{*}\right)$ are in fact real.

	IRF (Irreducible Rep.)	RRF (Reducible Rep.)
	w_{1}, w_{2}, w_{S}	$\rho_{1}, \rho_{2}, \rho_{3}$
C-I-a	$\hat{w}_{1}, \pm i \hat{w}_{1}, 0$	$x, x e^{ \pm \frac{2 \pi i}{3}}, x e^{\mp \frac{2 \pi i}{3}}$
C-III-a	$0, \hat{w}_{2} e^{i \sigma_{2}}, \hat{w}_{S}$	$y, y, x e^{i \tau}$
C-III-b	$\pm i \hat{w}_{1}, 0, \hat{w}_{S}$	$x+i y, x-i y, x$
C-III-c	$\hat{w}_{1} e^{i \sigma_{1}}, \hat{w}_{2} e^{i \sigma_{2}}, 0$	$x e^{i \rho}-\frac{y}{2},-x e^{i \rho}-\frac{y}{2}, y$
C-III-d, e	$\pm i \hat{w}_{1}, \epsilon \hat{w}_{2}, \hat{w}_{S}$	$x e^{i \tau}, x e^{-i \tau}, y$
C-III-f	$\pm i \hat{w}_{1}, i \hat{w}_{2}, \hat{w}_{S}$	$r e^{i \rho} \pm i x, r e^{i \rho} \mp i x, \frac{3}{2} r e^{-i \rho}-\frac{1}{2} r e^{i \rho}$
C-III-g	$\pm i \hat{w}_{1},-i \hat{w}_{2}, \hat{w}_{S}$	$r e^{-i \rho} \pm i x, r e^{-i \rho} \mp i x, \frac{3}{2} r e^{i \rho}-\frac{1}{2} r e^{-i \rho}$
C-III-h	$\sqrt{3} \hat{w}_{2} e^{i \sigma_{2}}, \pm \hat{w}_{2} e^{i \sigma_{2}}, \hat{w}_{S}$	$\begin{aligned} & x e^{i \tau}, y, y \\ & y, x e^{i \tau}, y \end{aligned}$
C-III-i	$\begin{aligned} & \sqrt{\frac{3\left(1+\tan ^{2} \sigma_{1}\right)}{1+9 \tan ^{2} \sigma_{1}}} \hat{w}_{2} e^{i \sigma_{1}} \\ \pm & \hat{w}_{2} e^{-i \arctan \left(3 \tan \sigma_{1}\right)}, \hat{w}_{S} \end{aligned}$	$\begin{aligned} & x, y e^{i \tau}, y e^{-i \tau} \\ & y e^{i \tau}, x, y e^{-i \tau} \end{aligned}$
C-IV-a*	$\hat{w}_{1} e^{i \sigma_{1}}, 0, \hat{w}_{S}$	$r e^{i \rho}+x,-r e^{i \rho}+x, x$
C-IV-b	$\hat{w}_{1}, \pm i \hat{w}_{2}, \hat{w}_{S}$	$r e^{i \rho}+x,-r e^{-i \rho}+x,-r e^{i \rho}+r e^{-i \rho}+x$
C-IV-c	$\begin{gathered} \sqrt{1+2 \cos ^{2} \sigma_{2}} \hat{w}_{2} \\ \hat{w}_{2} e^{i \sigma_{2}}, \hat{w}_{S} \end{gathered}$	$\begin{gathered} r e^{i \rho}+r \sqrt{3\left(1+2 \cos ^{2} \rho\right)}+x \\ r e^{i \rho}-r \sqrt{3\left(1+2 \cos ^{2} \rho\right)}+x,-2 r e^{i \rho}+x \end{gathered}$
C-IV-d*	$\hat{w}_{1} e^{i \sigma_{1}}, \pm \hat{w}_{2} e^{i \sigma_{1}}, \hat{w}_{S}$	$r_{1} e^{i \rho}+x,\left(r_{2}-r_{1}\right) e^{i \rho}+x,-r_{2} e^{i \rho}+x$
C-IV-e	$\begin{gathered} \sqrt{-\frac{\sin 2 \sigma_{2}}{\sin 2 \sigma_{1}}} \hat{w}_{2} e^{i \sigma_{1}} \\ \hat{w}_{2} e^{i \sigma_{2}}, \hat{w}_{S} \end{gathered}$	$\begin{gathered} r e^{i \rho_{2}}+r e^{i \rho_{1}} \xi+x, r e^{i \rho_{2}}-r e^{i \rho_{1}} \xi+x \\ -2 r e^{i \rho_{2}}+x \end{gathered}$
C-IV-f	$\begin{gathered} \sqrt{2+\frac{\cos \left(\sigma_{1}-2 \sigma_{2}\right)}{\cos \sigma_{1}}} \hat{w}_{2} e^{i \sigma_{1}} \\ \hat{w}_{2} e^{i \sigma_{2}}, \hat{w}_{S} \end{gathered}$	$\begin{gathered} r e^{i \rho_{1}}+r e^{i \rho_{2}} \psi+x \\ r e^{i \rho_{1}}-r e^{i \rho_{2}} \psi+x,-2 r e^{i \rho_{1}}+x \end{gathered}$
C-V*	$\hat{w}_{1} e^{i \sigma_{1}}, \hat{w}_{2} e^{i \sigma_{2}}, \hat{w}_{S}$	$x e^{i \tau_{1}}, y e^{i \tau_{2}}, z$

Constraints

Vacuum	Constraints
C-I-a	$\mu_{1}^{2}=-2\left(\lambda_{1}-\lambda_{2}\right) \hat{w}_{1}^{2}$
C-III-a	$\begin{gathered} \mu_{0}^{2}=-\frac{1}{2} \lambda_{b} \hat{w}_{2}^{2}-\lambda_{8} \hat{w}_{S}^{2}, \\ \mu_{1}^{2}=-\left(\lambda_{1}+\lambda_{3}\right) \hat{w}_{2}^{2}-\frac{1}{2}\left(\lambda_{b}-8 \cos ^{2} \sigma_{2} \lambda_{7}\right) \hat{w}_{S}^{2}, \\ \lambda_{4}=\frac{4 \cos \sigma_{2} \hat{w}_{S}}{\omega_{7}} \lambda_{7} \end{gathered}$
C-III-b	$\begin{gathered} \mu_{0}^{2}=-\frac{1}{2} \lambda_{b} \hat{w}_{1}^{2}-\lambda_{8} \hat{w}_{S}^{2} \\ \mu_{1}^{2}=-\left(\lambda_{1}+\lambda_{3}\right) \hat{w}_{1}^{2}-\frac{1}{2} \lambda_{b} \hat{w}_{S}^{2}, \\ \lambda_{4}=0 \end{gathered}$
C-III-c	$\begin{gathered} \mu_{1}^{2}=-\left(\lambda_{1}+\lambda_{3}\right)\left(\hat{w}_{1}^{2}+\hat{w}_{2}^{2}\right), \\ \lambda_{2}+\lambda_{3}=0, \lambda_{4}=0 \end{gathered}$
C-III-d,e	$\begin{gathered} \mu_{0}^{2}=\left(\lambda_{2}+\lambda_{3}\right) \frac{\left(\hat{w}_{1}^{2}-\hat{w}_{2}^{2}\right)^{2}}{\hat{w}_{S}^{2}}-\epsilon \lambda_{4} \frac{\left(\hat{w}_{1}^{2}-\hat{w}_{2}^{2}\right)\left(\hat{w}_{1}^{2}-3 \hat{w}_{2}^{2}\right)}{4 \hat{w}_{2}^{2}} \\ -\frac{1}{2}\left(\lambda_{5}+\lambda_{6}\right)\left(\hat{w}_{1}^{2}+\hat{w}_{2}^{2}\right)-\lambda_{8} \hat{w}_{S}^{2} \\ \mu_{1}^{2}=-\left(\lambda_{1}-\lambda_{2}\right)\left(\hat{w}_{1}^{2}+\hat{w}_{2}^{2}\right)-\epsilon \lambda_{4} \frac{\hat{w}_{S}\left(\hat{w}_{1}^{2}-\hat{w}_{2}^{2}\right)}{4 \hat{w}_{2}}-\frac{1}{2}\left(\lambda_{5}+\lambda_{6}\right) \hat{w}_{S}^{2}, \\ \lambda_{7}=\frac{\hat{w}_{1}^{2}-\hat{w}_{2}^{2}}{\hat{w}_{S}^{2}}\left(\lambda_{2}+\lambda_{3}\right)-\epsilon \frac{\left(\hat{w}_{1}^{2}-5 \hat{w}_{2}^{2}\right)}{4 \hat{w}_{2} \hat{w}_{S}} \lambda_{4} \end{gathered}$
C-III-f,g	$\begin{gathered} \mu_{0}^{2}=-\frac{1}{2} \lambda_{b}\left(\hat{w}_{1}^{2}+\hat{w}_{2}^{2}\right)-\lambda_{8} \hat{w}_{S}^{2}, \\ \mu_{1}^{2}=-\left(\lambda_{1}+\lambda_{3}\right)\left(\hat{w}_{1}^{2}+\hat{w}_{2}^{2}\right)-\frac{1}{2} \lambda_{b} \hat{w}_{S}^{2}, \lambda_{4}=0 \end{gathered}$
C-III-h	$\begin{gathered} \mu_{0}^{2}=-2 \lambda_{b} \hat{w}_{2}^{2}-\lambda_{8} \hat{w}_{S}^{2} \\ \mu_{1}^{2}=-4\left(\lambda_{1}+\lambda_{3}\right) \hat{w}_{2}^{2}-\frac{1}{2}\left(\lambda_{b}-8 \cos ^{2} \sigma_{2} \lambda_{7}\right) \hat{w}_{S}^{2} \\ \lambda_{4}=\mp \frac{2 \cos \sigma_{2} \hat{w}_{S}}{\hat{w}_{2}} \lambda_{7} \end{gathered}$
C-III-i	

Vacuum	Constraints
C-IV-a*	$\begin{gathered} \mu_{0}^{2}=-\frac{1}{2}\left(\lambda_{5}+\lambda_{6}\right) \hat{w}_{1}^{2}-\lambda_{8} \hat{w}_{S}^{2} \\ \mu_{1}^{2}=-\left(\lambda_{1}+\lambda_{3}\right) \hat{w}_{1}^{2}-\frac{1}{2}\left(\lambda_{5}+\lambda_{6}\right) \hat{w}_{S}^{2}, \\ \lambda_{4}=0, \lambda_{7}=0 \end{gathered}$
C-IV-b	$\begin{gathered} \mu_{0}^{2}=\left(\lambda_{2}+\lambda_{3}\right) \frac{\left(\hat{w}_{1}^{2}-\hat{w}_{2}^{2}\right)^{2}}{\hat{w}_{S}^{2}}-\frac{1}{2}\left(\lambda_{5}+\lambda_{6}\right)\left(\hat{w}_{1}^{2}+\hat{w}_{2}^{2}\right)-\lambda_{8} \hat{w}_{S}^{2}, \\ \mu_{1}^{2}=-\left(\lambda_{1}-\lambda_{2}\right)\left(\hat{w}_{1}^{2}+\hat{w}_{2}^{2}\right)-\frac{1}{2}\left(\lambda_{5}+\lambda_{6}\right) \hat{w}_{S}^{2}, \\ \lambda_{4}=0, \lambda_{7}=-\frac{\left(\hat{w}_{1}^{2} \hat{w}_{2}^{2}\right)}{\hat{w}_{S}^{2}}\left(\lambda_{2}+\lambda_{3}\right) \end{gathered}$
C-IV-c	$\begin{gathered} \mu_{0}^{2}=2 \cos ^{2} \sigma_{2}\left(1+\cos ^{2} \sigma_{2}\right)\left(\lambda_{2}+\lambda_{3}\right) \frac{\hat{w}_{2}^{4}}{\hat{w}_{S}^{2}} \\ -\left(1+\cos ^{2} \sigma_{2}\right)\left(\lambda_{5}+\lambda_{6}\right) \hat{w}_{2}^{2}-\lambda_{\lambda} \hat{w}_{S}^{2}, \\ \mu_{1}^{2}=-\left[2\left(1+\cos ^{2} \sigma_{2}\right) \lambda_{1}-\left(2+3 \cos ^{2} \sigma_{2}\right) \lambda_{2}-\cos ^{2} \sigma_{2} \lambda_{3}\right] \hat{w}_{2}^{2} \\ \left.\lambda_{4}=-\frac{2 \cos _{2} \sigma_{2} \hat{w}_{2}}{\hat{w}_{S}}\left(\lambda_{5}+\lambda_{6}\right) \hat{w}_{S}^{2} \lambda_{3}\right), \lambda_{7}=\frac{\cos ^{2} \sigma_{2} \hat{w}_{2}^{2}}{\hat{w}_{S}^{2}}\left(\lambda_{2}+\lambda_{3}\right) \end{gathered}$
C-IV-d*	$\begin{gathered} \mu_{0}^{2}=-\frac{1}{2}\left(\lambda_{5}+\lambda_{6}\right)\left(\hat{w}_{1}^{2}+\hat{w}_{2}^{2}\right)-\lambda_{8} \hat{w}_{S}^{2} \\ \mu_{1}^{2}=-\left(\lambda_{1}+\lambda_{3}\right)\left(\hat{w}_{1}^{2}+\hat{w}_{2}^{2}\right)-\frac{1}{2}\left(\lambda_{5}+\lambda_{6}\right) \hat{w}_{S}^{2}, \\ \lambda_{4}=0, \lambda_{7}=0 \end{gathered}$
C-IV-e	$\begin{gathered} \mu_{0}^{2}=\frac{\sin ^{2}\left(2\left(2 \sigma_{1}-\sigma_{2}\right)\right)}{\sin 2\left(\sigma_{1}\right)}\left(\lambda_{2}+\lambda_{3} \frac{\hat{w}_{2}^{4}}{\hat{w}_{S}^{2}}\right. \\ -\frac{1}{2}\left(1-\frac{\sin 2 \sigma_{2}}{\sin 2 \sigma_{2}}\right)\left(\lambda_{5}+\lambda_{6}\right) \hat{w}_{2}^{2}-\lambda_{8} \hat{w}_{S}^{2}, \\ \mu_{1}^{2}=-\left(1-\frac{\sin 2 \sigma_{1}}{\sin 2 \sigma_{1}}\right)\left(\lambda_{1}-\lambda_{2}\right) \hat{w}_{2}^{2}-\frac{1}{2}\left(\lambda_{5}+\lambda_{6}\right) \hat{w}_{S}^{2}, \\ \lambda_{4}=0, \lambda_{7}=-\frac{\sin \left(2\left(\sigma_{2}-\sigma_{2}\right) \hat{w}_{2}^{2}\right.}{\sin 2 \sigma_{1} \hat{w}_{S}^{2}}\left(\lambda_{2}+\lambda_{3}\right) \end{gathered}$
C-IV-f	
C-V*	$\begin{gathered} \mu_{0}^{2}=-\frac{1}{2}\left(\lambda_{5}+\lambda_{6}\right)\left(\hat{w}_{1}^{2}+\hat{w}_{2}^{2}\right)-\lambda_{8} \hat{w}_{S}^{2}, \\ \mu_{1}^{2}=-\left(\lambda_{1}+\lambda_{3}\right)\left(\hat{w}_{1}^{2}+\hat{w}_{2}^{2}\right)-\frac{1}{2}\left(\lambda_{5}+\lambda_{6}\right) \hat{w}_{S}^{2}, \\ \lambda_{2}+\lambda_{3}=0, \lambda_{4}=0, \lambda_{7}=0 \end{gathered}$

The case of $\lambda_{4}=0$

Potential has additional continuous $\mathbf{S O (2)}$ symmetry

$$
\lambda_{4}=4 A-2(C+\bar{C}+D)-E_{1}-E_{2}+E_{4}=0
$$

Derman (1979), "unnatural"
Spontaneous breaking of this SO(2) symmetry leads to massless particles

Possible solution: break the symmetry softly, the most general quadratic potential can be written:

$$
\begin{aligned}
V & =\mu_{0}^{2} h_{S}^{\dagger} h_{S}+\mu_{1}^{2}\left(h_{1}^{\dagger} h_{1}+h_{2}^{\dagger} h_{2}\right)+\mu_{2}^{2}\left(h_{1}^{\dagger} h_{1}-h_{2}^{\dagger} h_{2}\right)+\frac{1}{2} \nu^{2}\left(h_{2}^{\dagger} h_{1}+h_{1}^{\dagger} h_{2}\right) \\
& +\mu_{3}^{2}\left(h_{S}^{\dagger} h_{1}+h_{1}^{\dagger} h_{S}\right)+\mu_{4}^{2}\left(h_{S}^{\dagger} h_{2}+h_{2}^{\dagger} h_{S}\right)
\end{aligned}
$$

Complex vacua, Spontaneous CP Violation

Table 1: Spontaneous CP violation

Vacuum	λ_{4}	SCPV	Vacuum	λ_{4}	SCPV	Vacuum	λ_{4}	SCPV
C-I-a	X	no	C-III-f,g	0	no	C-IV-c	X	yes
C-III-a	X	yes	C-III-h	X	yes	C-IV-d	0	no
C-III-b	0	no	C-III-i	X	no	C-IV-e	0	no
C-III-c	0	no	C-IV-a	0	no	C-IV-f	X	yes
C-III-d,e	X	no	C-IV-b	0	no	C-V	0	no

Next we present a few illustrative examples. Important tool:
most general CP transformation

$$
\Phi_{i} \xrightarrow{\mathrm{CP}} U_{i j} \Phi_{j}^{*}
$$

together with assumption that vacuum is invariant

$$
\mathrm{CP}|0\rangle=|0\rangle
$$

leads to the following condition
$\mathcal{L}(U \phi)=\mathcal{L}(\phi)$

$$
U_{i j}\langle 0| \Phi_{j}|0\rangle^{*}=\langle 0| \Phi_{i}|0\rangle
$$

$x, x e^{\frac{2 \pi i}{3}}, x e^{-\frac{2 \pi i}{3}} \quad$ geometrical phases $\quad U=\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0\end{array}\right)$
calculable non-trivial phases, fixed by symmetry of V , no explicit dependence on parameters of the potential.

G. C. Branco, J. M. Gerard and W. Grimus

Vacuum C-III-c

$$
\begin{aligned}
& \hat{w}_{1} e^{\imath \sigma_{1}}, \hat{w}_{2} e^{\imath \sigma_{2}}, 0 \quad \lambda_{4}=0 \quad \mathbf{S O}(2) \text { rotation } \quad\binom{h_{1}^{\prime}}{h_{2}^{\prime}}=\left(\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right)\binom{h_{1}}{h_{2}} \\
& \left(a e^{i \delta_{1}}, a e^{i \delta_{2}}, 0\right) \\
& \tan 2 \theta=\frac{\hat{w}_{1}^{2}-\hat{w}_{2}^{2}}{2 \hat{w}_{1} \hat{w}_{2} \cos \sigma} \text {. } \\
& \text { followed by overall phase rotation } \\
& \left(a e^{i \delta}, a e^{-i \delta}, 0\right) \\
& \text { symmetry for interchange: } \quad h_{1}^{\prime} \leftrightarrow h_{2}^{\prime} \\
& \left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{c}
a e^{i \delta} \\
a e^{-i \delta} \\
0
\end{array}\right)^{*}=\left(\begin{array}{c}
a e^{i \delta} \\
a e^{-i \delta} \\
0
\end{array}\right) \\
& \text { CP is conserved }
\end{aligned}
$$

Next: Two possible complex vacua discussed previously in the literature

Two possible complex vacua discussed previously in the literature

$$
\begin{gather*}
\hat{w} e^{i \sigma}, \quad \hat{w} e^{-i \sigma}, \quad \hat{w}_{S} \quad \text { Pakwasa and Sugawara, } 1978 \tag{PS}\\
\hat{w} e^{i \sigma}, \quad \hat{w} e^{i \sigma}, \quad \hat{w}_{S} \quad \text { Ivanov and Nishi, } 2014 \tag{IN}\\
\hat{w} \neq 0 \text { and } \hat{w}_{S} \neq 0
\end{gather*}
$$

Both solutions require $\lambda_{4}=0$ for consistency
The PS vacuum is requires $\lambda_{4}=0$ therefore there is symmetry under the interchange of the components of the S_{3} doublet. As a result the Branco, Gerard, Grimus condition is verified

For the IN vacuum it is also possible to show that the allowed region of parameter space where this solution minimises the potential is such that no spontaneous CP violation occurs

Final Remarks

Models with three Higgs doublets have rich phenomenology

Aims and challenges

Exploit possible dark matter candidates in this context, beyond cases where the singlet plays the role of the SM Higgs doublet

Study how to generate realistic fermion masses and mixing with the fermions transforming non trivially under S_{3}

Look for viable models in the context of spontaneous CP violation

Look for interesting scenarios with the potential of being tested at the LHC

