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Motivation for three Higgs doublets
Three fermion generations may suggest three doublets
Interesting scenario for dark matter

Rich phenomenology

       Possibility of having a discrete symmetry and still having
spontaneous CP violation  

Motivation for imposing discrete symmetries
Symmetries reduce the number of free parameters 

leading to (testable) predictions 

Symmetries are needed to stabilise dark matter

Symmetries help to control HFCNC

Example: NFC, no HFCNC due to Z2 symmetry(ies)

Example: MFV suppression of HFCNC, BGL models



Three Higgs doublet models with S3 Symmetry
(extended to flavour)

many works aiming at explaining neutrino masses and  
leptonic mixing

a lot of work already done analysing the Higgs potential

inert dark matter candidates from S3 3HDM considered 

 Interesting open questions still remain!

Despite

Ma, Koide, Kubo, Mondragon, Rodriguez-Jauregui, Chen, Wolfenstein, Mohapatra, Nasri,
Yu, Harrison, Scott, Frigerio, Grimus, Lavoura, Branco, Silva-Marcos…  

Derman, Tsao, Pakvasa, Sugawra, Wyler, Branco, Gerard, Grimus, Das, Dey, Bhattacharyya, Leser, 
Pas, Ivanov, Nishi…  

Fortes, Machado, Montano, Pleitez…  

Harari, Haut, Weyers, Meloni, Teshima, Melic, Canales, S Salazar, Velasco-Sevilla ,…  

several works addressing masses and mixing in the quark sector 



The Scalar potential
S3 is the permutation group involving three objects, 

here all fields appear on equal footing
this representation is not irreducible, for instance, the combination

remains invariant, it splits into two irreducible representations, 

Derman, 1979
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Decomposition into these two irreducible representations
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The democratic mass matrix can be obtained from S3 flavour symmetries
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This definition does not treat equally  �1,�2,�3 , they could be interchanged

Very interesting alternative, democratic with phases (USY)



The scalar potential in terms of fields from irreducible representations
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2.3 The potential in terms of the S3 singlet and doublet

In terms of the S
3

singlet and doublet fields, the potential can be written as [2, 3, 4, 5, 6, 7]
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The vacuum conditions give µ2

0

and µ2

1

in terms of the quartic coe�cients:
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(ṽ2
2

� 3ṽ2
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)ṽS
i

(2.21c)

The two equations (2.21b) and (2.21c) are not automatically consistent.
For the charged sector, the mass-squared matrix is given by
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� ṽ2
2

) + 2µ2

1

],

M2

22

= 1

2

[�
5
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+ ṽ2
2

) + 2µ2

0

],

M2

12

= ṽ
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(ṽ2
1

� ṽ2
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For the CP-odd sector, the mass-squared matrix is given by
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ṽ
2
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no symmetry under the interchange of 

however there is symmetry for  

equivalent doublet representation

Das and Dey

h1 and h2

h1 ! �h1

2 The scalar potential

S3 is the permutation group involving three objects, {�a,�b,�c}. The three dimensional representation of S3 is
not an irreducible one simply because we can easily construct a linear combination of the elements, �a+�b+�c,
which remains unaltered under the permutation of the indices. We choose to decompose the three dimensional
representation into a singlet and doublet as follows :
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The most general renormalizable potential invariant under S3 can be written in terms of �3, �1 and �2 as
follows [27–31]:
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In general �4 and �7 can be complex, but we assume them to be real so that CP symmetry is not broken
explicitly. For the stability of the vacuum in the asymptotic limit we impose the requirement that there should
be no direction in the field space along which the potential becomes infinitely negative. The necessary and
su�cient conditions for this is well known in the context of two Higgs-doublet models (2HDMs) [32]. For the
potential of Eq. (3), a 2HDM equivalent situation arise if one of the doublets is made identically zero. Then
it is quite straightforward to find the following necessary conditions for the global stability in the asymptotic
limit :
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has also been used in the literature. In terms of this new doublet, the quartic part of the scalar potential is
written as [33–35]:
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In the special case 

�1 $ �2

�4 = 0 the potential has SO(2) symmetry: 
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where, tan� has already been defined in Eq. (13c). Similar to the charged part, here also the second pseudoscalar
(A2) along with the massless Goldstone (⇣) can be obtained as follows :
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The massless state (h0), as also noted in [36], is given by :

h0 = cos � h1 � sin � h2 . (20)

But we wish to add here that the appearance of a massless scalar is not surprising. One can easily verify that
the potential of Eq. (3) has the following SO(2) symmetry for �4 = 0 :
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Since SO(2) is a continuous symmetry isomorphic to U(1), a massless physical state is expected. Other two
physical scalars are obtained as follows :

✓

h
H

◆

=

✓

cos↵ � sin↵
sin↵ cos↵

◆✓

h0
2

h3

◆

with, h0
2 = sin � h1 + cos � h2 , (22a)

4

✓
h1

h2

◆✓
h0
1

h0
2

◆
= Danger: massless scalar!



Alternative choice of irreducible representations

S3 has three irreducible representations, doublet, singlet and 
pseudo singlet, hA

Take S3 doublet and hA  
No direct translation into initial fields �1,�2,�3

New potential (only term in �4 changes):
2.6 The potential in terms of the S3 (singlet)0 and doublet
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reduces to the same potential we had before with h1 and h2 
interchanged, no new physics! 



Constraining the potential by the vevs

Possibility of SCPV - real parameters
Let us start with real vacua (no CP violation)

Three minimisation conditions:

NOT FOR DISTRIBUTION JHEP_223P_0116 v1

(µ2
1,λ5,λ8), (λ1,λ2,λ3), (λ1,λ5,λ8), (µ

2
0,λ2,λ3,λ5), (λ2,λ3,λ5,λ8), and (λ3,λ4,λ5,λ8), as

well as sets where in the above list λ5 is replaced by λ6. Among these, the sets (λ5,λ6), and
(λ1,λ2,λ3) correspond to (C,C) and (E2, E3) in the reducible-representation framework.

We shall distinguish the real and complex cases.

4 Real vacua

For a real vacuum, the five equations (3.7) discussed above reduce to a set of three. Again,
they are not necessarily all independent. If we, for example, try to solve for λ, γ and A,
the 3× 3 determinant corresponding to (3.8) is particularly simple:

detA3×3 = −(ρ1 + ρ2 + ρ3)(ρ2 − ρ1)(ρ3 − ρ2)(ρ1 − ρ3). (4.1)

Thus, when this quantity is non-zero, we can solve for λ, γ and A. Conversely, when
detA3×3 = 0 (meaning the sum of the vevs is zero, or two are equal), then we have at
most two independent equations, and can for example only solve for λ and γ.

In the irreducible-representation framework, the three vacuum conditions (3.3)–(3.5)
can be solved to give µ2

0 and µ2
1 in terms of the quartic coefficients:1
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1
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derived from (3.4) and (3.5) dividing by w1 = 0 and w2 = 0, respectively. Furthermore,
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account the derivative of the potential with respect to wS, which is given by Eq. (3.3), we
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1There are misprints in the corresponding expressions given in Ref. [24], their Eq. (9): (i) a factor of
1/2 is missing on the right-hand side of all three expressions, and (ii) in µ2

0 (µ2
3 in their notation) the

coefficient of λ4 should be (v2/2v3)(v22 − 3v21). These misprints were corrected in the Erratum provided
by the authors and included in Ref. [24].
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3w2 or else wS = 0. The case wS = 0 is special since if we now take into

account the derivative of the potential with respect to wS, which is given by Eq. (3.3), we
are left in the real case with

λ4w2(3w
2
1 − w2

2) = 0, (4.4)

which is the only term in Eq. (3.3) where wS does not appear as a factor. As a result,
solutions with wS = 0 require in addition that λ4 = 0 or w2 = ±

√
3w1, or else w2 = 0.

See cases R-I-2 in Table 1. These do not require λ4 = 0, while case R-II-3 has wS = 0
and requires λ4 = 0.

1There are misprints in the corresponding expressions given in Ref. [24], their Eq. (9): (i) a factor of
1/2 is missing on the right-hand side of all three expressions, and (ii) in µ2

0 (µ2
3 in their notation) the

coefficient of λ4 should be (v2/2v3)(v22 − 3v21). These misprints were corrected in the Erratum provided
by the authors and included in Ref. [24].
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well as sets where in the above list λ5 is replaced by λ6. Among these, the sets (λ5,λ6), and
(λ1,λ2,λ3) correspond to (C,C) and (E2, E3) in the reducible-representation framework.

We shall distinguish the real and complex cases.

4 Real vacua

For a real vacuum, the five equations (3.7) discussed above reduce to a set of three. Again,
they are not necessarily all independent. If we, for example, try to solve for λ, γ and A,
the 3× 3 determinant corresponding to (3.8) is particularly simple:

detA3×3 = −(ρ1 + ρ2 + ρ3)(ρ2 − ρ1)(ρ3 − ρ2)(ρ1 − ρ3). (4.1)

Thus, when this quantity is non-zero, we can solve for λ, γ and A. Conversely, when
detA3×3 = 0 (meaning the sum of the vevs is zero, or two are equal), then we have at
most two independent equations, and can for example only solve for λ and γ.

In the irreducible-representation framework, the three vacuum conditions (3.3)–(3.5)
can be solved to give µ2

0 and µ2
1 in terms of the quartic coefficients:1

µ2
0 =

1

2wS

[

λ4(w
2
2 − 3w2

1)w2 − (λ5 + λ6 + 2λ7)(w
2
1 + w2

2)wS − 2λ8w
3
S
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2
S

]

. (4.2c)

The two equations (4.2b) and (4.2c) are not valid when w1 = 0 and w2 = 0, since they were
derived from (3.4) and (3.5) dividing by w1 = 0 and w2 = 0, respectively. Furthermore,
they are not automatically consistent. Consistency requires

w1 = 0, or else (4.3a)

λ4(3w
2
2 − w2

1)wS = 0. (4.3b)

For w1 = 0 the derivative of the potential with respect to w1 is identically zero and
therefore there is no clash in the determination of µ2

1 from the derivative with respect to
w2. From equation (4.3b) we see that these two derivatives are consistent if either λ4 = 0
or w1 = ±

√
3w2 or else wS = 0. The case wS = 0 is special since if we now take into

account the derivative of the potential with respect to wS, which is given by Eq. (3.3), we
are left in the real case with

λ4w2(3w
2
1 − w2

2) = 0, (4.4)

which is the only term in Eq. (3.3) where wS does not appear as a factor. As a result,
solutions with wS = 0 require in addition that λ4 = 0 or w2 = ±

√
3w1, or else w2 = 0.

See cases R-I-2 in Table 1. These do not require λ4 = 0, while case R-II-3 has wS = 0
and requires λ4 = 0.

1There are misprints in the corresponding expressions given in Ref. [24], their Eq. (9): (i) a factor of
1/2 is missing on the right-hand side of all three expressions, and (ii) in µ2

0 (µ2
3 in their notation) the

coefficient of λ4 should be (v2/2v3)(v22 − 3v21). These misprints were corrected in the Erratum provided
by the authors and included in Ref. [24].
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We shall distinguish the real and complex cases.

4 Real vacua

For a real vacuum, the five equations (3.7) discussed above reduce to a set of three. Again,
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derived from (3.4) and (3.5) dividing by w1 = 0 and w2 = 0, respectively. Furthermore,
they are not automatically consistent. Consistency requires

w1 = 0, or else (4.3a)

λ4(3w
2
2 − w2

1)wS = 0. (4.3b)

For w1 = 0 the derivative of the potential with respect to w1 is identically zero and
therefore there is no clash in the determination of µ2

1 from the derivative with respect to
w2. From equation (4.3b) we see that these two derivatives are consistent if either λ4 = 0
or w1 = ±
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3w2 or else wS = 0. The case wS = 0 is special since if we now take into

account the derivative of the potential with respect to wS, which is given by Eq. (3.3), we
are left in the real case with

λ4w2(3w
2
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2) = 0, (4.4)

which is the only term in Eq. (3.3) where wS does not appear as a factor. As a result,
solutions with wS = 0 require in addition that λ4 = 0 or w2 = ±

√
3w1, or else w2 = 0.

See cases R-I-2 in Table 1. These do not require λ4 = 0, while case R-II-3 has wS = 0
and requires λ4 = 0.

1There are misprints in the corresponding expressions given in Ref. [24], their Eq. (9): (i) a factor of
1/2 is missing on the right-hand side of all three expressions, and (ii) in µ2

0 (µ2
3 in their notation) the
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For a real vacuum, the five equations (3.7) discussed above reduce to a set of three. Again,
they are not necessarily all independent. If we, for example, try to solve for λ, γ and A,
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detA3×3 = −(ρ1 + ρ2 + ρ3)(ρ2 − ρ1)(ρ3 − ρ2)(ρ1 − ρ3). (4.1)

Thus, when this quantity is non-zero, we can solve for λ, γ and A. Conversely, when
detA3×3 = 0 (meaning the sum of the vevs is zero, or two are equal), then we have at
most two independent equations, and can for example only solve for λ and γ.

In the irreducible-representation framework, the three vacuum conditions (3.3)–(3.5)
can be solved to give µ2

0 and µ2
1 in terms of the quartic coefficients:1
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The two equations (4.2b) and (4.2c) are not valid when w1 = 0 and w2 = 0, since they were
derived from (3.4) and (3.5) dividing by w1 = 0 and w2 = 0, respectively. Furthermore,
they are not automatically consistent. Consistency requires

w1 = 0, or else (4.3a)

λ4(3w
2
2 − w2

1)wS = 0. (4.3b)

For w1 = 0 the derivative of the potential with respect to w1 is identically zero and
therefore there is no clash in the determination of µ2

1 from the derivative with respect to
w2. From equation (4.3b) we see that these two derivatives are consistent if either λ4 = 0
or w1 = ±

√
3w2 or else wS = 0. The case wS = 0 is special since if we now take into

account the derivative of the potential with respect to wS, which is given by Eq. (3.3), we
are left in the real case with

λ4w2(3w
2
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2) = 0, (4.4)

which is the only term in Eq. (3.3) where wS does not appear as a factor. As a result,
solutions with wS = 0 require in addition that λ4 = 0 or w2 = ±

√
3w1, or else w2 = 0.

See cases R-I-2 in Table 1. These do not require λ4 = 0, while case R-II-3 has wS = 0
and requires λ4 = 0.

1There are misprints in the corresponding expressions given in Ref. [24], their Eq. (9): (i) a factor of
1/2 is missing on the right-hand side of all three expressions, and (ii) in µ2

0 (µ2
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well as sets where in the above list λ5 is replaced by λ6. Among these, the sets (λ5,λ6), and
(λ1,λ2,λ3) correspond to (C,C) and (E2, E3) in the reducible-representation framework.

We shall distinguish the real and complex cases.

4 Real vacua

For a real vacuum, the five equations (3.7) discussed above reduce to a set of three. Again,
they are not necessarily all independent. If we, for example, try to solve for λ, γ and A,
the 3× 3 determinant corresponding to (3.8) is particularly simple:

detA3×3 = −(ρ1 + ρ2 + ρ3)(ρ2 − ρ1)(ρ3 − ρ2)(ρ1 − ρ3). (4.1)

Thus, when this quantity is non-zero, we can solve for λ, γ and A. Conversely, when
detA3×3 = 0 (meaning the sum of the vevs is zero, or two are equal), then we have at
most two independent equations, and can for example only solve for λ and γ.

In the irreducible-representation framework, the three vacuum conditions (3.3)–(3.5)
can be solved to give µ2

0 and µ2
1 in terms of the quartic coefficients:1

µ2
0 =

1

2wS

[

λ4(w
2
2 − 3w2

1)w2 − (λ5 + λ6 + 2λ7)(w
2
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3
S

]
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The two equations (4.2b) and (4.2c) are not valid when w1 = 0 and w2 = 0, since they were
derived from (3.4) and (3.5) dividing by w1 = 0 and w2 = 0, respectively. Furthermore,
they are not automatically consistent. Consistency requires

w1 = 0, or else (4.3a)

λ4(3w
2
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1)wS = 0. (4.3b)

For w1 = 0 the derivative of the potential with respect to w1 is identically zero and
therefore there is no clash in the determination of µ2

1 from the derivative with respect to
w2. From equation (4.3b) we see that these two derivatives are consistent if either λ4 = 0
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which is the only term in Eq. (3.3) where wS does not appear as a factor. As a result,
solutions with wS = 0 require in addition that λ4 = 0 or w2 = ±

√
3w1, or else w2 = 0.

See cases R-I-2 in Table 1. These do not require λ4 = 0, while case R-II-3 has wS = 0
and requires λ4 = 0.

1There are misprints in the corresponding expressions given in Ref. [24], their Eq. (9): (i) a factor of
1/2 is missing on the right-hand side of all three expressions, and (ii) in µ2

0 (µ2
3 in their notation) the

coefficient of λ4 should be (v2/2v3)(v22 − 3v21). These misprints were corrected in the Erratum provided
by the authors and included in Ref. [24].
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2) = 0, (4.4)

which is the only term in Eq. (3.3) where wS does not appear as a factor. As a result,
solutions with wS = 0 require in addition that λ4 = 0 or w2 = ±

√
3w1, or else w2 = 0.

See cases R-I-2 in Table 1. These do not require λ4 = 0, while case R-II-3 has wS = 0
and requires λ4 = 0.

1There are misprints in the corresponding expressions given in Ref. [24], their Eq. (9): (i) a factor of
1/2 is missing on the right-hand side of all three expressions, and (ii) in µ2

0 (µ2
3 in their notation) the
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Table 1. Possible real vacua (partly after Derman and Tsao [46]). This classification uses the
notation R-X-y, where R refers to “real”. The roman numeral X gives the number of constraints
on the parameters of the potential that arise from solving the stationary-point equations. The
letter y is used to distinguish di↵erent vev’s that have the same X, and �a is defined in Eq. (11).
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Derman and Tsao [46] analysed spontaneous symmetry breaking with real vacua taking also
into account the residual symmetries. Their work was done in the reducible framework where
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Table 1. Possible real vacua (partly after Derman and Tsao [46]). This classification uses the
notation R-X-y, where R refers to “real”. The roman numeral X gives the number of constraints
on the parameters of the potential that arise from solving the stationary-point equations. The
letter y is used to distinguish di↵erent vev’s that have the same X, and �a is defined in Eq. (11).
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Table 1. Possible real vacua (partly after Derman and Tsao [46]). This classification uses the
notation R-X-y, where R refers to “real”. The roman numeral X gives the number of constraints
on the parameters of the potential that arise from solving the stationary-point equations. The
letter y is used to distinguish di↵erent vev’s that have the same X, and �a is defined in Eq. (11).
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Table 1. Possible real vacua (partly after Derman and Tsao [46]). This classification uses the
notation R-X-y, where R refers to “real”. The roman numeral X gives the number of constraints
on the parameters of the potential that arise from solving the stationary-point equations. The
letter y is used to distinguish di↵erent vev’s that have the same X, and �a is defined in Eq. (11).
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Derman and Tsao [46] analysed spontaneous symmetry breaking with real vacua taking also
into account the residual symmetries. Their work was done in the reducible framework where
the condition �

4

= 0 corresponds to 4A�2(C+C+D)�E
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3
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4

= 0. This condition
was obtained before by Derman [45] who considered it very unnatural, since in his context it
was not clear that it was associated to an additional symmetry. With �
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6= 0 there were only
three possible real solutions [46]:

• (x, x, x) leaving S
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unbroken and translating into the doublet-singlet notation as (0, 0, wS);
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).

• (x, x, y) leaving a residual S
2
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• (x, y, z) = (x,�x, 0) leaving a residual S
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symmetry. This is the only possible real solution
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Table 1. Possible real vacua (partly after Derman and Tsao [46]). This classification uses the
notation R-X-y, where R refers to “real”. The roman numeral X gives the number of constraints
on the parameters of the potential that arise from solving the stationary-point equations. The
letter y is used to distinguish di↵erent vev’s that have the same X, and �a is defined in Eq. (11).
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Derman and Tsao [46] analysed spontaneous symmetry breaking with real vacua taking also
into account the residual symmetries. Their work was done in the reducible framework where
the condition �

4
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= 0. This condition
was obtained before by Derman [45] who considered it very unnatural, since in his context it
was not clear that it was associated to an additional symmetry. With �
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6= 0 there were only
three possible real solutions [46]:

• (x, x, x) leaving S
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consistency condition: w
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with all three vevs di↵erent from each other, unless one imposes 4A� 2(C +C +D)�E

1

+
E

2

+ E
3

+ E
4

= 0 (�
4

= 0). The translation into the irreducible representation is now:
(x,�x, 0) translates into (w

1

=
p
2x, 0, 0): consistency conditions: wS = 0 together with

w
2

= 0.
(x, 0,�x) translates into (w

1

= 1p
2

x,w
2

=
p
3p
2

x, 0); consistency conditions: wS = 0 together

with w
2

=
p
3w

1

.
(0, x,�x) translates into (w

1

= � 1p
2

x,w
2

=
p
3p
2

x, 0); consistency conditions: wS = 0

Table 1. Possible real vacua (partly after Derman and Tsao [46]). This classification uses the
notation R-X-y, where R refers to “real”. The roman numeral X gives the number of constraints
on the parameters of the potential that arise from solving the stationary-point equations. The
letter y is used to distinguish di↵erent vev’s that have the same X, and �a is defined in Eq. (11).
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Derman and Tsao [46] analysed spontaneous symmetry breaking with real vacua taking also
into account the residual symmetries. Their work was done in the reducible framework where
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was obtained before by Derman [45] who considered it very unnatural, since in his context it
was not clear that it was associated to an additional symmetry. With �
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three possible real solutions [46]:

• (x, x, x) leaving S
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unbroken and translating into the doublet-singlet notation as (0, 0, wS);
consistency condition: w

1

= 0 (also verifies w
1

= ±
p
3w

2

).

• (x, x, y) leaving a residual S
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Table 1 summarises all the possible real solutions together with the constraints imposed on the
parameters of the potential. The following abbreviation was introduced:

�a = �
5

+ �
6

+ 2�
7

. (11)

Table 2. Complex vacua. Notation: ✏ = 1 and �1 for C-III-d and C-III-e, respectively;
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2
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, ŵS rei⇢ + x,�re�i⇢ + x,�rei⇢ + re�i⇢ + x

C-IV-c
p
1 + 2 cos2 �

2

ŵ
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2.3. Complex vacuum solutions

In the discussion of possible complex vacua we now adopt a convention where wS is real and
non-negative and take

w
1

= ŵ
1

ei�1 , w
2

= ŵ
2

ei�2 , (12)

with the ŵi also real and non-negative. With this convention wS is also denoted by ŵS . A
systematic analysis of possible solutions was performed in [35]. The results are summarised in
Table 2. The list of the constraints on the potential that are consistent with each solution is not
given here, it can be found in Ref. [35].

Several solutions require �
4

= 0. This is not a new feature, it also happened in the context
of real solutions. For �

4

= 0 the potential acquires a continuous SO(2) symmetry which can be

Table 1. Possible real vacua (partly after Derman and Tsao [46]). This classification uses the
notation R-X-y, where R refers to “real”. The roman numeral X gives the number of constraints
on the parameters of the potential that arise from solving the stationary-point equations. The
letter y is used to distinguish di↵erent vev’s that have the same X, and �a is defined in Eq. (11).
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Derman and Tsao [46] analysed spontaneous symmetry breaking with real vacua taking also
into account the residual symmetries. Their work was done in the reducible framework where
the condition �
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= 0. This condition
was obtained before by Derman [45] who considered it very unnatural, since in his context it
was not clear that it was associated to an additional symmetry. With �
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Table 1. Possible real vacua (partly after Derman and Tsao [46]). This classification uses the
notation R-X-y, where R refers to “real”. The roman numeral X gives the number of constraints
on the parameters of the potential that arise from solving the stationary-point equations. The
letter y is used to distinguish di↵erent vev’s that have the same X, and �a is defined in Eq. (11).
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Derman and Tsao [46] analysed spontaneous symmetry breaking with real vacua taking also
into account the residual symmetries. Their work was done in the reducible framework where
the condition �

4

= 0 corresponds to 4A�2(C+C+D)�E
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2

+E
3

+E
4

= 0. This condition
was obtained before by Derman [45] who considered it very unnatural, since in his context it
was not clear that it was associated to an additional symmetry. With �

4

6= 0 there were only
three possible real solutions [46]:
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3

unbroken and translating into the doublet-singlet notation as (0, 0, wS);
consistency condition: w
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1

= ±
p
3w

2

).
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with all three vevs di↵erent from each other, unless one imposes 4A� 2(C +C +D)�E

1

+
E

2

+ E
3

+ E
4

= 0 (�
4

= 0). The translation into the irreducible representation is now:
(x,�x, 0) translates into (w

1

=
p
2x, 0, 0): consistency conditions: wS = 0 together with

w
2

= 0.
(x, 0,�x) translates into (w

1

= 1p
2

x,w
2

=
p
3p
2

x, 0); consistency conditions: wS = 0 together

with w
2

=
p
3w

1

.
(0, x,�x) translates into (w

1

= � 1p
2

x,w
2

=
p
3p
2

x, 0); consistency conditions: wS = 0
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letter y is used to distinguish di↵erent vev’s that have the same X, and �a is defined in Eq. (11).
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SSB, real vacua, residual symmetries
Derman, Tsao Phys. Rev. D20 (1979) 1207:

(x, x, y) S2 ; (x, y, z) = (x, -x, 0) S2 �4 6= 0

Translation into doublet singlet notation
(x, x, x) S3 ; 

(x, x, x)  ! (0,0,  

!
!
!

!
!
!

!S ) !1 =
p
3!2

!1 =
p
3!2

!1 = �
p
3!2

(two zeros)
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!S = 0

(!1,!2, 0)
(!1,!2, 0)

would require 
(!1,�

p
3!1,!S)

(!1,
p
3!1,!S)

�4 = 0

(two zeros)
(x, 0, -x)
(0,x, -x)

(o, w2, wS)(x, x, y)

(x, y, x)

(y, x, x)

For �4 = 0 SO(2) symmetry implies (x, y, z) possible solution
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The different solutions can be summarised as given in Table 1, where the descriptions
in terms of both the reducible- and irreducible-representation frameworks are given. For
the purpose of making this table as well as the corresponding one for complex vacua more
compact, we introduce the abbreviations

λa = λ5 + λ6 + 2λ7, (4.5a)

λb = λ5 + λ6 − 2λ7. (4.5b)

Table 1: Possible real vacua (partly after Derman and Tsao [21]). The classification of
vacua uses the notation R-X-y, where R means that the vacuum is real. The roman
numeral X is the number of constraints on the parameters of the potential that arise from
solving the stationary-point equations. The letter y is used for distinguishing different
vev’s that have the same X, and λa is defined in Eq. (4.5).

Vacuum ρ1, ρ2, ρ3 w1, w2, wS Comment

R-0 0, 0, 0 0, 0, 0 Not interesting

R-I-1 x, x, x 0, 0, wS µ2
0 = −λ8w2

S

R-I-2a x,−x, 0 w, 0, 0 µ2
1 = − (λ1 + λ3)w2

1

R-I-2b x, 0,−x w,
√
3w, 0 µ2

1 = −4
3 (λ1 + λ3)w2

2

R-I-2c 0, x,−x w,−
√
3w, 0 µ2

1 = −4
3 (λ1 + λ3)w2

2

R-II-1a x, x, y 0, w, wS µ2
0 =

1
2λ4

w3
2

wS
− 1

2λaw
2
2 − λ8w2

S,
µ2
1 = − (λ1 + λ3)w2

2 +
3
2λ4w2wS − 1

2λaw
2
S

R-II-1b x, y, x w,−w/
√
3, wS µ2

0 = −4λ4
w3

2

wS
− 2λaw2

2 − λ8w2
S,

µ2
1 = −4 (λ1 + λ3)w2

2 − 3λ4w2wS − 1
2λaw

2
S

R-II-1c y, x, x w,w/
√
3, wS µ2

0 = −4λ4
w3

2

wS
− 2λaw2

2 − λ8w2
S,

µ2
1 = −4 (λ1 + λ3)w2

2 − 3λ4w2wS − 1
2λaw

2
S

R-II-2 x, x,−2x 0, w, 0 µ2
1 = − (λ1 + λ3)w2

2, λ4 = 0
R-II-3 x, y,−x− y w1, w2, 0 µ2

1 = − (λ1 + λ3) (w2
1 + w2

2),λ4 = 0

R-III ρ1, ρ2, ρ3 w1, w2, wS µ2
0 = −1

2λa(w
2
1 + w2

2)− λ8w2
S,

µ2
1 = − (λ1 + λ3) (w2

1 + w2
2)− 1

2λaw
2
S,

λ4 = 0

One should note that

• Vacuum R-I-1 is a special case of Vacuum R-II-1. In this case, the vacuum value x
is determined by

λ− γ = x2[A+ C + C +D + 2E1 + E2 + E3 + E4]. (4.6)

• For Vacuum R-I-1, in the irreducible framework, we have

µ2
0 = −w2

Sλ8, (4.7)

which corresponds to Eq. (4.6), with w2
S = 3x2.
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Splitting this equation into real and imaginary parts, we find

(λ2 + λ3)(ŵ1 − ŵ2){1− cos[2(σ1 − σ2)]} = 0, and (5.4a)

(λ2 + λ3) sin[2(σ1 − σ2)] = 0. (5.4b)

The solutions are

λ2 + λ3 = 0, or (5.5a)

σ2 = σ1 ± nπ, n integer. (5.5b)

Table 2: Complex vacua. Notation: ϵ = 1 and −1 for C-III-d and C-III-e, respectively;
ξ =

√

−3 sin 2ρ1/ sin 2ρ2, ψ =
√

[3 + 3 cos(ρ2 − 2ρ1)]/(2 cos ρ2). With the constraints of
Table 4 the vacua labelled with an asterisk (∗) are in fact real.

IRF (Irreducible Rep.) RRF (Reducible Rep.)
w1, w2, wS ρ1, ρ2, ρ3

C-I-a ŵ1,±iŵ1, 0 x, xe±
2πi

3 , xe∓
2πi

3

C-III-a 0, ŵ2eiσ2 , ŵS y, y, xeiτ

C-III-b ±iŵ1, 0, ŵS x+ iy, x− iy, x
C-III-c ŵ1eiσ1 , ŵ2eiσ2 , 0 xeiρ − y

2 ,−xeiρ − y
2 , y

C-III-d,e ±iŵ1, ϵŵ2, ŵS xeiτ , xe−iτ , y
C-III-f ±iŵ1, iŵ2, ŵS reiρ ± ix, reiρ ∓ ix, 32re

−iρ − 1
2re

iρ

C-III-g ±iŵ1,−iŵ2, ŵS re−iρ ± ix, re−iρ ∓ ix, 32re
iρ − 1

2re
−iρ

C-III-h
√
3ŵ2eiσ2 ,±ŵ2eiσ2 , ŵS xeiτ , y, y

y, xeiτ , y

C-III-i
√

3(1+tan2 σ1)
1+9 tan2 σ1

ŵ2eiσ1 , x, yeiτ , ye−iτ

±ŵ2e−i arctan(3 tanσ1), ŵS yeiτ , x, ye−iτ

C-IV-a∗ ŵ1eiσ1 , 0, ŵS reiρ + x,−reiρ + x, x
C-IV-b ŵ1,±iŵ2, ŵS reiρ + x,−re−iρ + x,−reiρ + re−iρ + x

C-IV-c
√
1 + 2 cos2 σ2ŵ2, reiρ + r

√

3(1 + 2 cos2 ρ) + x,
ŵ2eiσ2 , ŵS reiρ − r

√

3(1 + 2 cos2 ρ) + x,−2reiρ + x
C-IV-d∗ ŵ1eiσ1 ,±ŵ2eiσ1 , ŵS r1eiρ + x, (r2 − r1)eiρ + x,−r2eiρ + x

C-IV-e
√

− sin 2σ2

sin 2σ1
ŵ2eiσ1 , reiρ2 + reiρ1ξ + x, reiρ2 − reiρ1ξ + x,

ŵ2eiσ2 , ŵS −2reiρ2 + x

C-IV-f
√

2 + cos(σ1−2σ2)
cosσ1

ŵ2eiσ1 , reiρ1 + reiρ2ψ + x,

ŵ2eiσ2 , ŵS reiρ1 − reiρ2ψ + x,−2reiρ1 + x

C-V∗ ŵ1eiσ1 , ŵ2eiσ2 , ŵS xeiτ1 , yeiτ2 , z

Likewise, the condition λ4 = 0 must be supplemented by

(λ2 + λ3)e
i(σ1+σ2)[ŵ2

1(1− e2i(σ1−σ2)) + ŵ2
2(e

−2i(σ1−σ2) − 1)]

+ λ7w
2
S(e

−i(σ1−σ2) − ei(σ1−σ2)) = 0. (5.6)
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Splitting this equation into real and imaginary parts, we find

(λ2 + λ3)(ŵ1 − ŵ2){1− cos[2(σ1 − σ2)]} = 0, and (5.4a)

(λ2 + λ3) sin[2(σ1 − σ2)] = 0. (5.4b)

The solutions are

λ2 + λ3 = 0, or (5.5a)

σ2 = σ1 ± nπ, n integer. (5.5b)

Table 2: Complex vacua. Notation: ϵ = 1 and −1 for C-III-d and C-III-e, respectively;
ξ =

√

−3 sin 2ρ1/ sin 2ρ2, ψ =
√

[3 + 3 cos(ρ2 − 2ρ1)]/(2 cos ρ2). With the constraints of
Table 4 the vacua labelled with an asterisk (∗) are in fact real.

IRF (Irreducible Rep.) RRF (Reducible Rep.)
w1, w2, wS ρ1, ρ2, ρ3

C-I-a ŵ1,±iŵ1, 0 x, xe±
2πi

3 , xe∓
2πi

3

C-III-a 0, ŵ2eiσ2 , ŵS y, y, xeiτ

C-III-b ±iŵ1, 0, ŵS x+ iy, x− iy, x
C-III-c ŵ1eiσ1 , ŵ2eiσ2 , 0 xeiρ − y

2 ,−xeiρ − y
2 , y

C-III-d,e ±iŵ1, ϵŵ2, ŵS xeiτ , xe−iτ , y
C-III-f ±iŵ1, iŵ2, ŵS reiρ ± ix, reiρ ∓ ix, 32re

−iρ − 1
2re

iρ

C-III-g ±iŵ1,−iŵ2, ŵS re−iρ ± ix, re−iρ ∓ ix, 32re
iρ − 1

2re
−iρ

C-III-h
√
3ŵ2eiσ2 ,±ŵ2eiσ2 , ŵS xeiτ , y, y

y, xeiτ , y

C-III-i
√

3(1+tan2 σ1)
1+9 tan2 σ1

ŵ2eiσ1 , x, yeiτ , ye−iτ

±ŵ2e−i arctan(3 tanσ1), ŵS yeiτ , x, ye−iτ

C-IV-a∗ ŵ1eiσ1 , 0, ŵS reiρ + x,−reiρ + x, x
C-IV-b ŵ1,±iŵ2, ŵS reiρ + x,−re−iρ + x,−reiρ + re−iρ + x

C-IV-c
√
1 + 2 cos2 σ2ŵ2, reiρ + r

√

3(1 + 2 cos2 ρ) + x,
ŵ2eiσ2 , ŵS reiρ − r

√

3(1 + 2 cos2 ρ) + x,−2reiρ + x
C-IV-d∗ ŵ1eiσ1 ,±ŵ2eiσ1 , ŵS r1eiρ + x, (r2 − r1)eiρ + x,−r2eiρ + x

C-IV-e
√

− sin 2σ2

sin 2σ1
ŵ2eiσ1 , reiρ2 + reiρ1ξ + x, reiρ2 − reiρ1ξ + x,

ŵ2eiσ2 , ŵS −2reiρ2 + x

C-IV-f
√

2 + cos(σ1−2σ2)
cosσ1

ŵ2eiσ1 , reiρ1 + reiρ2ψ + x,

ŵ2eiσ2 , ŵS reiρ1 − reiρ2ψ + x,−2reiρ1 + x

C-V∗ ŵ1eiσ1 , ŵ2eiσ2 , ŵS xeiτ1 , yeiτ2 , z

Likewise, the condition λ4 = 0 must be supplemented by

(λ2 + λ3)e
i(σ1+σ2)[ŵ2

1(1− e2i(σ1−σ2)) + ŵ2
2(e

−2i(σ1−σ2) − 1)]

+ λ7w
2
S(e

−i(σ1−σ2) − ei(σ1−σ2)) = 0. (5.6)
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Table 3: Constraints on complex vacua. Notation: ϵ = 1 and −1 for C-III-d and C-III-e,
respectively. Where two possible signs (± or ∓) are given, they correspond to those of
Table 2. Here, λb is defined in Eq. (4.5).

Vacuum Constraints

C-I-a µ2
1 = −2 (λ1 − λ2) ŵ2

1

C-III-a µ2
0 = −1

2λbŵ
2
2 − λ8ŵ2

S,
µ2
1 = − (λ1 + λ3) ŵ2

2 − 1
2 (λb − 8 cos2 σ2λ7) ŵ2

S,
λ4 =

4 cosσ2ŵS

ŵ2
λ7

C-III-b µ2
0 = −1

2λbŵ
2
1 − λ8ŵ2

S,
µ2
1 = − (λ1 + λ3) ŵ2

1 − 1
2λbŵ

2
S,

λ4 = 0
C-III-c µ2

1 = −(λ1 + λ3)(ŵ2
1 + ŵ2

2),
λ2 + λ3 = 0,λ4 = 0

C-III-d,e µ2
0 = (λ2 + λ3)

(ŵ2
1
−ŵ2

2
)2

ŵ2
S

− ϵλ4
(ŵ2

1
−ŵ2

2
)(ŵ2

1
−3ŵ2

2
)

4ŵ2ŵS

−1
2 (λ5 + λ6) (ŵ2

1 + ŵ2
2)− λ8ŵ2

S,

µ2
1 = − (λ1 − λ2) (ŵ2

1 + ŵ2
2)− ϵλ4

ŵS(ŵ2
1
−ŵ2

2
)

4ŵ2
− 1

2 (λ5 + λ6) ŵ2
S,

λ7 =
ŵ2

1
−ŵ2

2

ŵ2
S

(λ2 + λ3)− ϵ (ŵ
2
1
−5ŵ2

2
)

4ŵ2ŵS
λ4

C-III-f,g µ2
0 = −1

2λb (ŵ
2
1 + ŵ2

2)− λ8ŵ2
S,

µ2
1 = − (λ1 + λ3) (ŵ2

1 + ŵ2
2)− 1

2λbŵ
2
S,λ4 = 0

C-III-h µ2
0 = −2λbŵ2

2 − λ8ŵ2
S,

µ2
1 = −4 (λ1 + λ3) ŵ2

2 − 1
2 (λb − 8 cos2 σ2λ7) ŵ2

S,
λ4 = ∓2 cosσ2ŵS

ŵ2
λ7

C-III-i µ2
0 =

16(1−3 tan2 σ1)2
(1+9 tan2 σ1)2

(λ2 + λ3)
ŵ4

2

ŵ2
S

± 6(1−tan2 σ1)(1−3 tan2 σ1)

(1+9 tan2 σ1)
3
2

λ4
ŵ3

2

ŵS

−2(1+3 tan2 σ1)
1+9 tan2 σ1

(λ5 + λ6)ŵ2
2 − λ8ŵ2

S,

µ2
1 = −4(1+3 tan2 σ1)

1+9 tan2 σ1
(λ1 − λ2)ŵ2

2 ∓
(1−3 tan2 σ1)
2
√

1+9 tan2 σ1

λ4ŵ2ŵS

−1
2(λ5 + λ6)ŵ2

S,

λ7 = −4(1−3 tan2 σ1)ŵ2
2

(1+9 tan2 σ1)ŵ2
S

(λ2 + λ3)∓
(5−3 tan2 σ1)ŵ2

2
√

1+9 tan2 σ1ŵS

λ4

h2 would allow to remove the phase of λ7, rendering all coefficients of the potential real.
Another way of achieving the same result would be by rephasing hS alone. Neither of
these transformations alters the specifications of the vacuum corresponding to this case.

Cases C-IV-a, C-IV-d and C-V are listed in Table 2 for completeness and to allow
for an enlightening discussion. Once one takes into consideration the constraints given in
Table 4 they become real.

Solution C-IV-d is more general than solution C-IV-a and reduces to C-IV-a once we
fix w2 = 0, so it suffices to discuss C-IV-d. Both of these require λ4 = 0 and λ7 = 0,
and as a result the potential acquires symmetry for the transformation of h1, h2 and hS

under a unitary transformation of the form U = diag(eiτ , eiτ , 1) which allows to remove
the phase σ1 from the vacuum, making it real.

At first glance case C-V looks like the most general case, however we are assuming
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Table 4: Constraints on complex vacua, continued. The vacua labelled with an asterisk
(∗) are in fact real.

Vacuum Constraints

C-IV-a∗ µ2
0 = −1

2 (λ5 + λ6) ŵ2
1 − λ8ŵ2

S,
µ2
1 = − (λ1 + λ3) ŵ2

1 − 1
2 (λ5 + λ6) ŵ2

S,
λ4 = 0,λ7 = 0

C-IV-b µ2
0 = (λ2 + λ3)

(ŵ2
1
−ŵ2

2)2
ŵ2

S

− 1
2 (λ5 + λ6) (ŵ2

1 + ŵ2
2)− λ8ŵ2

S,

µ2
1 = − (λ1 − λ2) (ŵ2

1 + ŵ2
2)− 1

2 (λ5 + λ6) ŵ2
S,

λ4 = 0,λ7 = −(ŵ2
1
−ŵ2

2)
ŵ2

S

(λ2 + λ3)

C-IV-c µ2
0 = 2 cos2 σ2 (1 + cos2 σ2) (λ2 + λ3)

ŵ4
2

ŵ2
S

− (1 + cos2 σ2) (λ5 + λ6) ŵ2
2 − λ8ŵ2

S,
µ2
1 = − [2 (1 + cos2 σ2)λ1 − (2 + 3 cos2 σ2)λ2 − cos2 σ2λ3] ŵ2

2

−1
2 (λ5 + λ6) ŵ2

S,

λ4 = −2 cosσ2ŵ2

ŵS
(λ2 + λ3) ,λ7 =

cos2 σ2ŵ2
2

ŵ2
S

(λ2 + λ3)

C-IV-d∗ µ2
0 = −1

2 (λ5 + λ6) (ŵ2
1 + ŵ2

2)− λ8ŵ2
S,

µ2
1 = − (λ1 + λ3) (ŵ2

1 + ŵ2
2)− 1

2 (λ5 + λ6) ŵ2
S,

λ4 = 0,λ7 = 0

C-IV-e µ2
0 =

sin2(2(σ1−σ2))
sin2(2σ1)

(λ2 + λ3)
ŵ4

2

ŵ2
S

−1
2

(

1− sin 2σ2

sin 2σ1

)

(λ5 + λ6) ŵ2
2 − λ8ŵ2

S,

µ2
1 = −

(

1− sin 2σ2

sin 2σ1

)

(λ1 − λ2) ŵ2
2 − 1

2 (λ5 + λ6) ŵ2
S,

λ4 = 0,λ7 = − sin(2(σ1−σ2))ŵ2
2

sin 2σ1ŵ2
S

(λ2 + λ3)

C-IV-f µ2
0 = − (cos(σ1−2σ2)+3 cosσ1) cos(σ2−σ1)

2 cos2 σ1
λ4

ŵ3
2

ŵS

− cos(σ1−2σ2)+3 cosσ1

2 cosσ1
(λ5 + λ6) ŵ2

2 − λ8ŵ2
S,

µ2
1 = − cos(σ1−2σ2)+3 cosσ1

cosσ1
(λ1 + λ3) ŵ2

2

−3 cos 2σ1+2 cos(2(σ1−σ2))+cos 2σ2+4
4 cos(σ1−σ2) cosσ1

λ4ŵ2ŵS − 1
2 (λ5 + λ6) ŵ2

S,

λ2 + λ3 = − cosσ1ŵS

2 cos(σ2−σ1)ŵ2
λ4,λ7 = − cos(σ2−σ1)ŵ2

2 cosσ1ŵS
λ4

C-V∗ µ2
0 = −1

2 (λ5 + λ6) (ŵ2
1 + ŵ2

2)− λ8ŵ2
S,

µ2
1 = − (λ1 + λ3) (ŵ2

1 + ŵ2
2)− 1

2 (λ5 + λ6) ŵ2
S,

λ2 + λ3 = 0,λ4 = 0,λ7 = 0

that it does not fall into any of the previous cases, so, as a result, full generality requires
λ2 + λ3 = 0, λ4 = 0 and λ7 = 0 and there is no term in the potential sensitive to
independent rephasing of each of the h fields. As a result any phase in the vevs can be
rotated away. Under these circumstances, it is equivalent to a real set of vacua.

There are, in particular, two possible complex vacua that have been discussed previ-
ously in the literature. One of them is:

ŵeiσ, ŵe−iσ, ŵS, (5.10)

by Pakvasa and Sugawara [18]. We shall refer to this as the PS vacuum, assuming ŵ ̸= 0
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The question of relating complex vacua to real ones is relevant for the discussion of global
minima [28, 29] as well as to understand the possible correlations of different parameters
of the potential.

7 The case of λ4 = 0

As mentioned in section 2.3, in the case of λ4 = 0 the potential has an additional,
continuous SO(2) symmetry. This case was dismissed by Derman [20], as being “un-
natural”. This was due to the fact that this condition, when expressed in terms of the
parameters of the potential written by Derman, given by Eqs. (2.9), acquires the form
given by Eq. (4.10), which is not instructive and the resulting symmetry is not apparent.
Spontaneous breaking of this SO(2) symmetry leads to massless particles. In this case,
one way to promote this to a viable model is to break this symmetry softly, by adding a
term to the bilinear part of the potential:

V = V2 + V ′
2 + V4, (7.1)

with V2 and V4 as defined by equations (2.10), and

V ′
2 =

1

2
ν2(h†

2h1 + h†
1h2). (7.2)

The minimisation conditions (3.3)–(3.5) will now become

∂V

∂w∗
S

=
1

2
wSµ

2
0 +

1

4
wS(|w1|2 + |w2|2)(λ5 + λ6)

+
1

4
w∗

S(w
2
1 + w2

2)λ7 +
1

2
w∗

Sw
2
Sλ8 = 0, (7.3)

∂V

∂w∗
1

=
1

2
w1µ

2
1 +

1

2
w2ν

2 +
1

2
w1(|w1|2 + |w2|2)λ1 +

1

2
w2(w

∗
1w2 − w1w

∗
2)λ2

+
1

2
w∗

1(w
2
1 + w2

2)λ3 +
1

4
w1|wS|2(λ5 + λ6) +

1

2
w∗

1w
2
Sλ7 = 0, (7.4)

∂V

∂w∗
2

=
1

2
w2µ

2
1 +

1

2
w1ν

2 +
1

2
w2(|w1|2 + |w2|2)λ1 −

1

2
w1(w

∗
1w2 − w1w

∗
2)λ2

+
1

2
w∗

2(w
2
1 + w2

2)λ3 +
1

4
w2|wS|2(λ5 + λ6) +

1

2
w∗

2w
2
Sλ7 = 0. (7.5)

With these new conditions there will be some changes in the solutions. In particular,
the new term will bring new sources of CP violation, and spontaneous CP violation may
be easier to achieve. Notice that such a term also softly breaks some types of discrete
symmetries of the S3 doublet h1 and h2 that might otherwise be present. This feature
was exploited long ago in the context of two-Higgs-doublet models [30]. Soft breaking
of the S3 symmetry of the scalar potential has been applied in [31] in order to obtain a
special relation among the vevs of the three doublets that would allow to account for the
observed charged lepton masses.

An important implication of the type of vacuum solution and of the corresponding
allowed region of parameter space is the resulting different possible spectra for the physical
scalars.
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Potential has additional continuous SO(2) symmetry

�4 = 4A� 2(C + C̄ +D)� E1 � E2 + E4 = 0

Derman (1979), “unnatural”

Spontaneous breaking of this SO(2) symmetry leads to massless 
particles

Possible solution: break the symmetry softly, the 
most general quadratic potential can be written:

Consider the following quadratic potential:

V = µ2
0h

†
ShS + µ2

1(h
†
1h1 + h†

2h2) + µ2
2(h

†
1h1 � h†

2h2) +
1

2
⌫2(h†

2h1 + h†
1h2)

+ µ2
3(h

†
Sh1 + h†

1hS) + µ2
4(h

†
Sh2 + h†

2hS) (0.1)

along with the vacuum (w1ei�, w2, 0). The quartic part of the potential has the most
general form with S3 symmetry. We need to treat the cases of � = ±⇡/2 and/or w1 = w2

separately. Working out the minimization conditions for the four distinct cases, we find:

1 Four distinct possible VEVs

1.1 (±iw1, w1, 0)

⌫2 = 0,

µ2
1 = �v2(�1 � �2),

µ2
2 = 0,

µ2
3 = 0,

µ2
4 = 0. (1.2)

1.2 (±iw1, w2, 0)

⌫2 = 0,

µ2
1 = �v2(�1 � �2),

µ2
2 = �(w2

1 � w2
2)(�2 + �3),

µ2
3 = 0,

µ2
4 = �1

2
(w2

1 � w2
2)�4. (1.3)

1.3 (w1ei�, w1, 0)

⌫2 = �2v2 cos �(�2 + �3),

µ2
1 = �v2(�1 � �2),

µ2
2 = 0,

µ2
3 = �1

2
v2 cos ��4,

µ2
4 = 0. (1.4)

1.4 (w1ei�, w2, 0)

⌫2 = �4w1w2 cos �(�2 + �3),

µ2
1 = �v2(�1 � �2),

1



Complex vacua, Spontaneous CP Violation 

N
O
T
 
F
O
R
 
D
I
S
T
R
I
B
U
T
I
O
N
 
J
H
E
P
_
2
2
3
P
_
0
1
1
6
 
v
1

8 Spontaneous CP violation

The S3-symmetric potential offers a very rich phenomenology, and can accommodate a
variety of physical situations, as outlined in sections 4 and 5, where we classified the
different vacua.

We assumed, for simplicity, that all parameters of the potential are real. Therefore our
discussion is done in the framework of explicit CP conservation. This raises the question
of whether or not CP can be violated spontaneously. For that purpose we can inspect the
list of complex solutions presented in Table 2. CP can only be spontaneously violated if
the Lagrangian is invariant under CP and if at the same time there is no transformation
that can be identified with a CP transformation, leaving both the Lagrangian and the
vacuum invariant. The idea of spontaneous CP violation was first proposed by T. D.
Lee [3] in the context of two Higgs doublets. In the context of the SM, with a single Higgs
doublet, a CP transformation of the scalar doublet amounts to its complex conjugation
and the scalar sector cannot violate CP. In models with several Higgs doublets complex
conjugation may be combined with a unitary transformation acting on the set of doublets,
since this transformation leaves the kinetic energy term of the Lagrangian invariant. In
this case the most general CP transformation is given by:

Φi
CP−→ UijΦ

∗
j (8.1)

with U an arbitrary unitary matrix4. This equation together with the assumption that
the vacuum is CP invariant:

CP|0⟩ = |0⟩ (8.2)

leads to the following condition [32]:

Uij⟨0|Φj|0⟩∗ = ⟨0|Φi|0⟩ (8.3)

implying that there is spontaneous CP violation if none of the CP symmetries allowed
by the Lagrangian satisfy this equation. For real vevs this condition is obviously verified.
If the Lagrangian has a discrete symmetry one must take it into consideration before
drawing conclusions. In the discussion that follows we do not take the Yukawa sector into
consideration. We now comment on each one of the cases presented in Table 2 concerning
the possibility of having spontaneous CP violation:

• The case C-I-a is a familiar one that has been discussed long ago in the framework
of the reducible representation [32]. It was pointed out that it has complex vacuum
expectation values with calculable non-trivial phases, assuming geometrical values,
entirely determined by the symmetry of the scalar potential. These phases cannot
be rotated away and yet they do not lead to spontaneous CP violation, since there
is a matrix U satisfying the constraint of Eq. (8.3), namely:

U =

⎛

⎝

1 0 0
0 0 1
0 1 0

⎞

⎠ , (8.4)

4Some authors refer to this transformation as a “generalized” CP transformation. This is somewhat
misleading since it suggests that there is also a “non-generalized” CP transformation.
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8 Spontaneous CP violation

The S3-symmetric potential offers a very rich phenomenology, and can accommodate a
variety of physical situations, as outlined in sections 4 and 5, where we classified the
different vacua.

We assumed, for simplicity, that all parameters of the potential are real. Therefore our
discussion is done in the framework of explicit CP conservation. This raises the question
of whether or not CP can be violated spontaneously. For that purpose we can inspect the
list of complex solutions presented in Table 2. CP can only be spontaneously violated if
the Lagrangian is invariant under CP and if at the same time there is no transformation
that can be identified with a CP transformation, leaving both the Lagrangian and the
vacuum invariant. The idea of spontaneous CP violation was first proposed by T. D.
Lee [3] in the context of two Higgs doublets. In the context of the SM, with a single Higgs
doublet, a CP transformation of the scalar doublet amounts to its complex conjugation
and the scalar sector cannot violate CP. In models with several Higgs doublets complex
conjugation may be combined with a unitary transformation acting on the set of doublets,
since this transformation leaves the kinetic energy term of the Lagrangian invariant. In
this case the most general CP transformation is given by:

Φi
CP−→ UijΦ

∗
j (8.1)

with U an arbitrary unitary matrix4. This equation together with the assumption that
the vacuum is CP invariant:

CP|0⟩ = |0⟩ (8.2)

leads to the following condition [32]:

Uij⟨0|Φj|0⟩∗ = ⟨0|Φi|0⟩ (8.3)

implying that there is spontaneous CP violation if none of the CP symmetries allowed
by the Lagrangian satisfy this equation. For real vevs this condition is obviously verified.
If the Lagrangian has a discrete symmetry one must take it into consideration before
drawing conclusions. In the discussion that follows we do not take the Yukawa sector into
consideration. We now comment on each one of the cases presented in Table 2 concerning
the possibility of having spontaneous CP violation:

• The case C-I-a is a familiar one that has been discussed long ago in the framework
of the reducible representation [32]. It was pointed out that it has complex vacuum
expectation values with calculable non-trivial phases, assuming geometrical values,
entirely determined by the symmetry of the scalar potential. These phases cannot
be rotated away and yet they do not lead to spontaneous CP violation, since there
is a matrix U satisfying the constraint of Eq. (8.3), namely:

U =

⎛

⎝

1 0 0
0 0 1
0 1 0

⎞

⎠ , (8.4)

4Some authors refer to this transformation as a “generalized” CP transformation. This is somewhat
misleading since it suggests that there is also a “non-generalized” CP transformation.
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8 Spontaneous CP violation

The S3-symmetric potential offers a very rich phenomenology, and can accommodate a
variety of physical situations, as outlined in sections 4 and 5, where we classified the
different vacua.

We assumed, for simplicity, that all parameters of the potential are real. Therefore our
discussion is done in the framework of explicit CP conservation. This raises the question
of whether or not CP can be violated spontaneously. For that purpose we can inspect the
list of complex solutions presented in Table 2. CP can only be spontaneously violated if
the Lagrangian is invariant under CP and if at the same time there is no transformation
that can be identified with a CP transformation, leaving both the Lagrangian and the
vacuum invariant. The idea of spontaneous CP violation was first proposed by T. D.
Lee [3] in the context of two Higgs doublets. In the context of the SM, with a single Higgs
doublet, a CP transformation of the scalar doublet amounts to its complex conjugation
and the scalar sector cannot violate CP. In models with several Higgs doublets complex
conjugation may be combined with a unitary transformation acting on the set of doublets,
since this transformation leaves the kinetic energy term of the Lagrangian invariant. In
this case the most general CP transformation is given by:

Φi
CP−→ UijΦ

∗
j (8.1)

with U an arbitrary unitary matrix4. This equation together with the assumption that
the vacuum is CP invariant:

CP|0⟩ = |0⟩ (8.2)

leads to the following condition [32]:

Uij⟨0|Φj|0⟩∗ = ⟨0|Φi|0⟩ (8.3)

implying that there is spontaneous CP violation if none of the CP symmetries allowed
by the Lagrangian satisfy this equation. For real vevs this condition is obviously verified.
If the Lagrangian has a discrete symmetry one must take it into consideration before
drawing conclusions. In the discussion that follows we do not take the Yukawa sector into
consideration. We now comment on each one of the cases presented in Table 2 concerning
the possibility of having spontaneous CP violation:

• The case C-I-a is a familiar one that has been discussed long ago in the framework
of the reducible representation [32]. It was pointed out that it has complex vacuum
expectation values with calculable non-trivial phases, assuming geometrical values,
entirely determined by the symmetry of the scalar potential. These phases cannot
be rotated away and yet they do not lead to spontaneous CP violation, since there
is a matrix U satisfying the constraint of Eq. (8.3), namely:

U =

⎛

⎝

1 0 0
0 0 1
0 1 0

⎞

⎠ , (8.4)

4Some authors refer to this transformation as a “generalized” CP transformation. This is somewhat
misleading since it suggests that there is also a “non-generalized” CP transformation.
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8 Spontaneous CP violation

The S3-symmetric potential offers a very rich phenomenology, and can accommodate a
variety of physical situations, as outlined in sections 4 and 5, where we classified the
different vacua.

We assumed, for simplicity, that all parameters of the potential are real. Therefore our
discussion is done in the framework of explicit CP conservation. This raises the question
of whether or not CP can be violated spontaneously. For that purpose we can inspect the
list of complex solutions presented in Table 2. CP can only be spontaneously violated if
the Lagrangian is invariant under CP and if at the same time there is no transformation
that can be identified with a CP transformation, leaving both the Lagrangian and the
vacuum invariant. The idea of spontaneous CP violation was first proposed by T. D.
Lee [3] in the context of two Higgs doublets. In the context of the SM, with a single Higgs
doublet, a CP transformation of the scalar doublet amounts to its complex conjugation
and the scalar sector cannot violate CP. In models with several Higgs doublets complex
conjugation may be combined with a unitary transformation acting on the set of doublets,
since this transformation leaves the kinetic energy term of the Lagrangian invariant. In
this case the most general CP transformation is given by:

Φi
CP−→ UijΦ

∗
j (8.1)

with U an arbitrary unitary matrix4. This equation together with the assumption that
the vacuum is CP invariant:

CP|0⟩ = |0⟩ (8.2)

leads to the following condition [32]:

Uij⟨0|Φj|0⟩∗ = ⟨0|Φi|0⟩ (8.3)

implying that there is spontaneous CP violation if none of the CP symmetries allowed
by the Lagrangian satisfy this equation. For real vevs this condition is obviously verified.
If the Lagrangian has a discrete symmetry one must take it into consideration before
drawing conclusions. In the discussion that follows we do not take the Yukawa sector into
consideration. We now comment on each one of the cases presented in Table 2 concerning
the possibility of having spontaneous CP violation:

• The case C-I-a is a familiar one that has been discussed long ago in the framework
of the reducible representation [32]. It was pointed out that it has complex vacuum
expectation values with calculable non-trivial phases, assuming geometrical values,
entirely determined by the symmetry of the scalar potential. These phases cannot
be rotated away and yet they do not lead to spontaneous CP violation, since there
is a matrix U satisfying the constraint of Eq. (8.3), namely:

U =

⎛

⎝

1 0 0
0 0 1
0 1 0

⎞

⎠ , (8.4)

4Some authors refer to this transformation as a “generalized” CP transformation. This is somewhat
misleading since it suggests that there is also a “non-generalized” CP transformation.
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£(Uc~) = £(q~), (3) 

then that would be a sure indication that there is spon- 
taneous T violation. 

It  has been emphasized some time ago [ 1 ] that in 
the framework of an SU(2) X U(1) gauge theory with 
scalar doublets, a minimum of two scalar multiplets 
are required in order to obtain spontaneous T viola- 
tion. In the case of  two scalar doublets, the most gen- 
eral Higgs potential can be written 

V(~I, ~2) = VO + [;kl ( ~ q ~ 2 ) ( ~ 2 )  + ~ 2 ( ~  ~ 2 ) ( ~  ~1) 

+ X3(¢I~2)(~t24~2) + h .c . l ,  (4) 

where V 0 denotes the part of the potential without 
any phase dependence. Since we are interested in 
spontaneously broken T invariance, we will always 
assume real coupling constants. For an appropriate 
finite range of  the parameters of  the scalar potential, 
the minimum is at: 

COS 0 = --(4XlOlO2)-l()t202 + X302), (5) 

where (014~010) --- v i =Ioil exp(i0i) and 0 = 02 - 01. 
In eq. (5), the above mentioned dependence of 0 on 
the coupling constants of  the scalar potential is illu- 
strated. In this case, it is easily seen that Tis  sponta- 
neously broken. Indeed in this example, there is no 
matrix satisfying simultaneously eqs. (2), (3). This is 
clearly the simplest example of spontaneous T viola- 
tion. However, the phase 0 is not a "calculable" quan- 
tity. In this note a "calculable phase" refers to a 
phase whose value is independent of  the coupling 
constants of  the scalar potential and therefore stable 
against radiative corrections [5]. In the case of  two 
Higgs doublets, the only way of  having a calculable 
phase in the sense defined above, is by setting X 2 = X 3 
= 0, thus implying 0 = rr/2. Assuming these coupling 
constants equal to zero is natural in the technical 
sense, since then the potential acquires an extra sym- 
metry under which: 

(ki ~ Gi/c~l" , (6) 

where 

o:(; 2) 
This transformation G, needed in order to implement 
a calculable 0 phase, supplies us with the T transfor- 

mation defined in eq. (4) * 1 : 

( l  i([011 ( [o  11 

- 1  !\1o21 exp(irr/2)) = \1o21 exp(irr/2) ) '  (8) 

and therefore implies a T-conserving solution. From 
the previous considerations, we conclude that more 
than two scalar doublets have to be introduced in 
order to achieve both calculability and spontaneous 
T violation * 1. It is also clear that calculability re- 
quires the presence of an extra symmetry in the scalar 
potential. This requirement was necessary in the case 
of  two scalar doublets and it applies a for t ior i  to the 
case of  more than two scalar doublets. 

Let us consider first the case where the scalar po- 
tential is invariant under an abelian group. We will 
show that then calculable phases always correspond 
to T conservation. In the case of  an abelian group, we 
can always choose a special basis where each scalar 
doublet ~j (] = 1 ... . .  n) transforms as a one-dimension- 
al representation of  the group. Then the unitary matrix 

fexp(-2i01) )/  
U = " . .  , (9) 

exp( -2 i0  n 

obviously satisfies eq. (2) and, as we will see, it corre- 
sponds to a symmetry of the potential. In order to 
achieve calculability, each individual term I s of  the 
scalar potential, together with its hermitian conjugate, 
has to be minimized separately with respect to the 
0 i phases. The minimization of  each function .2 
cos [0(Io)], where 0(I~) denotes the linear combina- 
tion of Oi's associated with the fields occurring in I s, 
trivially gives O(Ic~ ) -- 0, 7. In this case the transforma- 
tion (9) corresponds to a symmetry of the scalar po- 
tential and the vacuum is Tinvariant. 

In view of the previous result, we consider next the 
case of  non-abelian symmetries. In the following, we 
will confine ourselves to three Higgs doublets and for 
simplicity we first analyse the case of an S 3 symmetry,  
with the scalar doublets transforming as a three-dimen- 
sional reducible representation. The most  general re- 
normalizable scalar potential can be written [6] as, 

,1 We assume that the scalar potential has no (discrete or 
continuous) accidental symmetries. 

,2 The fact that only functions of this type appear is a conse- 
quence of having assumed real coupling constants. 
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Table 1: Spontaneous CP violation

Vacuum �4 SCPV Vacuum �4 SCPV Vacuum �4 SCPV

C-I-a X no C-III-f,g 0 no C-IV-c X yes

C-III-a X yes C-III-h X yes C-IV-d 0 no

C-III-b 0 no C-III-i X no C-IV-e 0 no

C-III-c 0 no C-IV-a 0 no C-IV-f X yes

C-III-d,e X no C-IV-b 0 no C-V 0 no

C-I-a

h2 $ �h2

�2 $ �3

h1 $ �h1

ej HjZZ, HjHjZ

qj HjH
+H�

(w1, w2, wS) = (v, 0, 0) (6)

Uijh0|�j|0i⇤ = h0|�i|0i, (7)

(ŵ1e
i�1 , ŵ2e

i�2 , wS) ! (aei�, ae�i�, wS) (8)

h1 $ h2 (9)

(ŵ1e
i�1 , ŵ2e

i�2 , 0) ! (aei�1 , aei�2 , 0) (10)

(aei�1 , aei�2 , 0) ! (aei�, ae�i�, 0) (11)

U =

0

@
0 1 0

1 0 0

0 0 1

1

A
(12)

5



Vacuum C-I-a�4 = 4A� 2(C + C̄ +D)� E1 � E2 + E4 = 0

x, xe

2⇡i
3
, xe

� 2⇡i
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8 Spontaneous CP violation

The S3-symmetric potential offers a very rich phenomenology, and can accommodate a
variety of physical situations, as outlined in sections 4 and 5, where we classified the
different vacua.

We assumed, for simplicity, that all parameters of the potential are real. Therefore our
discussion is done in the framework of explicit CP conservation. This raises the question
of whether or not CP can be violated spontaneously. For that purpose we can inspect the
list of complex solutions presented in Table 2. CP can only be spontaneously violated if
the Lagrangian is invariant under CP and if at the same time there is no transformation
that can be identified with a CP transformation, leaving both the Lagrangian and the
vacuum invariant. The idea of spontaneous CP violation was first proposed by T. D.
Lee [3] in the context of two Higgs doublets. In the context of the SM, with a single Higgs
doublet, a CP transformation of the scalar doublet amounts to its complex conjugation
and the scalar sector cannot violate CP. In models with several Higgs doublets complex
conjugation may be combined with a unitary transformation acting on the set of doublets,
since this transformation leaves the kinetic energy term of the Lagrangian invariant. In
this case the most general CP transformation is given by:

Φi
CP−→ UijΦ

∗
j (8.1)

with U an arbitrary unitary matrix4. This equation together with the assumption that
the vacuum is CP invariant:

CP|0⟩ = |0⟩ (8.2)

leads to the following condition [32]:

Uij⟨0|Φj|0⟩∗ = ⟨0|Φi|0⟩ (8.3)

implying that there is spontaneous CP violation if none of the CP symmetries allowed
by the Lagrangian satisfy this equation. For real vevs this condition is obviously verified.
If the Lagrangian has a discrete symmetry one must take it into consideration before
drawing conclusions. In the discussion that follows we do not take the Yukawa sector into
consideration. We now comment on each one of the cases presented in Table 2 concerning
the possibility of having spontaneous CP violation:

• The case C-I-a is a familiar one that has been discussed long ago in the framework
of the reducible representation [32]. It was pointed out that it has complex vacuum
expectation values with calculable non-trivial phases, assuming geometrical values,
entirely determined by the symmetry of the scalar potential. These phases cannot
be rotated away and yet they do not lead to spontaneous CP violation, since there
is a matrix U satisfying the constraint of Eq. (8.3), namely:

U =

⎛

⎝

1 0 0
0 0 1
0 1 0

⎞

⎠ , (8.4)

4Some authors refer to this transformation as a “generalized” CP transformation. This is somewhat
misleading since it suggests that there is also a “non-generalized” CP transformation.
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Splitting this equation into real and imaginary parts, we find

(λ2 + λ3)(ŵ1 − ŵ2){1− cos[2(σ1 − σ2)]} = 0, and (5.4a)

(λ2 + λ3) sin[2(σ1 − σ2)] = 0. (5.4b)

The solutions are

λ2 + λ3 = 0, or (5.5a)

σ2 = σ1 ± nπ, n integer. (5.5b)

Table 2: Complex vacua. Notation: ϵ = 1 and −1 for C-III-d and C-III-e, respectively;
ξ =

√

−3 sin 2ρ1/ sin 2ρ2, ψ =
√

[3 + 3 cos(ρ2 − 2ρ1)]/(2 cos ρ2). With the constraints of
Table 4 the vacua labelled with an asterisk (∗) are in fact real.

IRF (Irreducible Rep.) RRF (Reducible Rep.)
w1, w2, wS ρ1, ρ2, ρ3

C-I-a ŵ1,±iŵ1, 0 x, xe±
2πi

3 , xe∓
2πi

3

C-III-a 0, ŵ2eiσ2 , ŵS y, y, xeiτ

C-III-b ±iŵ1, 0, ŵS x+ iy, x− iy, x
C-III-c ŵ1eiσ1 , ŵ2eiσ2 , 0 xeiρ − y

2 ,−xeiρ − y
2 , y

C-III-d,e ±iŵ1, ϵŵ2, ŵS xeiτ , xe−iτ , y
C-III-f ±iŵ1, iŵ2, ŵS reiρ ± ix, reiρ ∓ ix, 32re

−iρ − 1
2re

iρ

C-III-g ±iŵ1,−iŵ2, ŵS re−iρ ± ix, re−iρ ∓ ix, 32re
iρ − 1

2re
−iρ

C-III-h
√
3ŵ2eiσ2 ,±ŵ2eiσ2 , ŵS xeiτ , y, y

y, xeiτ , y

C-III-i
√

3(1+tan2 σ1)
1+9 tan2 σ1

ŵ2eiσ1 , x, yeiτ , ye−iτ

±ŵ2e−i arctan(3 tanσ1), ŵS yeiτ , x, ye−iτ

C-IV-a∗ ŵ1eiσ1 , 0, ŵS reiρ + x,−reiρ + x, x
C-IV-b ŵ1,±iŵ2, ŵS reiρ + x,−re−iρ + x,−reiρ + re−iρ + x

C-IV-c
√
1 + 2 cos2 σ2ŵ2, reiρ + r

√

3(1 + 2 cos2 ρ) + x,
ŵ2eiσ2 , ŵS reiρ − r

√

3(1 + 2 cos2 ρ) + x,−2reiρ + x
C-IV-d∗ ŵ1eiσ1 ,±ŵ2eiσ1 , ŵS r1eiρ + x, (r2 − r1)eiρ + x,−r2eiρ + x

C-IV-e
√

− sin 2σ2

sin 2σ1
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The question of relating complex vacua to real ones is relevant for the discussion of global
minima [28, 29] as well as to understand the possible correlations of different parameters
of the potential.

7 The case of λ4 = 0

As mentioned in section 2.3, in the case of λ4 = 0 the potential has an additional,
continuous SO(2) symmetry. This case was dismissed by Derman [20], as being “un-
natural”. This was due to the fact that this condition, when expressed in terms of the
parameters of the potential written by Derman, given by Eqs. (2.9), acquires the form
given by Eq. (4.10), which is not instructive and the resulting symmetry is not apparent.
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With these new conditions there will be some changes in the solutions. In particular,
the new term will bring new sources of CP violation, and spontaneous CP violation may
be easier to achieve. Notice that such a term also softly breaks some types of discrete
symmetries of the S3 doublet h1 and h2 that might otherwise be present. This feature
was exploited long ago in the context of two-Higgs-doublet models [30]. Soft breaking
of the S3 symmetry of the scalar potential has been applied in [31] in order to obtain a
special relation among the vevs of the three doublets that would allow to account for the
observed charged lepton masses.

An important implication of the type of vacuum solution and of the corresponding
allowed region of parameter space is the resulting different possible spectra for the physical
scalars.
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ŵ

1

ei�

ŵ
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ŵ
2

0

1

A
⇤

=

0

@
ŵ
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ŵ
2

cos �
. (8.6)

Obviously the Lagrangian remains invariant. Next we perform an overall phase
rotation of the three Higgs doublets with the phase factor exp[�i(�

1

+�
2

)/2], leading
now to the following vevs: (aei�, ae�i�, 0). Making use of the symmetry for the
interchange h0

1

$ h0
2

we can verify Eq. (8.3) in the following way:
0

@
0 1 0
1 0 0
0 0 1

1

A

0

@
aei�

ae�i�

0

1

A
⇤

=

0

@
aei�

ae�i�

0

1

A . (8.7)

In terms of the initial vevs, this equation translates into

ei(�1+�2)

0

@
cos ✓ sin ✓ 0
� sin ✓ cos ✓ 0

0 0 1

1

A

0

@
0 1 0
1 0 0
0 0 1

1

A

0

@
cos ✓ � sin ✓ 0
sin ✓ cos ✓ 0
0 0 1

1

A

0

@
ŵ
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followed by overall phase rotation
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ŵ
2

0

1

A
⇤

=

0

@
ŵ
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ŵ
2

0

1

A ,

(8.8)
or

ei(�1+�2)

0

@
sin 2✓ cos 2✓ 0
cos 2✓ � sin 2✓ 0
0 0 1

1

A

0

@
ŵ
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CP is conserved

CP is conserved

Next: Two possible complex vacua discussed previously in the literature



Table 4: Constraints on complex vacua, continued. The vacua labelled with an asterisk
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) ŵ2

S,

�
4

= �2 cos�2ŵ2
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) ŵ2

2

� �
8

ŵ2
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) ŵ2

2

� 1

2

(�
5

+ �
6

) ŵ2
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+ ŵ2

2

)� �
8

ŵ2
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ously in the literature. One of them is:

ŵei�, ŵe�i�, ŵS, (5.10)

by Pakvasa and Sugawara [18]. We shall refer to this as the PS vacuum, assuming ŵ 6= 0
and ŵS 6= 0. There is also a solution given by Ivanov and Nishi [22]

ŵei�, ŵei�, ŵS, (5.11)

which we shall refer to as the IN vacuum, assuming again ŵ 6= 0 and ŵS 6= 0. By imposing
the minimisation conditions it can be checked that both of these solutions require �

4

equal

16

Table 4: Constraints on complex vacua, continued. The vacua labelled with an asterisk
(⇤) are in fact real.

Vacuum Constraints

C-IV-a⇤ µ2

0

= �1

2

(�
5

+ �
6

) ŵ2
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ŵ2

S
(�

2

+ �
3

)

C-IV-c µ2

0

= 2 cos2 �
2

(1 + cos2 �
2

) (�
2

+ �
3

) ŵ4
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ŵ2
S

� (1 + cos2 �
2

) (�
5

+ �
6

) ŵ2
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ŵ2
S

�1

2

⇣
1� sin 2�2

sin 2�1

⌘
(�

5

+ �
6

) ŵ2
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�
4

C-V⇤ µ2

0

= �1

2

(�
5

+ �
6

) (ŵ2
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] ŵ2

2

�1

2

(�
5

+ �
6

) ŵ2
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+ ŵ2

2

)� �
8

ŵ2
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ŵS � 1

2

(�
5

+ �
6

) ŵ2
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1

+ ŵ2
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Two possible complex vacua discussed previously in the literature

Pakwasa and Sugawara, 1978 (PS)

Ivanov and Nishi, 2014 (IN)

Both solutions require 

�4 = 4A� 2(C + C̄ +D)� E1 � E2 + E4 = 0

x, xe

2⇡i
3
, xe

� 2⇡i
3

�4 = 0 for consistency

The PS vacuum is requires  

�4 = 4A� 2(C + C̄ +D)� E1 � E2 + E4 = 0

x, xe

2⇡i
3
, xe

� 2⇡i
3

�4 = 0
therefore there is symmetry under the interchange of the components of the 

doublet. As a result the Branco, Gerard, Grimus condition is verified

�4 = 4A� 2(C + C̄ +D)� E1 � E2 + E4 = 0

x, xe

2⇡i
3
, xe

� 2⇡i
3

�4 = 0

S3

For the IN vacuum it is also possible to show that the allowed region of 
parameter space where this solution minimises the potential is such that no 
spontaneous CP violation occurs



Final Remarks

Aims and challenges

Models with three Higgs doublets have rich phenomenology

Exploit possible dark matter candidates in this context, beyond cases 
where the singlet plays the role of the SM Higgs doublet

Study how to generate realistic fermion masses and mixing with the 
fermions transforming non trivially under 

�4 = 4A� 2(C + C̄ +D)� E1 � E2 + E4 = 0

x, xe

2⇡i
3
, xe

� 2⇡i
3

�4 = 0

S3

Look for interesting scenarios with the potential of being tested at the 
LHC 

Look for viable models in the context of spontaneous CP violation


