'EXCEPTIONAL' COMPOSITE DARK MATTER

BALLESTEROS, AC, CHALA, ARXIV:1704.05XXX

ADRIAN CARMONA BERMUDEZ PORTOROZ 2017 WORKSHOP

Supported by a Marie Sklodowska-Curie Individual Fellowship MSCA-IF-EF-2014

April 20, 2017 Slide 1/18

COMPOSITE HIGGS

- One interesting solution to the hierarchy problem is making the Higgs composite, the remnant of some new strong dynamics
 KAPLAN, GEORGI '84
- It is particularly compelling when the Higgs is the pNGB of some new strong interaction. Something like pions in QCD

AGASHE, CONTINO, POMAROL '04

They can naturally lead to a light Higgs $m_\pi^2 = m_h^2 \sim g_{\rm el}^2 \Lambda^2 / 16 \pi^2$

COMPOSITE HIGGS

- One interesting solution to the hierarchy problem is making the Higgs composite, the remnant of some new strong dynamics
 KAPLAN, GEORGI '84
- It is particularly compelling when the Higgs is the pNGB of some new strong interaction. Something like pions in QCD

AGASHE, CONTINO, POMAROL '04

They can naturally lead to a light Higgs $m_\pi^2 = m_h^2 \sim g_{\rm el}^2 \Lambda^2 / 16 \pi^2$

COMPOSITE HIGGS

- The gauge contribution is aligned in the direction that preserves the gauge symmetry WITTEN '83
- However, the linear mixings $\mathcal{L}_{mix} = \lambda_L^q \bar{q}_L \mathcal{O}_L^q + \lambda_R^t \bar{t}_R \mathcal{O}_R^t + h.c.$ needed to generate the fermion masses

break the NGB symmetry and will be also responsible for EWSB

THE QUESTION OF DM

In order to have a DM candidate one needs to go beyond the minimal model

0902.1483, 1105.5403, 1204.2808, 1409.7391, 1605.08663, .

• One uses the fact that for a symmetric coset, $[X^a, X^b] = if_{abk}T^k$ and therefore, if $U = \exp(i\Pi^a X^a/f)$ and $-iU^{-1}\partial_{\mu}U = d^a_{\mu}X^a + E^i_{\mu}T^i$,

$$\begin{aligned} d_{\mu} &= \frac{1}{f} \partial_{\mu} \Pi - \frac{i}{2f^2} \left[\Pi, \partial_{\mu} \Pi \right]_{X} - \frac{1}{6f^3} \left[\Pi, \left[\Pi, \partial_{\mu} \Pi \right] \right]_{X} \\ &+ \frac{1}{24f^4} \left[\Pi, \left[\Pi, \left[\Pi, \partial_{\mu} \Pi \right] \right] \right]_{X} + \dots, \end{aligned}$$

and

$$\mathcal{L}_{\sigma} = \frac{1}{2} \mathbf{f}^{2} \operatorname{Tr} \left(\mathbf{d}_{\mu} \mathbf{d}^{\mu} \right) + \mathcal{O}(\partial^{4}) \sim 1 + \frac{1}{\mathbf{f}^{2}} + \frac{1}{\mathbf{f}^{4}} + \ldots + \mathcal{O}(\partial^{4})$$

THE QUESTION OF DM

In order to have a DM candidate one needs to go beyond the minimal model

0902.1483, 1105.5403, 1204.2808, 1409.7391, 1605.08663, .

• One uses the fact that for a symmetric coset, $[X^a, X^b] = if_{abk}T^k$ and therefore, if $U = \exp(i\Pi^a X^a/f)$ and $-iU^{-1}\partial_{\mu}U = d^a_{\mu}X^a + E^i_{\mu}T^i$,

$$\begin{aligned} d_{\mu} &= \frac{1}{f} \partial_{\mu} \Pi - \frac{i}{2f^{2}} [\Pi, \partial_{\mu} \Pi]_{X} - \frac{1}{6f^{3}} [\Pi, [\Pi, \partial_{\mu} \Pi]]_{X} \\ &+ \frac{1}{24f^{4}} [\Pi, [\Pi, [\Pi, \partial_{\mu} \Pi]]]_{X} + \dots, \end{aligned}$$

and

$$\mathcal{L}_{\sigma} = \frac{1}{2} \mathbf{f}^{2} \operatorname{Tr} \left(\mathbf{d}_{\mu} \mathbf{d}^{\mu} \right) + \mathcal{O}(\partial^{4}) \sim 1 + \frac{1}{\mathbf{f}^{2}} + \frac{1}{\mathbf{f}^{4}} + \ldots + \mathcal{O}(\partial^{4})$$

THE QUESTION OF DM

 We can then promote the accidental Z₂ symmetry of Tr(d_µd^µ) to a symmetry of the strong sector under which some pNGBs will be odd

$$H
ightarrow H \qquad \Phi
ightarrow - \Phi$$

 One needs to be sure that this symmetry is respected by the fermion linear mixings λq
 Q
 and is therefore respected by the scalar potential

$$V \sim m_*^4 \frac{N_c}{16\pi^2} \left[\left(\frac{\lambda}{g_*} \right)^2 V_2(c_1, \ldots, c_N) + \left(\frac{\lambda}{g_*} \right)^4 V_4(c_1', \ldots, c_{N'}') \right] + \ldots$$

■ Then the lightest Z₂-odd scalar will be a DM candidate!

THE CASE OF SO7/G2 FIRST CONSIDERED IN 12106208

- It delivers a 7 of G_2 , that decomposes under $SU(2) imes SU(2) \subset G_2$ as

$$7 = (2, 2) \oplus (3, 1)$$

- Depending on which SU(2) is weakly gauged, it means that

$$\mathbf{7} = \mathbf{2}_{\pm 1/2} + \mathbf{3}_0$$
 or $\mathbf{7} = \mathbf{2}_{\pm 1/2} + \mathbf{1}_{\pm 1} + \mathbf{1}_0$

under the EW group

- If the \mathbb{Z}_2 is succesfully enforced it will provide a natural version of Higgs portal DM or the Inert Triplet Model
- The group is non-anomalous but $SO(7)/G_2$ is not symmetric!

THE CASE OF SO7/G2

Even though the coset is not symmetric, $f^2 {\rm Tr}(d_\mu d^\mu)$ only features even powers of 1/f

$$d_{\mu} = \frac{1}{f} \partial_{\mu} \Pi - \frac{i}{2f^2} [\Pi, \partial_{\mu} \Pi]_X - \frac{1}{6f^3} [\Pi, [\Pi, \partial_{\mu} \Pi]]_X + \frac{1}{24f^4} [\Pi, [\Pi, [\Pi, \partial_{\mu} \Pi]]_X + \dots$$

We make

$$q_L \sim \mathbf{35} = \mathbf{1} \oplus \mathbf{7} \oplus \mathbf{27}, \quad t_R \sim \mathbf{1}$$

leading to

$$V(\Pi) pprox m_*^2 f^2 rac{N_c}{16\pi^2} y_t^2 \left[c_1 V_1(\Pi) + c_2 V_2(\Pi)
ight],$$

with $c_{1,2} \lesssim 1$ numbers encoding the details of the UV dynamics

THE CASE OF SO7/G2

Even though the coset is not symmetric, $f^2 {\rm Tr}(d_\mu d^\mu)$ only features even powers of 1/f

$$d_{\mu} = \frac{1}{f} \frac{1}{\partial_{\mu}\Pi + \frac{1}{f^{2}}g(\Pi/f) [\Pi, \partial_{\mu}\Pi]_{X}} + \frac{1}{f^{3}}h(\Pi/f) [\Pi, [\Pi, \partial_{\mu}\Pi]]_{X}$$

We make

$$q_L \sim \mathbf{35} = \mathbf{1} \oplus \mathbf{7} \oplus \mathbf{27}, \quad t_R \sim \mathbf{1}$$

leading to

$$V(\Pi) \approx m_*^2 f^2 \frac{N_c}{16\pi^2} y_t^2 \left[c_1 V_1(\Pi) + c_2 V_2(\Pi) \right],$$

with $c_{1,2} \lesssim 1$ numbers encoding the details of the UV dynamics

THE CASE OF SO7/G2

Even though the coset is not symmetric, $f^2 {\rm Tr}(d_\mu d^\mu)$ only features even powers of 1/f

$$d_{\mu} = \frac{1}{f} \partial_{\mu} \Pi + \frac{1}{f^2} g(\Pi/f) \left[\Pi, \partial_{\mu} \Pi \right]_X + \frac{1}{f^3} h(\Pi/f) \left[\Pi, [\Pi, \partial_{\mu} \Pi] \right]_X$$

We make

$$q_L \sim \mathbf{35} = \mathbf{1} \oplus \mathbf{7} \oplus \mathbf{27}, \quad t_R \sim \mathbf{1}$$

leading to

$$V(\Pi) \approx m_*^2 f^2 \frac{N_c}{16\pi^2} y_t^2 \left[c_1 V_1(\Pi) + c_2 V_2(\Pi) \right],$$

with $c_{1,2} \lesssim 1$ numbers encoding the details of the UV dynamics

A NATURAL INERT TRIPLET MODEL

- We consider first the case where the additional pNGBs span a triplet
- At the renormalizable level

$$V(H,\Phi) = \mu_{H}^{2}|H|^{2} + \lambda_{H}|H|^{4} + \frac{1}{2}\mu_{\Phi}^{2}|\Phi|^{2} + \frac{1}{4}\lambda_{\Phi}|\Phi|^{4} + \lambda_{H\Phi}|H|^{2}|\Phi|^{2}$$

with ${\it H} \sim {f 2}_{1/2}$ and $\Phi \sim {f 3}_0$ and

μ_H^2	μ_{Φ}^2	λ_{Φ}	$\lambda_{H\Phi}$
$-v^2\lambda_H$	$\tfrac{2}{3}f^2\lambda_H\left(1-\tfrac{8}{3}\tfrac{v^2}{f^2}\right)$	$-rac{4}{9}\lambda_{H}\left(1-rac{8}{3}rac{v^{2}}{t^{2}} ight)$	$rac{5}{18}\lambda_{H}\left(1+rac{32}{15}rac{v^{2}}{t^{2}} ight)$

Extremely predictive, only one free parameter f !

•
$$\mu_{\Phi}^2>0$$
 as well as $m_{\Phi}^2=\mu_{\Phi}^2+\lambda_{H\Phi}v^2>0$ so $\langle\Phi
angle=0$

COANNIHILATIONS

• EW gauge bosons induce a radiative splitting between the neutral and the charged components

$$\Delta m_{\Phi} = g m_W \sin^2 \theta_W / 2 \sim 166 \,\mathrm{MeV}$$

• The coannihilation is dominated by gauge interactions

- Sommerfeld enhancement and bound state production are important! $gm_{\Phi}/m_W \gg 1$ 07064071

RELIC ABUNDANCE RECAST OF 07064071

DIRECT DETECTION

• There is a m_{Φ}^2 -suppressed tree-level contribution proportional to $\lambda_{H\Phi}$

$$\begin{array}{c} \eta & & & \\ & & & \eta \\ & & & & \eta \\ q & & & & & \eta \\ q & & & & & & q \end{array}$$

• But there are also m_{Φ} -independent loop induced contributions

It has been computed in the heavy WIMP effective theory 13094092

$$\sigma(\eta \textit{N} \rightarrow \eta \textit{N})_{\rm HWET} = 1.3^{+0.4+0.4}_{-0.5-0.3} \times 10^{-2} \, {\rm zb}$$

DIRECT DETECTION

INDIRECT DETECTION

COLLIDER SIGNATURES AND OTHER CONSTRAINTS

- EWPT: modification of hVV coupling $\Rightarrow f \gtrsim 900 \text{ GeV}$ 151108235
- Modification of Higgs production and decay

$$R_{\gamma} = \frac{\sigma(gg \to h) \times BR(h \to \gamma\gamma)}{\sigma_{\mathsf{SM}}(gg \to h) \times BR_{\mathsf{SM}}(h \to \gamma\gamma)} \sim 1 + \mathcal{O}\left(\frac{v^2}{f^2}\right) \Rightarrow f \gtrsim 800 \text{ GeV}$$

- Searches for dissapearing tracks: κ^+ has a decay length of a few cm

 $f\gtrsim 650~{
m GeV}$ Recast of an atlas 8 TeV analysis 13103675

Monojet searches are not competitive to the previous ones

THE SINGLET CASE

THE SCALAR POTENTIAL

The leading contribution to the scalar potential remains the same but there are subleading contributions

- Breaking the degeneracy of κ^+ and η (coming mostly from B_μ)
- Making κ^{\pm} decay into $t_L b_R$ (coming from the b_R)

RELIC ABUNDANCE

- Sommerfeld effects and bound state production no longer relevant
- $|{\cal H}|^2 (\partial_\mu \eta)^2/f^2$ dominates over $\lambda_{{\cal H}\Phi} |{\cal H}|^2 \eta^2$

THE SINGLET CASE

DIRECT DETECTION

- No $m_{\Phi}\text{-independent contribution but the bounds rescale differently INDIRECT DETECTION$
 - Now it is possible to accommodate the whole DM abundance

COLLIDER SEARCHES

Dissapearing tracks are no longer relevant

CONCLUSIONS

- Scalar WIMPs can naturally arise in (a limited number of) non-minimal composite Higgs models.
- Non symmetric cosets can also work
- In particular, the coset $SO(7)/G_2$ leads to natural versions of Higgs portal DM and the Inert Triplet Model
- The model is extremely predictive, having only one free parameter f

 $0.9 \text{ TeV} \leq f \leq 6 (3) \text{ TeV}$ for the triplet (singlet) case

THANKS!