Relating matter unification to LHC event rates — the example of SU(5) unification in Supersymmetry

Björn Herrmann

Laboratoire d'Annecy-le-Vieux de Physique Théorique (LAPTh) Université Savoie Mont Blanc / CNRS — Annecy, France

"New physics at the junction of flavour and collider" — 20 april 2017 — Portorož, Slovenia

Motivation

Assumption (optimistic!): A new state is observed at LHC

Question: What can we learn from it...?

For this talk: What can we learn about grand unification...?

Motivation

Assumption (optimistic!): A new state is observed at LHC

Question: What can we learn from it...?

For this talk: What can we learn about grand unification...?

Motivation

Assumption (optimistic!): A new state is observed at LHC

Question: What can we learn from it...?

For this talk: What can we learn about grand unification...?

In the following: Consider the example of SU(5)-like unification in Supersymmetry...

A simple example — SU(5)-type unification

Matter (super)fields fit into complete representations of the SU(5) gauge group

A simple example — SU(5)-type unification

Matter (super)fields fit into complete representations of the SU(5) gauge group

Sfermions belonging to same representations share common soft mass matrices

$$\begin{array}{rclr} M_{10}^2 &\equiv& M_{\tilde{Q}}^2 &=& M_{\tilde{U}}^2 &=& M_{\tilde{E}}^2 \\ M_{5}^2 &\equiv& M_{\tilde{D}}^2 &=& M_{\tilde{L}}^2 \end{array} \end{array}$$

Requiring the superpotential to be invariant implies:

Requiring the superpotential to be invariant implies:

If SUSY-breaking mediated by SU(5) singlet, these relations propagate into soft sector:

$$\begin{pmatrix} T_d \end{pmatrix}_{ij} = (T_\ell)_{ji} \iff \begin{pmatrix} T_d = T_\ell^t \\ T_u \end{pmatrix}_{ij} = (T_u)_{ji} \iff \begin{pmatrix} T_u = T_\ell^t \\ T_u = T_u^t \end{pmatrix} \text{ at GUT scale}$$

Requiring the superpotential to be invariant implies:

If SUSY-breaking mediated by SU(5) singlet, these relations propagate into soft sector:

$$\begin{pmatrix} T_d \end{pmatrix}_{ij} = (T_\ell)_{ji} \iff \begin{pmatrix} T_d = T_\ell^t \\ T_u \end{pmatrix}_{ij} = (T_u)_{ji} \iff \begin{pmatrix} T_u = T_\ell^t \\ T_u = T_u^t \end{pmatrix} \text{ at GUT scale}$$

Renormalization group evolution — we expect at the TeV scale:

$$Y_d \neq Y_\ell^t$$

$$T_d \neq T_\ell^t$$
not very useful...

Requiring the superpotential to be invariant implies:

If SUSY-breaking mediated by SU(5) singlet, these relations propagate into soft sector:

$$\begin{pmatrix} T_d \end{pmatrix}_{ij} = (T_\ell)_{ji} \iff \begin{pmatrix} T_d = T_\ell^t \\ T_u \end{pmatrix}_{ij} = (T_u)_{ji} \iff \begin{pmatrix} T_u = T_\ell^t \\ T_u = T_u^t \end{pmatrix} \text{ at GUT scale}$$

Renormalization group evolution — we expect at the TeV scale:

Renormalization group equations (one-loop) of up-type Yukawa and trilinear couplings

$$\begin{aligned} 16\pi^2 \ \beta_{Y_u} &= Y_u \Big[3 \operatorname{Tr} \Big\{ Y_u^{\dagger} Y_u \Big\} + 3 Y_u^{\dagger} Y_u + Y_d^{\dagger} Y_d - \frac{16}{3} g_3^2 - 3g_2^2 - \frac{13}{15} g_1^2 \Big] \\ 16\pi^2 \ \beta_{T_u} &= T_u \Big[3 \operatorname{Tr} \Big\{ Y_u^{\dagger} Y_u \Big\} + 5 Y_u^{\dagger} Y_u + Y_d^{\dagger} Y_d - \frac{16}{3} g_3^2 - 3g_2^2 - \frac{13}{15} g_1^2 \Big] \\ &+ Y_u \Big[6 \operatorname{Tr} \Big\{ T_u Y_u^{\dagger} \Big\} + 4 Y_u^{\dagger} T_u + 2Y_d^{\dagger} T_d + \frac{32}{3} M_3 g_3^2 + 6M_2 g_2^2 + \frac{26}{15} M_1 g_1^2 \Big] \end{aligned}$$

Renormalization group equations (one-loop) of up-type Yukawa and trilinear couplings

$$\begin{split} 16\pi^2 \ \beta_{Y_u} \ &= Y_u \Big[3 \operatorname{Tr} \{ Y_u^{\dagger} Y_u \} + 3 Y_u^{\dagger} Y_u + Y_d^{\dagger} Y_d - \frac{16}{3} g_3^2 - 3g_2^2 - \frac{13}{15} g_1^2 \Big] \\ 16\pi^2 \ \beta_{T_u} \ &= T_u \Big[3 \operatorname{Tr} \{ Y_u^{\dagger} Y_u \} + 5 Y_u^{\dagger} Y_u + Y_d^{\dagger} Y_d - \frac{16}{3} g_3^2 - 3g_2^2 - \frac{13}{15} g_1^2 \Big] \\ &+ Y_u \Big[6 \operatorname{Tr} \{ T_u Y_u^{\dagger} \} + 4 Y_u^{\dagger} T_u + 2Y_d^{\dagger} T_d + \frac{32}{3} M_3 g_3^2 + 6M_2 g_2^2 + \frac{26}{15} M_1 g_1^2 \Big] \end{split}$$

Beta-functions mostly dominated by symmetric contributions, while non-symmetric terms are suppressed...

Renormalization group equations (one-loop) of up-type Yukawa and trilinear couplings

$$\begin{split} 16\pi^2 \ \beta_{Y_u} \ &= Y_u \Big[3 \operatorname{Tr} \big\{ Y_u^{\dagger} Y_u \big\} + 3 Y_u^{\dagger} Y_u + Y_d^{\dagger} Y_d - \frac{16}{3} g_3^2 - 3g_2^2 - \frac{13}{15} g_1^2 \Big] \\ 16\pi^2 \ \beta_{T_u} \ &= T_u \Big[3 \operatorname{Tr} \big\{ Y_u^{\dagger} Y_u \big\} + 5 Y_u^{\dagger} Y_u + Y_d^{\dagger} Y_d - \frac{16}{3} g_3^2 - 3g_2^2 - \frac{13}{15} g_1^2 \Big] \\ &+ Y_u \Big[6 \operatorname{Tr} \big\{ T_u Y_u^{\dagger} \big\} + 4 Y_u^{\dagger} T_u + 2Y_d^{\dagger} T_d + \frac{32}{3} M_3 g_3^2 + 6M_2 g_2^2 + \frac{26}{15} M_1 g_1^2 \Big] \end{split}$$

Beta-functions mostly dominated by symmetric contributions, while non-symmetric terms are suppressed...

$$\left\{ SU(5) - \text{type SUSY GUT} \right\} \Longrightarrow \left\{ T_u \approx T_u^t \text{ at TeV scale} \right\}$$
Related observables at LHC....?

$$\mathcal{A}_{23} = \frac{\left| \left(T_u \right)_{23} - \left(T_u \right)_{32} \right|}{\operatorname{Tr} \left\{ \mathcal{M}_{\tilde{u}}^2 \right\}^{1/2}}$$
$$(Q = 1 \text{ TeV})$$

Asymmetry at the TeV scale **does not exceed a few percent** for typical scenarios — such a precision difficult to reach at LHC...

S. Fichet, B. Herrmann, Y. Stoll — JHEP 1505 (2015) 091 — arXiv:1501.05307 [hep-ph]

Squark flavour violation in the MSSM

Hypothesis of non-minimal flavour violation in the squark sector **not obviously disfavoured by experimental data** (B-physics, K-physics, Higgs mass...)

Lightest squark states (mixtures of stop and charm) accessible at the LHC — and not completely ruled out (yet...?)

K. De Causmaecker, B. Fuks, B. Herrmann, F. Mahmoudi, B. O'Leary, W. Porod, N. Strobbe, S. Sekmen JHEP 1511 (2015) 125 — arXiv:1510.01159 [hep-ph]

Testing the SU(5) hypothesis at the LHC...?

Any test of the SU(5) relation relies on a comparison involving at least two (up-type) squarks The mass spectrum may exhibit different features:

Natural supersymmetry	\rightarrow Effective theory approach
Heavy supersymmetry	\rightarrow Effective theory approach
Top-charm supersymmetry	→ Mass insertion approximation

S. Fichet, B. Herrmann, Y. Stoll — Phys. Lett. B 742 (2015) 69-73, arXiv:1403.3397 [hep-ph] S. Fichet, B. Herrmann, Y. Stoll — JHEP 05 (2015) 091, arXiv:1501.05307 [hep-ph]

Testing the SU(5) hypothesis at the LHC...?

Any test of the SU(5) relation relies on a comparison involving at least two (up-type) squarks The mass spectrum may exhibit different features:

Natural supersymmetry	\rightarrow Effective theory approach
Heavy supersymmetry	\rightarrow Effective theory approach
Top-charm supersymmetry	→ Mass insertion approximation

S. Fichet, B. Herrmann, Y. Stoll — Phys. Lett. B 742 (2015) 69-73, arXiv:1403.3397 [hep-ph] S. Fichet, B. Herrmann, Y. Stoll — JHEP 05 (2015) 091, arXiv:1501.05307 [hep-ph]

Need for a more general analysis not relying on specific mass hierarchies:

Arbitrary mass spectra \rightarrow Bayesian analysis...

Y. Stoll — PhD Thesis — Université Grenoble-Alpes — sept. 2015 B. Herrmann, S. Fichet — *ongoing work*...

Probability = "measurement of the **degree of belief** about a proposition"

Probability = "measurement of the **<u>degree of belief</u>** about a proposition"

Important application: Comparison of two models with respect to a given set of data

$$B_{01} = \frac{p(d|\mathcal{M}_0)}{p(d|\mathcal{M}_1)}$$

Bayes factor

Probability = "measurement of the **<u>degree of belief</u>** about a proposition"

Important application: Comparison of two models with respect to a given set of data

Probability = "measurement of the **<u>degree of belief</u>** about a proposition"

Important application: Comparison of two models with respect to a given set of data

Probability = "measurement of the **<u>degree of belief</u>** about a proposition"

Important application: Comparison of two models with respect to a given set of data

In practice, the probability densities (and thus the SDDR) can be evaluated by using **Markov Chain Monte Carlo** methods...

Test scenario — derived from SU(5) boundary conditions

	(M_{10}^2)	$\left \right\rangle_{ij}$	j = 1	j=2	j	=3		$\left[\left(M_{\overline{5}}^2 \right) \right]$	$_{ij}$	j = 1	j	=2	j	= 3	
	i =	1	$(10000)^2$	0		0		i = i	1	$(8600)^2$		0		0	
	i =	2	0	$(609)^2$	(8	$(841)^2$		i=2		0	(1	$(1180)^2$		0	
	i =	3	0	$(841)^2$	(1	$(1564)^2$		i = 3 0		0		0	(1	$(317)^2$	
		I			_			<u> </u>							
('	$T_u\big)_{ij}$	j =	1 $j = 2$	j = 3		$\left \left(T_d \right)_i \right $	i	j = 1	<i>j</i> =	=2 $j=3$		$M_{1/}$	2	962	
i	=1	0	0	0		i=1		0	() 0		$M_{H_u}^2$,d	(1343)	$)^{2}$
i	=2	0	0	-575		i=2		0	C) 0		$\tan \beta$	$\dot{\beta}$	10	
i	=3	0	-575	-1055		i=3		0	() -70		sign($\mu)$	+1	

Test scenario — derived from SU(5) boundary conditions

$\left[\left(M_{10}^2 \right)_{ij} \right]$	j = 1	j=2	j = 3		$\left(\left(M_{\mathbf{\bar{5}}}^2 \right)_{ij} \right)$	j = 1	j = 2	j = 3
i=1	$(10000)^2$	0	0		i = 1	$(8600)^2$	0	0
i=2	0	$(609)^2$	$(841)^2$		i=2	0	$(1180)^2$	0
i=3	0	$(841)^2$	$(1564)^2$		i = 3	0	0	$(1317)^2$
	·			r i				

$(T_u)_{ij}$	j = 1	j = 2	j = 3
i = 1	0	0	0
i = 2	0	0	-575
i = 3	0	-575	-1055

$(T_d)_{ij}$	j=1	j = 2	j = 3
i = 1	0	0	0
i = 2	0	0	0
i = 3	0	0	-70

$M_{1/2}$	962
$M_{H_{u,d}}^2$	$(1343)^2$
$\tan\beta$	10
$\operatorname{sign}(\mu)$	+1

3

Renormalisation group evolution and spectrum calculation: SPHENO [W. Porod 2003-2017]

	$m_{ ilde{u}_1}$	$m_{ ilde{u}_2}$	$m_{ ilde{u}_3}$	$m_{ ilde{u}_4}$	m_{h^0}	$m_{ ilde{\chi}_1^0}$	$(T_u)_{33}$	$(T_u)_{23}$	$(T_u)_{32}$
R	1144.6	1405.4	1468.8	1786.5	122.6	419.3	-2017.0	-810.6	-884.3
C	1153.9	1381.1	1471.3	1792.5	121.4	419.2	-1965.2	1199.1	-1252.7

Test scenario — derived from SU(5) boundary conditions

Both scenarios are viable with respect to most stringent flavour constraints

Counter example at TeV scale $(T_u)_{23} \approx -(T_u)_{32}$

Test observables — Large Hadron Collider

Consider production of up-type squarks and subsequent decay into top and charm jets

Bartl, Eberl, Herrmann, Hidaka, Majerotto, Porod — Phys. Lett. B 698: 380-388 (2011) — arXiv:1007.5483 [hep-ph] Bartl, Eberl, Ginina, Herrmann, Hidaka, Majerotto, Porod — Phys. Rev. D 84: 115026 (2011) — arXiv:1107.2775 [hep-ph] Bartl, Eberl, Ginina, Herrmann, Hidaka, Majerotto, Porod — Int.J.Mod.Phys. 29: 1450035 (2014) — arXiv:1212.4688 [hep-ph]

Test observables — Large Hadron Collider

Consider production of up-type squarks and subsequent decay into top and charm jets

Statistical errors evaluated assuming Gaussian distributions for these observables

Minimal scenario — SU(5) case

$$\mathcal{O}_{1} = N_{cc}/N_{tt} \qquad \sigma_{1} = 3\%$$

$$\mathcal{O}_{2} = N_{ct}/N_{tt} \qquad \sigma_{2} = 6\%$$

$$\mathcal{O}_{3} = m_{\tilde{u}_{1}}/m_{\tilde{u}_{2}} \qquad \sigma_{3} = 5\%$$

$$\mathcal{O}_{4} = \mathcal{R}_{\tilde{u}_{1}\tilde{t}_{L}}/\mathcal{R}_{\tilde{u}_{1}\tilde{t}_{R}} \qquad \sigma_{4} = 10\%$$

$$\mathcal{O}_{5} = \mathcal{R}_{\tilde{u}_{1}\tilde{c}_{L}}/\mathcal{R}_{\tilde{u}_{1}\tilde{c}_{R}} \qquad \sigma_{5} = 10\%$$

$$\mathcal{L} = 300 \text{ fb}^{-1}$$
$$\sqrt{s} = 14 \text{ TeV}$$

Minimal scenario — SU(5) case

$$\mathcal{O}_{1} = N_{cc}/N_{tt} \qquad \sigma_{1} = 3\%$$

$$\mathcal{O}_{2} = N_{ct}/N_{tt} \qquad \sigma_{2} = 6\%$$

$$\mathcal{O}_{3} = m_{\tilde{u}_{1}}/m_{\tilde{u}_{2}} \qquad \sigma_{3} = 5\%$$

$$\mathcal{O}_{4} = \mathcal{R}_{\tilde{u}_{1}\tilde{t}_{L}}/\mathcal{R}_{\tilde{u}_{1}\tilde{t}_{R}} \qquad \sigma_{4} = 10\%$$

$$\mathcal{O}_{5} = \mathcal{R}_{\tilde{u}_{1}\tilde{c}_{L}}/\mathcal{R}_{\tilde{u}_{1}\tilde{c}_{R}} \qquad \sigma_{5} = 10\%$$

$$\mathcal{L} = 300 \text{ fb}^{-1}$$

$$\sqrt{s} = 14 \text{ TeV}$$

Minimal scenario — SU(5) case

$$\begin{aligned} & \left. \begin{array}{cccc} \mathcal{O}_{1} = N_{cc}/N_{tt} & \sigma_{1} = 3\% \\ \mathcal{O}_{2} = N_{ct}/N_{tt} & \sigma_{2} = 6\% \\ \mathcal{O}_{3} = m_{\tilde{u}_{1}}/m_{\tilde{u}_{2}} & \sigma_{3} = 5\% \\ \mathcal{O}_{4} = \mathcal{R}_{\tilde{u}_{1}\tilde{t}_{L}}/\mathcal{R}_{\tilde{u}_{1}\tilde{t}_{R}} & \sigma_{4} = 10\% \\ \mathcal{O}_{5} = \mathcal{R}_{\tilde{u}_{1}\tilde{c}_{L}}/\mathcal{R}_{\tilde{u}_{1}\tilde{c}_{R}} & \sigma_{5} = 10\% \\ \mathcal{L} = 300 \text{ fb}^{-1} & & & & \\ \sqrt{s} = 14 \text{ TeV} & & & & \\ \sqrt{s} = 14 \text{ TeV} & & & & \\ \sqrt{s} = 14 \text{ TeV} & & & & \\ \text{SDDR} = \left. \frac{p(\mathcal{A}_{23}|d)}{p(\mathcal{A}_{23})} \right|_{\mathcal{A}_{23}=0} = 1.35 < 3.0 \end{aligned}$$
 Test in (idem f

Posterior $p(\mathcal{A}_{23}|d)$ Prior $p(\mathcal{A}_{23})$ -0.5 1.5 0.0 0.5 1.0 2.0 \mathcal{A}_{23}

Optimistic scenario — SU(5) case

$$\begin{array}{ll} \mathcal{O}_{1} = N_{cc}/N_{tt} & \sigma_{1} = 3\% \\ \mathcal{O}_{2} = N_{ct}/N_{tt} & \sigma_{2} = 6\% \\ \mathcal{O}_{3} = m_{\tilde{u}_{1}}/m_{\tilde{u}_{2}} & \sigma_{3} = 5\% \\ \mathcal{O}_{4} = \mathcal{R}_{\tilde{u}_{1}\tilde{t}_{L}} & \sigma_{4} = 10\% \\ \vdots & \vdots \\ \mathcal{O}_{11} = \mathcal{R}_{\tilde{u}_{2}\tilde{c}_{R}} & \sigma_{11} = 10\% \end{array}$$

$$\mathcal{L} = 300 \text{ fb}^{-1}$$
$$\sqrt{s} = 14 \text{ TeV}$$

Optimistic scenario — SU(5) case

$$\begin{aligned}
\mathcal{O}_{1} &= N_{cc}/N_{tt} & \sigma_{1} = 3\% \\
\mathcal{O}_{2} &= N_{ct}/N_{tt} & \sigma_{2} = 6\% \\
\mathcal{O}_{3} &= m_{\tilde{u}_{1}}/m_{\tilde{u}_{2}} & \sigma_{3} = 5\% \\
\mathcal{O}_{4} &= \mathcal{R}_{\tilde{u}_{1}\tilde{t}_{L}} & \sigma_{4} = 10\% \\
\vdots & \vdots \\
\mathcal{O}_{11} &= \mathcal{R}_{\tilde{u}_{2}\tilde{c}_{R}} & \sigma_{11} = 10\% \\
\mathcal{L} &= 300 \text{ fb}^{-1}
\end{aligned}$$

 $\sqrt{s} = 14 \text{ TeV}$

Optimistic scenario — SU(5) case

High-luminosity scenario — SU(5) case

$$\begin{aligned}
\mathcal{O}_1 &= N_{cc}/N_{tt} & \sigma_1 = 0.3\% \\
\mathcal{O}_2 &= N_{ct}/N_{tt} & \sigma_2 = 0.6\% \\
\mathcal{O}_3 &= m_{\tilde{u}_1}/m_{\tilde{u}_2} & \sigma_3 = 1\% \\
\mathcal{O}_4 &= \mathcal{R}_{\tilde{u}_1\tilde{t}_L} & \sigma_4 = 1\% \\
\vdots & \vdots \\
\mathcal{O}_{11} &= \mathcal{R}_{\tilde{u}_2\tilde{c}_R} & \sigma_{11} = 1\%
\end{aligned}$$

$$\mathcal{L} = 3000 \text{ fb}^{-1}$$
$$\sqrt{s} = 14 \text{ TeV}$$

High-luminosity scenario — SU(5) case

High-luminosity scenario — SU(5) case

High-luminosity scenario — Counter example

$$\begin{aligned}
\mathcal{O}_1 &= N_{cc}/N_{tt} & \sigma_1 = 0.3\% \\
\mathcal{O}_2 &= N_{ct}/N_{tt} & \sigma_2 = 0.6\% \\
\mathcal{O}_3 &= m_{\tilde{u}_1}/m_{\tilde{u}_2} & \sigma_3 = 1\% \\
\mathcal{O}_4 &= \mathcal{R}_{\tilde{u}_1\tilde{t}_L} & \sigma_4 = 1\% \\
\vdots & \vdots \\
\mathcal{O}_{11} &= \mathcal{R}_{\tilde{u}_2\tilde{c}_R} & \sigma_{11} = 1\% \\
\mathcal{L} &= 3000 \text{ fb}^{-1}
\end{aligned}$$

 $\sqrt{s} = 14 \text{ TeV}$

High-luminosity scenario — Counter example

Conclusion and outlook

Non-minimally flavour-violating terms may be present in the Lagrangian of a supersymmetric theory at the TeV scale — **typical signatures at colliders**

Flavour-violating couplings may open windows towards GUT physics — effective theory and MCMC approaches in order to test SU(5) hypothesis

However, somewhat "extreme" conditions are needed to draw conclusions (high luminosity, good precision, charm tagging, top polarization, flavour decomposition...)

Conclusion and outlook

Non-minimally flavour-violating terms may be present in the Lagrangian of a supersymmetric theory at the TeV scale — **typical signatures at colliders**

Flavour-violating couplings may open **windows towards GUT physics** — effective theory and MCMC approaches in order to test SU(5) hypothesis

However, somewhat "extreme" conditions are needed to draw conclusions (high luminosity, good precision, charm tagging, top polarization, flavour decomposition...)

Possible improvements

- Include flavour constraints in analysis...
- Investigate additional collider signatures...

S. Fichet, B. Herrmann, Y. Stoll — Phys. Lett. B 742 (2015) 69-73 — arXiv:1403.3397 [hep-ph] S. Fichet, B. Herrmann, Y. Stoll — JHEP 05 (2015) 091 — arXiv:1501.05307 [hep-ph] S. Fichet, B. Herrmann — work in progress...

