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Assumption (optimistic!):   A new state is observed at LHC
Question:  What can we learn from it…?

For this talk:  What can we learn about grand unification…?

Matter unification— accidental permutation symmetries at high scale 

Possibility to set up tests at the TeV scale — Large Hadron Collider

potentially (almost) insensitive to quantum corrections 

In the following:  Consider the example of SU(5)-like unification in Supersymmetry…



A simple example — SU(5)-type unification

Matter (super)fields fit into complete representations of the SU(5) gauge group

10 =
�
Q ,U ,E

�
5̄ =

�
L,D

�

Hint towards Grand Unified Theory (GUT) containing SU(5) as a subgroup

SU(5) → SU(3) × SU(2) × U(1)

Is Nature SU(5)-symmetric at short distance…?
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SU(5)-specific relations — TeV scale

Renormalization group equations (one-loop) of up-type Yukawa and trilinear couplings
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SU(5)-specific relations — TeV scale
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SU(5)-specific relations — TeV scale
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Figure 1. The asymmetry A2,3 (black solid line) together with the 2� exclusion bands from �MBs

(blue dashed lines) and BR(B0
s ! µµ) (red dashed-dotted lines) evaluated in the reference scenario

of Tab. 2 for the case of low tan � = 10. The grey area represents the allowed zone once all
constraints are taken into account.

Moreover, the value of the Higgs mass also does not strongly depend on the variation of

(au)23,32 or (ad)23,32.

Coming back to our main center of interest, we can see in Figs. 1 and 2 that the

asymmetry A
23

does not exceed a few percent. As expected from RGE considerations, we

can conclude that none of the asymmetries Aij exceeds this value on a large part of the

MSSM parameter space. In the following, we find that, during the LHC era, such a level

of precision will be most probably di�cult to reach. We will therefore not mention ✏irr or

Aij for the rest of this Paper.

4 Strategies and tools for testing the SU(5) hypothesis at the TeV scale

Any strategy that can be set up to test the SU(5) relation au ⇡ atu necessarily relies on a

comparison involving at least two up-squarks. Apart from this relation, the squark matrix

is in general arbitrary, so that each of the six up-type squarks can take any mass. Some of

the squarks can be light enough to be produced on-shell at the LHC, while others may be

too heavy such that they appear only virtually in intermediate processes.

As a result, a panel of possibilities for SU(5) tests will appear, depending on the

exact features of the up-squark spectrum. It can be convenient to split the possibilities

of SU(5) tests into three categories, depending on whether the tests involve only virtual,

both virtual and real, or only real up-type squarks. In the following, we outline the tools
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A23 . 2% tan� = 10

A23 . 5% tan� = 40

Asymmetry at the TeV scale does not exceed a few percent for typical scenarios
— such a precision difficult to reach at LHC…

 
S. Fichet, B. Herrmann, Y. Stoll — JHEP 1505 (2015) 091 — arXiv:1501.05307 [hep-ph]



Squark flavour violation in the MSSM
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Figure 2. Same as Figure 1 in the case of the flavour-violating input parameters of our NMFV
MSSM description.

4.2 Flavour-violating parameters

We now turn to the analysis of the constraints that are imposed on the seven non-minimally

flavour-violating parameters �q↵� that are at the centre of interest of the present analysis.

The corresponding prior and posterior distributions are displayed in Figure 2, and we detail

the impact of the most important observables on Figure 3, Figure 4 and Figure 5.

The theoretical constraints on any additional stop-scharm mixing in the left-left sector

(�LL) are relatively mild such that an almost flat behaviour is observed (see Figure 2). The

�LL parameter is then mainly constrained by the B-meson oscillation parameter �MBs
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K. De Causmaecker, B. Fuks, B. Herrmann, F. Mahmoudi, B. O’Leary, W. Porod, N. Strobbe, S. Sekmen  
JHEP 1511 (2015) 125 — arXiv:1510.01159 [hep-ph]

Hypothesis of non-minimal flavour violation in the squark sector not obviously disfavoured  
by experimental data (B-physics, K-physics, Higgs mass…) 
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MSSM description.
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mũ1 δu,LR ~ Tu,23 δu,RL ~ Tu,32
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Figure 1. The one-dimensional prior (yellow histogram) and posterior (violet curve) distributions
of the parameters of our NMFV MSSM description. The prior only incorporates theoretical inputs
while the posterior distribution shows the impact of all experimental observations listed in Table 3.
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Lightest squark states (mixtures of stop and charm) accessible at the LHC
— and not completely ruled out (yet…?)



Testing the SU(5) hypothesis at the LHC…?

Natural supersymmetry  → Effective theory approach… 

Heavy supersymmetry  → Effective theory approach…  

Top-charm supersymmetry  → Mass insertion approximation…

Any test of the SU(5) relation relies on a comparison involving at least two (up-type) squarks

The mass spectrum may exhibit different features:

S. Fichet, B. Herrmann, Y. Stoll — Phys. Lett. B 742 (2015) 69-73, arXiv:1403.3397 [hep-ph]
S. Fichet, B. Herrmann, Y. Stoll — JHEP 05 (2015) 091, arXiv:1501.05307 [hep-ph]

http://dx.doi.org/10.1016/j.physletb.2015.01.013
http://www.arxiv.org/abs/1403.3397
http://dx.doi.org/10.1007/JHEP05(2015)091
http://www.arxiv.org/abs/1501.05307
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The mass spectrum may exhibit different features:

S. Fichet, B. Herrmann, Y. Stoll — Phys. Lett. B 742 (2015) 69-73, arXiv:1403.3397 [hep-ph]
S. Fichet, B. Herrmann, Y. Stoll — JHEP 05 (2015) 091, arXiv:1501.05307 [hep-ph]

Arbitrary mass spectra   → Bayesian analysis…

Y. Stoll — PhD Thesis — Université Grenoble-Alpes — sept. 2015
B. Herrmann, S. Fichet — ongoing work…

Need for a more general analysis not relying on specific mass hierarchies:

http://dx.doi.org/10.1016/j.physletb.2015.01.013
http://www.arxiv.org/abs/1403.3397
http://dx.doi.org/10.1007/JHEP05(2015)091
http://www.arxiv.org/abs/1501.05307


A Bayesian approach

Probability  =  “measurement of the degree of belief about a proposition”



A Bayesian approach

Probability  =  “measurement of the degree of belief about a proposition”

Important application:  Comparison of two models with respect to a given set of data
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A Bayesian approach

| logB
01

| Odds Probability Strength of evidence

< 1.0 . 3 : 1 < 0.750 Inconclusive

1.0 ⇠ 3 : 1 ⇡ 0.750 Weak evidence

2.5 ⇠ 12 : 1 ⇡ 0.923 Moderate evidence

5.0 ⇠ 150 : 1 ⇡ 0.993 Strong evidence

Table 1. The empirical Je↵rey scale used in the comparison of two models.

particular value  = 0. In this case, the Bayes factor reduces to the Savage Dickey density

ratio (SDDR)

S =
p
�
A

23

��d,M
1

�

p
�
A

23

��M
1

�
�����
A23=0

(3.6)

The comparison of two models M
0

and M
1

is done using the empirical Je↵rey scale [27]

presented in Table 1. A value of B
01

or S greater than 3, 12, or 150 indicates a weak,

moderate, or strong evidence in favour of the model M
0

. A value below 1/3, 1/12, or 1/50

corresponds to evidence against M
0

, i.e. in favour of M
1

. Note that the comparison is

inconclusive if B
01

or S is found to be between 1/3 and 3. In the following subsection, we

will see how to compute S in practice.

3.2 Test scenario and counter example

In order to evaluate the power of our statistical test, we define a reference scenario, which

we assume to correspond to reality in the following Section. This scenario has been defined

according to the following criteria:

• The low-energy spectrum derives from SU(5) GUT boundary conditions as explained

in Sec. 2;

• We impose a number of constraints detailed in Table 2 which are related to flavour

observables and the Higgs boson mass;

• We require a relatively important mixing between the second and third generations

of squarks leading to sizeable branching ratios;

• We require relatively low squark massesmũ1 , mũ2 , mũ3 , andmũ4 , which are accessible

at the LHC;

• We require the first generation of squarks to be rather heavy (i.e. ũ
5

and ũ
6

are not

accessible at the LHC).

Note that the last requirement is chosen purely by simplicity for illustration purposes, our

test being generic such it can deal with the case where all squarks are accessible at the

LHC.
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Test scenario — derived from SU(5) boundary conditions

�MBs

�
17.76± 2.81

�
ps�1 [16, 17]

✏K 2.23± 0.26 [18, 19]

BR
�
B0

s ! µ+µ�� �
3.12± 2.08

�
⇥ 10�9 [17, 20]

BR
�
b ! s�

� �
3.55± 0.68

�
⇥ 10�4 [16, 21]

BR
�
⌧ ! µ�

�
< 4.5⇥ 10�8 [22, 23]

mh0

�
125.1± 3.0

�
GeV [24]

Table 2. Constraints imposed on the parameter space to define our reference scenarios.
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Table 3. Boundary conditions at the unification scale Q = MGUT on the soft parameters defining
our reference spectrum. All dimensionful quantities are given in GeV.
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R 1144.6 1405.4 1468.8 1786.5 122.6 419.3 -2017.0 -810.6 -884.3

C 1153.9 1381.1 1471.3 1792.5 121.4 419.2 -1965.2 1199.1 -1252.7

Table 4. Physical masses of four lightest up-type squarks, the lightest Higgs boson, and the lightest
neutralino for our reference scenario (R) and the counter example scenario (C). We also indicate
the values of the trilinear couplings. All dimensionful quantities are given in GeV.

The chosen reference spectrum fulfilling the above criteria is presented in Tables 3

and 4 showing the input parameters at the high scale and the resulting physical masses,

respectively.

Finally, in order to evaluate the e�ciency of the SU(5) test in case that the spectrum

does not include a symmetric trilinear coupling matrix at the TeV scale, we define a counter

example scenario. This is derived from the reference spectrum at Q = 1 TeV described

above, but introducing a maximal asymmetry at the scale Q = 1 TeV,

�
Tu

�
23

⇡ �
�
Tu

�
32

. (3.7)

In Table 4, we also indicate the physical masses for this case. In the following analysis, we

will note the SDDR associated to the reference and counter example scenario by SR and

SC , respectively.
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Renormalisation group evolution  
and spectrum calculation:  SPHENO [W. Porod 2003-2017]
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Counter example at TeV scale
Both scenarios are viable with respect to 
most stringent flavour constraints



Test observables — Large Hadron Collider

Consider production of up-type squarks and subsequent decay into top and charm jets
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Test observables — Large Hadron Collider

Consider production of up-type squarks and subsequent decay into top and charm jets

Statistical errors evaluated assuming Gaussian distributions for these observables

Cross-sections and branching ratios numerical 
evaluated using XSUSY [Fuks, Herrmann 2007] 

Test scenario: Ntt = 328, Ncc = 51, Nct = 26
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Minimal scenario — SU(5) case

L = 300 fb�1

p
s = 14 TeV

O1 = Ncc/Ntt

O2 = Nct/Ntt

O3 = mũ1/mũ2

O4 = Rũ1 t̃L/Rũ1 t̃R

O5 = Rũ1c̃L/Rũ1c̃R

�1 = 3%

�2 = 6%

�3 = 5%

�4 = 10%

�5 = 10%
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O2 = Nct/Ntt

O3 = mũ1/mũ2

O4 = Rũ1 t̃L/Rũ1 t̃R

O5 = Rũ1c̃L/Rũ1c̃R

Test inconclusive… 
(idem for counter-example)
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Optimistic scenario — SU(5) case

L = 300 fb�1

p
s = 14 TeV

O1 = Ncc/Ntt

O2 = Nct/Ntt

O3 = mũ1/mũ2

O4 = Rũ1 t̃L

...

O11 = Rũ2c̃R

�1 = 3%

�2 = 6%

�3 = 5%

�4 = 10%

...

�11 = 10%
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Optimistic scenario — SU(5) case

L = 300 fb�1

p
s = 14 TeV

Test inconclusive… 
— but weak evidence against  
    SU(5) for counter-exemple!
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O3 = mũ1/mũ2

O4 = Rũ1 t̃L
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�1 = 3%

�2 = 6%

�3 = 5%

�4 = 10%

...

�11 = 10%

Posterior
p
�
A23

��d
�

Prior
p
�
A23

�

A23 =

���
�
Tu

�
23

�
�
Tu

�
32

���

Tr
�
M2

ũ
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High-luminosity scenario — SU(5) case

O1 = Ncc/Ntt

O2 = Nct/Ntt

O3 = mũ1/mũ2

O4 = Rũ1 t̃L

...

O11 = Rũ2c̃R

L = 3000 fb�1

p
s = 14 TeV

�1 = 0.3%

�2 = 0.6%

�3 = 1%

�4 = 1%

...

�11 = 1%
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High-luminosity scenario — SU(5) case

Weak evidence in favour of  
SU(5) hypothesis
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High-luminosity scenario — Counter example
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High-luminosity scenario — Counter example

Moderate evidence against 
SU(5) hypothesis

SDDR =
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Conclusion and outlook

Non-minimally flavour-violating terms may be present in the Lagrangian of a supersymmetric  
theory at the TeV scale — typical signatures at colliders

Flavour-violating couplings may open windows towards GUT physics 
— effective theory and MCMC approaches in order to test SU(5) hypothesis

However, somewhat “extreme” conditions are needed to draw conclusions  
(high luminosity, good precision, charm tagging, top polarization, flavour decomposition…)



Conclusion and outlook

Non-minimally flavour-violating terms may be present in the Lagrangian of a supersymmetric  
theory at the TeV scale — typical signatures at colliders

Flavour-violating couplings may open windows towards GUT physics 
— effective theory and MCMC approaches in order to test SU(5) hypothesis

However, somewhat “extreme” conditions are needed to draw conclusions  
(high luminosity, good precision, charm tagging, top polarization, flavour decomposition…)

Possible improvements
— Include flavour constraints in analysis…
— Investigate additional collider signatures…

S. Fichet, B. Herrmann, Y. Stoll — Phys. Lett. B 742 (2015) 69-73 — arXiv:1403.3397 [hep-ph]
S. Fichet, B. Herrmann, Y. Stoll — JHEP 05 (2015) 091 — arXiv:1501.05307 [hep-ph]

S. Fichet, B. Herrmann — work in progress…




