

LPT-Orsay

Rôle of Sterile Fermions in Flavour Physics

- ► Why Sterile Fermions?
- Basic theoretical frameworks
- Lepton Flavour Universality, Charged Lepton Flavour Violation, Direct and indirect searches at high-intensities and colliders

New physics at the junction of flavor and collider phenomenology

Asmaa Abada Portoroz 18-21 April 2017

Sterile fermions

Reference of the SM of the

BAU, DM, ν masses & mixings

- Extending the SM with sterile fermions: singlets under $SU(3)_c \times SU(2)_L \times U(1)_Y$ Interactions with SM fields: through mixings with active neutrinos A priori, no bound on the number of sterile states, no limit on their mass scale(s) Present in several theoretical models accounting for ν masses and mixings
- Interest & phenomenological implications strongly dependent on their mass!
 eV scale ↔ extra neutrinos suggested by short baseline ν oscillation anomalies
 keV scale ↔ warm dark matter candidates; explain pulsar velocities (kicks); 3.5 keV line..
 MeV TeV scale ↔ experimental testability! (and BAU, DM, m_ν generation...)
 Beyond 10⁹ GeV ↔ theoretical appeal: standard seesaw, BAU, GUTs

m_{ν_S}	Motivation	u-oscillations	laboratory searches	
\lesssim eV	u-oscil. anomalies, dark radiation	massses by seesaw, explain anomalies	oscillation anomalies, eta -decays	
keV	DM	no if DM	direct searches? , nuclear decays?	
MeV	testability	masses by seesaw	intensity frontier, $0\nu\beta\beta$	c
GeV	testability, minimality	masses by seesaw	intensity frontier, EW precision data, $0\nu\beta\beta$	c
TeV	minimality, testability	masses by seesaw	LHC	
$\gtrsim 10^9 { m GeV}$	grand unification, "naturality"	masses by seesaw	-	

m_{ν_S}	СМВ	BBN	DM	Leptogenesis
\lesssim eV	explain $N_{ m eff} > 3$	may explain		no
		$N_{\rm eff}$ > 3	no	
keV	act as DM,	effect on $N_{ m eff}$	good candidate	no
	no effect on $N_{ m eff}$	too small if DM	good candidate	110
MeV	unaffected	constrains	no	possible
		$m_{{m u}_S}\gtrsim 200{ m MeV}$		(finetuning)
GeV	unaffected	unaffected	no	possible
TeV	unaffected	unaffected	no	possible
$\gtrsim 10^9 { m GeV}$	unaffected	unaffected	no	natural

[Adapted from

Drewes, '13]

IS Extending the SM with sterile fermions: masses at tree-level → Seesaw mechanisms

type I (fermionic singlet) type II (scalar triplet) $\boldsymbol{m}_{\boldsymbol{\nu}} = -\frac{1}{2}v^2 Y_N^T \frac{1}{M_N} Y_N \qquad \boldsymbol{m}_{\boldsymbol{\nu}} = -2v^2 Y_\Delta \frac{\mu_\Delta}{M_*^2}$

Minkowski, Gell-Man,

Ramond, Slansky

Yanagida, Glashow

Mohapatra, Senjanovic

right-handed neutrinos

type III (fermionic triplet) $\boldsymbol{m_{
u}} = -rac{v^2}{2} Y_{\Sigma}^T rac{1}{M_{\Sigma}} Y_{\Sigma}$

Magg, Wetterich, Nussinov Mohapatra, Senjanovic Schechter, Valle

Ma, Sarkar

Ma, Hambye et al.

Bajc, Senjanovic, Lin

A.A., Biggio, Bonnet, Gavela,

Notari, Strumia, Papucci, Dorsner

Fileviez-Perez, Foot, Lew...

 \mathbb{R} Neutrino masses require the addition of new fields (or extremely tiny Y_{ν})

Effects at low energy: effective theorie approach

Extending the SM with sterile fermions: (testable!) theoretical frameworks

▶ Incorporating ν_R - low scale seesaws: type I seesaw [TeV] → small Y_{ν}

 $\mathcal{M}_{\text{ISS}} = \begin{pmatrix} 0 & Y_{\nu}^{T} v & 0 \\ Y_{\nu} v & 0 & M_{R} \\ 0 & M_{\tau}^{T} & \mu x \end{pmatrix}$

$$\mathcal{M}_{\nu} = \begin{pmatrix} 0 & v Y_{\nu}^{T} \\ v Y_{\nu} & M_{R} \end{pmatrix}$$
type I seesaw variants \rightarrow "large" Y
$$\nu \mathsf{MSM} [\mathsf{GeV}] \rightarrow \mathsf{tiny} Y_{\nu}$$

$$\boxed{m_{\nu} \approx -v^{2} Y_{\nu}^{T} \frac{1}{M_{R}} Y_{\nu}}$$

▶ Incorporating ν_R and additional steriles ν_S : Inverse seesaw (ISS) → sizeable Y_{ν}

Linear seesaw (LSS) \rightarrow sizeable Y_{ν} [in the basis $\left(\nu_L, \nu_R^c, \nu_S\right)^T$]

$$\mathcal{M}_{\mathsf{LSS}} = \begin{pmatrix} 0 & Y_{\nu}^{T}v & M_{L}^{T} \\ Y_{\nu}v & 0 & M_{R} \\ M_{L} & M_{R}^{T} & 0 \end{pmatrix}$$
$$\mathcal{M}_{\mathsf{LSS}} = \begin{pmatrix} 0 & Y_{\nu}^{T}v & M_{L}^{T} \\ Y_{\nu}v & 0 & M_{R} \\ M_{L} & M_{R}^{T} & 0 \end{pmatrix}$$

[see, e.g., Mohapatra et al, 1986,Gonzalez-Garcia et al, 1988, Deppisch et al, '04, Asaka et al, '05, Gavela et al, '09, Ibarra, Petcov et al, '10, Abada, Lucente, '14, ...]

Extending the SM with sterile fermions: phenomenological consequences

▶ Modified charged (W^{\pm}) and neutral (Z^0) current interactions:

$$\mathcal{L}_{W^{\pm}} \sim -\frac{g_{w}}{\sqrt{2}} W_{\mu}^{-} \sum_{\alpha=e,\mu,\tau} \sum_{i=1}^{3+N_{S}} \mathbf{U}_{\alpha i} \bar{\ell}_{\alpha} \gamma^{\mu} P_{L} \nu_{i}$$
$$\mathcal{L}_{Z^{0}} \sim -\frac{g_{w}}{2\cos\theta_{w}} Z_{\mu} \sum_{i,j=1}^{3+N_{S}} \bar{\nu}_{i} \gamma^{\mu} \left[P_{L} (\mathbf{U}^{\dagger} \mathbf{U})_{ij} - P_{R} (\mathbf{U}^{\dagger} \mathbf{U})_{ij}^{*} \right] \nu_{j}$$

 $\mathbf{U}_{\alpha i} \rightarrow \mathbf{M}$ modified lepton mixing - now encodes also active-sterile mixings (for $N_s = 0$, $\mathbf{U}_{\alpha i} = U_{\text{PMNS}}$)

- \blacktriangleright If sufficiently light, sterile $\nu_{\scriptscriptstyle S}$ can be produced as final states
- Image impact for numerous observables: high-intensity and colliders (as well as DM, ...) [see talks of J. Lopez-Pavon, F. Deppisch] But also abundant constraints!!

SM + N_s sterile fermions

Extending the SM with sterile fermions: (testable!) simple "ad-hoc models"

First phenomenological studies can be carried for SM $+ \#\nu_s \rightarrow "3 + N_s"$

No hypothesis on mechanism of neutrino mass generation (seesaw, ...)

Physical parameters: masses [3 light (mostly active) + N_s heavier (mostly sterile) states] mixing matrix (angles and CPV phases)

$$U_{(3+N_s)\times(3+N_s)} = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} & U_{e4} & \cdots \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} & U_{\mu 4} & \cdots \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} & U_{\tau 4} & \cdots \\ U_{s1} & U_{s2} & U_{s3} & U_{s4} & \cdots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{pmatrix}$$

Left-handed lepton mixing $U_{\alpha 1-3}$: \tilde{U}_{PMNS} (non-unitary)

Active-sterile mixing: $\mathbf{U}_{\alpha i}$

$$\mathbf{U} = U|_{3 \times (3+N_s)}$$

Heavily constrained sterile masses and mixings

Constraints on sterile fermions

 \mathbb{Y} Neutrino oscillation parameters: $\tilde{U}_{\mathsf{PMNS}}$ comply with observed mixings

Electroweak precision tests: invisible Z width; leptonic Z width; Weinberg angle...
[Del Aguila et al, '08; Atre et al, '09; ...
Antusch et al, '09-'14; Fernandez-Martinez et al, '16; ...]

Searches at the LHC: invisible Higgs decays $H \rightarrow \nu_L \nu_R$; direct searches, ... [Dev et al, '12-'15; Bandyopadhyay et al, '12; Cely et al, '14; Arganda et al, '14-'15; Deppisch et al, '15; ...]

Peak searches in meson decays: monochromatic lines in ℓ^{\pm} spectrum from $X_M^{\pm} \to \ell^{\pm} \nu_s$ [Shrock, '80-'81; Atre et al, '09; Kusenko et al, '09; Lello et al,'13]

Beam dump experiments: ν_s decay products (light mesons, ℓ^{\pm}) from X_M^{\pm} decays [PS191, CHARM, NuTeV, ...]

Constraints on sterile fermions (contd.)

Neutrinoless double beta decays - |m_{ee}|: [EXO-200, KamLAND-Zen, GERDA,...] [Blenow et al, '10; Lopez-Pavon et al, '13; AA et al, '14, ..., Giunti et al]

 $\overset{{}_{\scriptstyle \ensuremath{ ext{P}}}}{=}$ Rare meson decays: Lepton Number Violating (LNV) e.g. $K^+
ightarrow \ell^+ \ell^+ \pi^-$

Lepton Universality Violating (LUV) e.g. R_{X_M} , R(D), R_{τ} [CLEO, Belle, BaBar, NA62, LHCb, BES III, ...] [Shrock, '81; Atre et al, '09; AA et al, '13-'15, ...]

Lepton Flavour Violation: 3 body decays among most stringent...

[Gronau et al, '85; Ilakovac & Pilaftsis, '95 - '14; Deppisch et al, '05; Dinh et al, '12; Alonso et al, '12; ...]

2 Cosmology: large scale structures, Lyman- α , BBN, CMB, X-ray, SN1987a, ...

[Smirnov et al, '06; Kusenko, '09; Gelmini, '10; Donini et al, '14; Hernández et al, '15-'16; ...]

Sterile fermions: contributions to observables

- Cosmology and astroparticle
 - \Rightarrow BAU from leptogenesis (oscillations) [See talk by J. Lopez-Pavon]
 - \Rightarrow (Warm) dark matter candidates[White paper: Drewes et al, '16; Merle; AA, Lucente, Arcadi, '14, ...]
 - \Rightarrow Astrophysical puzzles: pulsar kicks, ... [e.g. Kusenko, '04 & '09]

Sterile fermions & CPV: contributions to EDMs

▶ Majorana (and Dirac) phases \Rightarrow lepton EDMs:

$$d_{e} = -\frac{g_{2}^{4} e m_{e}}{4(4\pi)^{2} m_{W}^{2}} \sum_{\beta} \sum_{i,j} \left[J_{ije\beta}^{M} I_{M}(x_{i}, x_{j}) + J_{ije\beta}^{D} I_{D}(x_{i}, x_{j}) \right],$$

$$J_{ij\alpha\beta}^{M} \equiv \operatorname{Im} \left(U_{\alpha j} U_{\beta j} U_{\beta i}^{*} U_{\alpha i}^{*} \right), \quad J_{ij\alpha\beta}^{D} \equiv \operatorname{Im} \left(U_{\alpha j} U_{\beta j}^{*} U_{\beta i} U_{\alpha i}^{*} \right)$$

► Many new (2-loop) contributions!

 $|d_e|/e~[{\rm cm}]$

- ▶ Non-vanishing contributions: at least two sterile ν
- ► $|d_e|/e \ge 10^{-30}$ cm for $m_{\nu_{4,5}} \sim [100 \text{ GeV}, 100 \text{ TeV}]$ Within ACME reach

[AA and Toma, '15, '16]

Lepton number violation in meson decays

Sterile fermions: violation of lepton flavour universality

Lepton Universality Violation in K and π decays: tree level effect

comparison with SM th predictions $\Delta r_K = \frac{R_K^{exp}}{R_K^{SM}} - 1$ $R_K = \frac{\Gamma(K \to e\nu)}{\Gamma(K \to \mu\nu)}$ 10² 10^{2} 10^{0} 10^{0} ی^{10⁻² ک ⊲} ¥^{10⁻²} 10^{-4} 10⁻⁴ 10⁻⁶ 10⁻⁶ 10⁻⁸ L____ 10⁻⁶ 10⁻⁸ 10⁻⁶ 10^{-2} 10° 10^{2} 10^{4} 10⁶ 10^{-4} 10^{-2} 10^{0} 10^{2} m_{N1} (GeV) Δr_{π} ["ISS (3,3)": AA, Teixeira, Vicente and Weiland, '11-'13]

- ▶ Sterile neutrino contributions: $\Delta r_{K,\pi} \gtrsim \mathcal{O}(10^{-2})$
- ► $\Delta r_{K,\pi} \sim \mathcal{O}(1) \Rightarrow$ one of the strongest constraints in SM + ν_s models!

\mathbb{R} Sterile fermions: cLFV in radiative decays $\ell_i \rightarrow \ell_j \gamma$ and 3-body decays $\ell_i \rightarrow 3\ell_j$

"3+1" toy model, [AA, De Romeri and Teixeira, '15]

• Consider $\mu \rightarrow e\gamma$:

for $m_s\gtrsim 10-100$ GeV sizeable u_s contributions ... but precluded by invisible Z width

And by other cLFV observables!

▶ Particularly constraining: $BR(\mu \rightarrow 3e)$, $CR(\mu - e, N)$ Dominated by Z penguin contributions for $m_s \gtrsim M_Z$

"(2,2) ISS realisation" [AA and Lucente, '14]

Sterile fermions: cLFV at high- and low-energies

Complementarity probes of ν_s cLFV at low- and high energies! (and in LNV...)

► $Z \rightarrow \mu \tau$ at FCC-ee: allows to probe $\mu - \tau$ cLFV beyond SuperBelle reach

[see also AA, Becirevic, Lucente, Sumensari '15, and De Romeri et al, '16]

Sterile fermions: cLFV in muonic atoms

► Muonic atoms: 1s bound state formed when μ^- stopped in target Interesting laboratory to study cLFV! $\mu - e$ conversion

▶ Muonic atom decay: $\mu^- e^- \rightarrow e^- e^-$

[Koike et al, '10]

Initial μ^- and e^- : 1s state bound in Coulomb field of the muonic atom's nucleus

Experimental status: New observable!

Hopefully included in Physics programmes of COMET & Mu2e (?)

Coulomb interaction increases overlap between

 $\Psi_{\mu^{-}}$ and $\Psi_{e^{-}}$ wave functions

 $\Gamma(\mu^- e^- \to e^- e^-, \mathbf{N}) \propto \sigma_{\mu e \to e e} v_{\text{rel}} \left[(Z-1) \, \alpha \, m_e \right]^3 / \pi$

Rate strongly enhanced in large Z atoms $\Gamma/\Gamma_0 \gtrsim 10 \times (Z-1)^3$ [Uesaka et al, '15-'16]

Consider experimental setups for Pb, U !?

Ζ

8 7

3 2

0

 Γ/Γ_0

Sterile fermions: cLFV muonic atom decays

▶ Sizeable values for $BR(\mu^-e^- \rightarrow e^-e^-)$ - potentially within experimental reach!

► For Aluminium, $CR(\mu - e)$ appears to have stronger experimental potential ... consider "heavy" targets to probe $BR(\mu^-e^- \rightarrow e^-e^-)$

Regional Sterile fermions: searches at the LHC and beyond

- ► Searches for ν_s by ATLAS and CMS "smoking-gun" (LNV) channel: $p \, p \to W^* \to N \, \ell^{\pm} \to \ell^{\pm} + \ell^{\pm} + 2 \, \text{jets}$
- Promising prospects for FCC-ee, ILC, CEPC... [Banerjee et al, 1503.05491]
- Further searches carried for LFV final states and/or other exotic channels

cLFV exotic events at the LHC

- Searches for heavy N at the LHC $q q' \rightarrow \tau \mu + 2$ jets (no missing E^T !)
- After cuts, significant number of events!

Resonant mono-Higgs production at FCC-ee

[Arganda et al, 1508.05074]

 $N
ightarrow H \,
u
ightarrow$ sizeable deviations from SM mono-Higgs

Sensitive probe of ν_s at high-energies!

[Antusch et al, '15]

Conclusions

SM + Sterile fermions constitute the "most minimal BSM"embedded in several well motivated frameworks

Sterile neutrinos contribute to a vast array of observables: CPV, LNV, LFUV, cLFV, ...
... at high and low energy

► Sterile neutrinos: key rôle in cosmology as well

Sterile neutrinos testable at the three frontiers: high intensity, high energy and cosmology and in LNV neutrinoless double beta decays