New results of measurements with irradiated CMOS detectors in Ljubljana

<u>I. Mandić¹</u>, G. Kramberger¹, V. Cindro¹, A. Gorišek¹, B. Hiti¹, M. Mikuž^{1,2}, M. Zavrtanik¹

¹Jožef Stefan Institute, Ljubljana, Slovenia ²Faculty of Mathematics and Physics, University of Ljubljana, Slovenia

et al.

CMOS detector structures from 3 different foundries:

AMS: 10, 20 Ohm-cm

- A. Afolder et al., Charge collection studies in irradiated HV-CMOS particle detectors, 2016 JINST11 P04007
- I. Perić et al., Active pixel sensors in high-voltage CMOS technologies for ATLAS, 2012 JINST **7 C08002**.
 - → new results with CHESS2 chips from 50 and 200 Ohm-cm wafers

X-FAB: 100 Ohm-cm, Silicon On Insulator, SOI

- •S. Fernandez-Perez et al., Charge collection properties of a depleted monolithic active pixel sensor using a HV-SOI process, 2016 JINST 11 C01063
- T. Hemperek et al, A Monolithic Active Pixel Sensor for ionizing radiation using a 180 nm HV-SOI process, NIMA 796(2015)8-12
 - → new point at 1e16

LFoundry: 2000 Ohm-cm

- Piotr RYMASZEWSKI et al., *Prototype Active Silicon Sensor in 150nm HR-CMOS technology for ATLAS Inner Detector Upgrade*, 2016 JINST 11 C02045
 - measurements with devices thinned to 100 μm

All devices are made on **p-type** substrates with **n-type** charge collecting electrodes
All devices are **passive** detectors → no amplifier circuit on sensor (standard Si diode detector)

These samples are being investigated as candidates for CMOS detectors for trackers at HL-LHC

Edge TCT

(more details: www.particluars.si)

- TCT measurements with passive pixels (no amplifier in the n-well)
 - → collecting electrode connected to amplifier

Edge-TCT

Charge collection profiles LFoundry (2 k Ω ·Ohm-cm)

- Not thinned, no back plane (no BP) processing, bias via implant on top
- Thinned to 300 μm, back plane processed (BP), bias through the back plane

Reactor neutrons, fluence steps: 1e14, 5e14, 1e15, 2e15, 5e15, 8e15

- no increase of charge collection width after irradiation seen
- no significant difference between samples with and without back plane (BP)
- 10 20 % increase of charge collection width after annealing

Charge profile width vs. bias voltage

Fit:
$$Width(V_{\text{bias}}) = w_0 + \sqrt{\frac{2\varepsilon\varepsilon_0}{e_0 N_{\text{eff}}} V_{\text{bias}}}$$

 w_0 and N_{eff} free parameters \rightarrow works for AMS and LFoundry

X-FAB: cannot fit with $sqrt(V_{bias})$

- \rightarrow estimate $N_{\rm eff}$ from width at 300 V
- "knee" at low bias 0 width up to 100 V at 1e16

• AMS: large width at low bias

LFoundry (2 kΩ·cm)

- thinned to 100 μm, bias via back plane
- Reactor neutrons, fluence steps: 1e13, 5e13, 1e14, 5e14, 1e15

full depletion voltage drops after first Two irradiation steps

- Full depletion voltage lower after irradiation for fluences below 1e14 n/cm²
- can estimate N_{eff} from V_{fd} and known thickness
 - → initial acceptor removal seen also in LFondry samples

CHESS2 chip

Edge TCT:

Contacts for:

central pixel

surrounding pixels

- new AMS H35 chip developed by **Strips CMOS collaboration** was produced on wafers with 4 different initial resistivites: 20 Ω ·cm, 50-100 Ω ·cm, 200-300 Ω ·cm and 600-2000 Ω ·cm
 - \rightarrow full reticle size chip with digitally readout strips made of 630 μ m x 40 μ m pixel segments
 - → part of chip used for analogue and passive devices:

Max bias voltage 120 V, substrate biased via implant on top (back plane not processed)

- chips irradiated in reactor to: 1e14, 3e14, 5e14, 1e15 and 2e15
- measurements made with W7 (50-100 Ω ·cm) and W13 (200-300 Ω ·cm)

More detail: P. Caragiulio at all., Presentation at 11th "Trento" Workshop on Advanced Silicon Radiation Detector https://indico.cern.ch/event/452766/sessions/99173/

CHESS2 chip

• Edge-TCT charge collection profile across central pixel

• increase of width with fluence up to 1e15

W13 (200 Ω ·cm)

• not much change of profile width with fluence

CHESS2 chip

width of charge collection profile vs. bias

W7 (50 Ω ·cm)

Width of charge collection region at 50% max

W13 (200 Ω ·cm)

Fit:
$$Width(V_{\text{bias}}) = w_0 + \sqrt{\frac{2\varepsilon\varepsilon_0}{e_0 N_{\text{eff}}} V_{\text{bias}}}$$

At $\Phi = 0$

• W7: $N_{eff} = 2.3e14 \text{ cm}^{-3}$ \rightarrow 56 $\Omega \cdot \text{cm}$

• W13: $N_{eff} = 6.6e13 \text{ cm}^{-3}$

→ 200 Ω·cm

→ Good fit, good agreement with nominal resistivity

N_{eff} vs fluence

Fit:
$$N_{\text{eff}} = N_{\text{eff0}} - N_{\text{c}} \cdot (1 - \exp(-c \cdot \Phi_{\text{eq}})) + g_{c} \cdot \Phi_{\text{eq}}$$
acceptor removal

Radiation introduced deep acceptors

N_c , N_{eff0} , c and g free parameters

Zoom to lower Φ:

CHESS1, HV2FEI4 numbers published in: 2016 JINST11 P04007

LFoundry: removal seen at low Φ

Acceptor removal

Chip	ρ (Ohmcm)	c (1e-14 cm-2)	Neff/Neff_0	g_c (cm-1)
HV2FEI4	10	0.6	1	0.02 (fixed)
CHESS1	20	0.4	1	0.01
CHESS2	50	0.5	1	0.02 (fixed)
Xfab	100	1	1	0.043
CHESS2	200	0.3	0.8	0.02 (fixed)
LF	2000	10	0.6	0.047

[•]acc. removal parameter c for CHESS2 similar as CHESS1 although higher initial resistivity

 $[\]bullet g_c$ for **Xfab** and **LF** somewhat higher than usual for neutron irradiation!

- HV-CMOS: small signals, large noise → S/N very bad
 - → must have clean sample of events
 - → need large detector for reasonable trigger rate and good collimation, small scintillator

Measurement:

- → Calibrate with 300 µm thick Si pad detector
- 1) Record N waveforms
- 2) average over all waveforms and determine signal peak
- 3) sample waveforms at the peak
- 4) Fill spectrum

CHESS2

• W13(200 Ω ·cm), large passive array, 25 ns shaping

Average waveform:

Spectrum of values sampled at peak

- the shift of distribution mean from 0 interpreted as the mean charge
- •OK only if the sample of event is clean \rightarrow no events without charge deposition in the detector

Sr90, CHESS2, charge vs. bias

- •large drop of collected charge (~ 1300 el) after first irradiation step to 1e14 n/cm2
 - → reduced contribution from diffusion

Sr90, CHESS2, collected charge vs. fluence

Sr90, CHESS2, background study

- Scale measured noise distribution to fit the tail of signal distribution and subtract from the measured signal distribution
 - → significant number of entries could be tracks not passing through the pixel array

- If there is misalignment between collimator and device (small (1x1 mm²))
 - → background events in the sample
 - → measured mean (or MPV) charge could be underestimated 40%

Simulation

- 1. calculate depleted depth using $N_{e\!f\!f}=N_{e\!f\!f\,0}-N_c\cdot(1-\exp(-c\cdot\Phi_{eq}))+g\cdot\Phi_{eq}$ $N_{e\!f\!f\!0}=6.5\mathrm{e}13~\mathrm{cm}^{-3}$, c = 3e-15 cm⁻², $g=0.02~\mathrm{cm}^{-1}$, planar geometry, bias = 100 V
- 2. detector thickness same as depleted depth
- 3. calculate trapping loss at given depth and Φ using $\beta = 4.10^{-16} \text{ ns}^{-1}\text{cm}^2$

- buckets of charge treated as point charge
- (http://www-f9.ijs.si/~gregor/KDetSim/)

to estimate trapping loss at given depth and ϕ

Mean Charge = depletion(
$$\mu$$
m)* 100 el/ μ m * trapping_loss +

1500 electr. at $\Phi = 0$ 0 electr. at $\Phi > 0$

- → good agreement with measurements if simulation scaled by factor of 0.6
- → measurements too low because of imperfect alignment of detector and collimator

Summary

Edge-TCT measurements with passive test structures made on several substrate resistivities:

- AMS : 20, 50, 200 Ω ·cm, X-FAB: 100 Ω ·cm, LFoundry: 2000 Ω ·cm
 - → charge collection profiles measured up to 1e16 n/cm²
 - → depleted depth clearly visible up to highest fluences
- increase of depleted depth with irradiation observed in all samples in different fluence ranges
- change of depleted depth with fluence can be described with effective acceptor removal
- acceptor removal constant tends to be larger in materials with larger initial resistivity
- no significant differences observed in LFoundry detectors with and without back plane (if not fully depleted)

Charge collection measurements with Sr90 with passive CMOS detectors on CHESS2 chip

- → need large device for good measurement with external amplifier
- evolution of measured charge with fluence follows the behavior measured with E-TCT
 - → but large drop of collected charge measured after first fluence step (1e14 n/cm2) because of supressed contribution of charge from diffusion