Status of technological development on LGAD and Future plans

M. Carulla, P. Fernández-Martínez, D. Flores, S. Hidalgo, A. Merlos, G. Pellegrini, D. Quirion

Centro Nacional de Microelectrónica, IMB-CNM-CSIC, Barcelona, Spain

Work done in the framework of the RD50 CERN collaboration

Summary

- LGAD Radiation hardness strategy Ο
- **Batch in process** Ο
- **Gallium Diodes** \bigcirc
- LGAD with Gallium multiplication layer & Carbon PSpray Ο
- Boron removal study on different resistivity wafers and carbon doped wafers Ο
- First LGAD on 6" FZ Silicon Wafers \bigcirc
- 50 μm thick LGAD: HGTD structure Ο
- **Causes of early Breakdown** \bigcirc
- **Future Plans: HGTD yield improvement** Ο
- Future Plans: 4" p-type epitaxial multiplication layer Ο
- **Conclusions** \bigcirc

LGAD Radiation hardness strategy

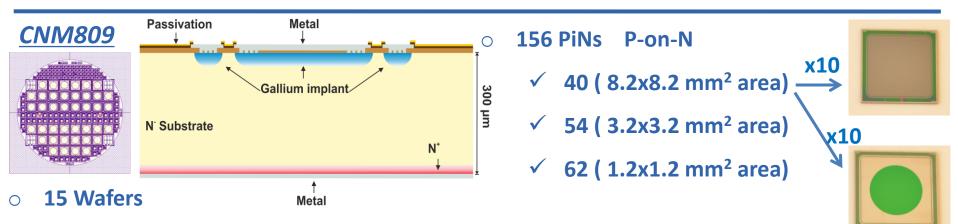
- Previous studies demonstrated LGAD has a gain decrease while fluence increases [1]. There Ο is almost no gain for fluences higher than $2 \cdot 10^{15} n_{ea}$ /cm², due to Boron removal. B_s is displaced to an interstitial position and B_i forms the complex B_i - O_i which is more energetically favourable.
- First challenge was the fabrication of Gallium and Boron PiN diodes in order to study the Ο Gallium diffusion and the response to different neutron fluences. Boron diodes were also fabricated for comparison. Some references stands that carrier removal is drastically reduced in Gallium doped wafers [2] meanwhile others affirm that the reduction is not that much [3]. Furthermore Gallium introduces the electron trap level (Ec-0.11 eV) [4]
- Second challenge is the introduction of C_s in order to reduce the concentration of O_i. As a Ο consequence, the amount of $B_i - O_i$ complexes will be reduced. However $C_i - O_i$ complex will increase, introducing the level E,+0.36 eV that acts like a trap of holes [4]

[1] G. Kramberger et al., Radiation effects in LGAD after hadron irradiations, 2015 JINST 10 P07006 [doi:10.1088/1748-0221/10/07/P07006]. [2] A. Khan et al., Role of the impurities in production rates of radiation-induced defects in silicon materials and solar cells, Journal of Applied Physics, 90, 1170, (2001)[doi:10.1063/1.1384855]

[3] H. Matsuura et al., Si Substrate Suitable for Radiation-Resistant Space Solar Cells, Japanese Journal of Applied Physics, Vol. 45, No. 4A, 2006, pp 2648, [doi:10.1143/JJAP.45.2648].

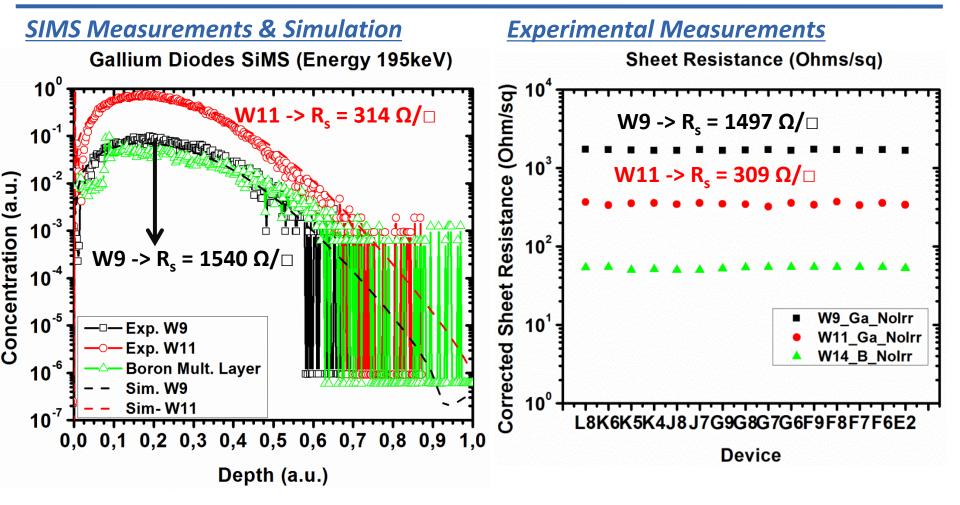
[4] M. Yamaguchi et al., Radiation-resistant properties of Ga-doped Si, Physica B 340-342 (2003) 596-600 [doi:10.1016/j.physb.2003.09.127]

Batch in process


Run	Name	Status	Next step	Measurements
9089	Gallium & Boron PiNs	Irradiation	Comparison of irradiated and non-irradiated PiNs.	Sheet Resistance, IV & CV
9889	LGAD with Ga multiplication layer	Pstop(April 2017)	IV, CV, MIP, TCT, Neutron irradiation.	IV, CV, MIP & TCT
	Carbon Spray	Pstop (March 2017)	IV, CV, MIP, TCT, Neutron irradiation.	IV, CV, MIP & TCT
9435 + 10029	Carbon doping (DCE oxidation) + Bare wafers (different resistivity)	Finished. Wafers are being diced	Neutron irradiation & comparison of irradiated & non-irradiated wafers.	Sheet Resistance
9974	LGAD on 6" SOI wafers	Pstop (March 2017)	IV, CV, MIP, TCT, Neutron irradiation.	IV, CV, MIP & TCT
9254	HGTD on Epitaxial wafers	Metallization (January 2017)	IV, CV, MIP, TCT, Neutron irradiation.	IV, CV, MIP & TCT

4

Run 9089: Gallium Diodes Run



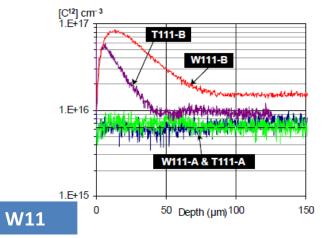
- 3 Wafers (W13, W14, & W15) with Boron diodes (3 different implanters)
- 12 Wafers with Gallium diodes (3 Imp. Energies, 2 Imp. Doses, 2 Drive-in) \checkmark
- SIMS of W9, W10, W11, W12 were done in order to study the diffusion of Gallium \checkmark
- \checkmark Passivation and Metallization removal of 10 diodes from W9, W11 and W14
- **Measurement of Sheet Resistance on Non-irradiated samples**
- Measurement of IV and CV curves on Non-irradiated devices
- Irradiation of 20 samples from each wafer to fluences (1.10¹² n_{eq}/cm², 1.10¹³ n_{eq}/cm², \checkmark $1 \cdot 10^{14} n_{eq}/cm^2$, $1 \cdot 10^{15} n_{eq}/cm^2$, $5 \cdot 10^{15} n_{eq}/cm^2$). Total : 60 samples.

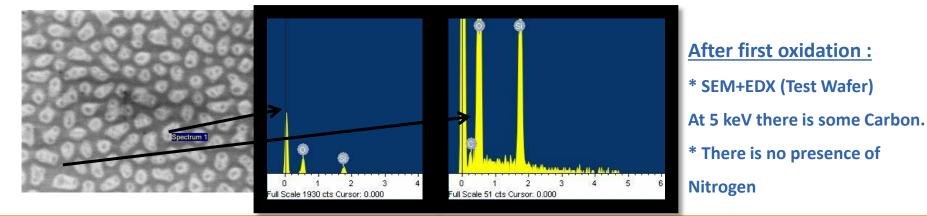
Gallium Diodes

Implantation Dose, Implantation Energy and Drive-in of W9 looks the best candidate to Ο reproduce de p-type multiplication layer.

LGAD with Gallium multiplication layer & Carbon PSpray

	 ○ 16 Wafers ✓ 1 Wafer from Carbon Doping Run (9435, High Resistivity p-type FZ) ✓ 15 Wafers (High Resistivity p-type FZ) 					
W1 LGAD Carbon Dop:W	2-6 LGAD Carbon PSpray:	↓ W7-11 Control LGAD:	W12-16 LGAD Ga PWell:			
* PWell Implantation *	D ₀ = 1.9 cm²/s , E _a =3.1 eV	* Without Carbon Spray	* Ga-PWell Implantation Dose :			
Dose 1.9·10 ¹³ at/cm ²	Carbon Depth = 26 μm [5]	* PWell Implantation Dose :	W12 -> 7·10 ¹³ at/cm ²			
* Run 9435 *	PWell Implantation Dose :	W7 -> 1.5·10 ¹³ at/cm ²	W13 -> 8·10 ¹³ at/cm ²			
Co-diffusion of Boron,	W2 -> 1.5·10 ¹³ at/cm ²	W8 -> 1.7·10 ¹³ at/cm ²	W14 -> 9·10 ¹³ at/cm ²			
Phosphorous and Carbon will introduce some difference in	$11/2 > 1.7 \cdot 10^{13} + 10^{12}$	W9 -> 1.8·10 ¹³ at/cm ²	W15 -> 1·10 ¹⁴ at/cm ²			
the final doping profile.	W4 -> 1.8·10 ¹³ at/cm ²	W10 -> 1.9·10 ¹³ at/cm ²	W16 -> 1.2·10 ¹⁴ at/cm ²			
Carbon can reduce the Boron and Phosphorus diffusion.	W5 -> 1.9·10 ¹³ at/cm ²	W11 -> 2.0·10 ¹³ at/cm ²	* Drive-in W9 (Run 9089)			
Because that variation, 5 Pwell imp. doses are proposed.	W6 -> 2.0·10 ¹³ at/cm ²					

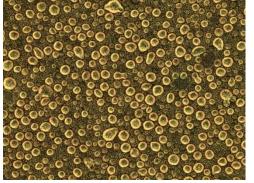

[5] R.C. Newman and J. Wakefield, Diffusion and precipitation of Carbon in Silicon, Metallurgy of Semiconductor Materials, V.15, ed. By J.B. Schroeder, (Interscience Publishers, New York, 1962), pp. 201-208.


Boron Removal Study on different resistivity wafers and carbon doped wafers

- 3rd RD48 Status report (1999) Ο
 - \checkmark <111> FZ wafers oxidation with TCA
- **Carbon Diffusion: 11 Wafers** Ο
 - \checkmark **Different Resistivity**

Wafer	W1-2	W3-4	W5-6	W7-8	W9-10	W11
Туре	FZ	CZ	CZ	CZ	FZ	FZ
Resistivity (Ohms·cm)	> 5000	> 150	> 10	> 0.1	> 0.01	> 1000

Oxidation with DCE during 36h at 1100°C (7 oxidation of 5h 10min) \checkmark


Instituto de Microelectrónica de Barcelona 🎇 CSIC

Boron Removal Study on different resistivity wafers and carbon doped wafers

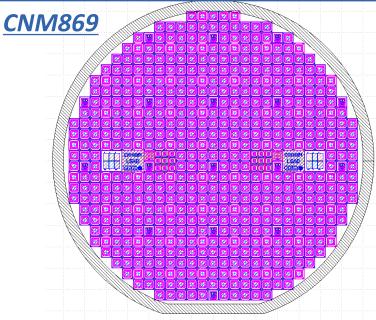
a) Oxide on Wafer1(x20 Bright Field)

b) Oxide on Wafer1 (x20 Dark Field)

c) Wafer1 after oxide etching (x20 BF)

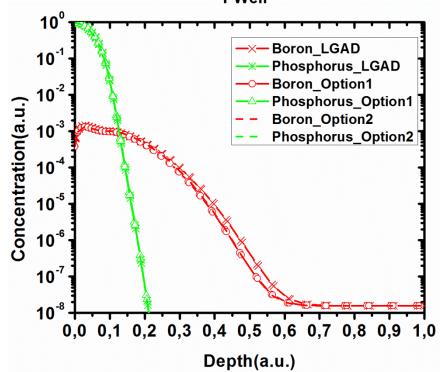
Run 10029: 11 Wafers \bigcirc

W1, W3, W5, W7, W9, & \checkmark W11 from Run 9435 + 5 Wafers (1 wafer of each resistivity)


Wafer Specifications			Bare Wafer			After DCE Oxidation		
Wafer	Thickness	Resistivity	Sheet Resistance		Resistivity	Sheet Resistance		Resistivity
#	Туре	Ohms ·cm	Ohms/□	StDev (%)	Ohms∙cm	Ohms/□	StDev (%)	Ohms∙cm
W1-2	FZ	> 5000	$1.01 \cdot 10^{6}$	31	2.89·10 ⁴	$1.14 \cdot 10^{4}$	72	3.24·10 ⁴
W3-4	CZ	> 150	1.05·10 ⁴	26	3.16·10 ²	8.39·10 ³	39	2.52·10 ²
W5-6	CZ	> 10	6.41·10 ²	50	3.21·10 ¹	$2.41 \cdot 10^{6}$	19	1.21·10 ¹
W7-8	CZ	> 0.1	7.40	1.9	0.39	7.70	6,4	0.40
W9-10	FZ	> 0.01	0.30	1.4	0.02	0.30	1,2	0.02
W11	FZ	> 1000	1.47·10 ⁵	31	4.40·10 ³	2.68·10⁵	5	8.03·10 ³

10 samples of each wafer will be selected, measured and sent for neutron irradiation

First LGAD fabrication on 6" wafer

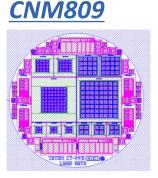


- 554 Diodes (LGAD + PiN) Ο
 - 472 LGAD (3.2x3.2 mm² area)
 - 64 PiN (3.2x3.2 mm² area)
 - 16 LGAD (1.2x1.2 mm² area)
 - 2 PiN (1.2x1.2 mm² area)
 - **21 test structures, sheet resistance, SiMS**

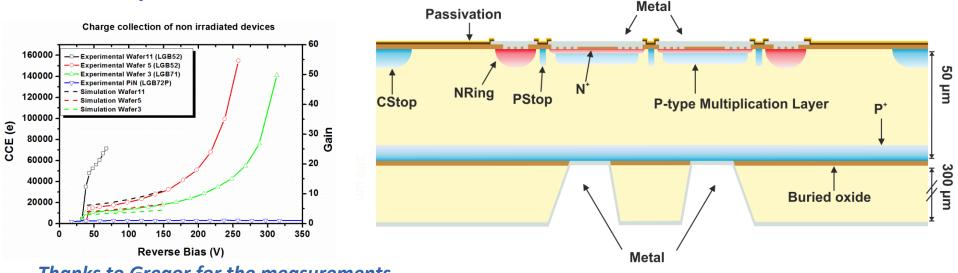
6" wafers have to be processed in new implanter Ο

and new furnace

- **Re-calibrated Drive-in** \checkmark
- **Re-calibrated Implantation Energy and Dose PWell**



Instituto de Microelectrónica de Barcelona 🎆 CS C


Ο

50 μm thick LGAD: HGTD structures

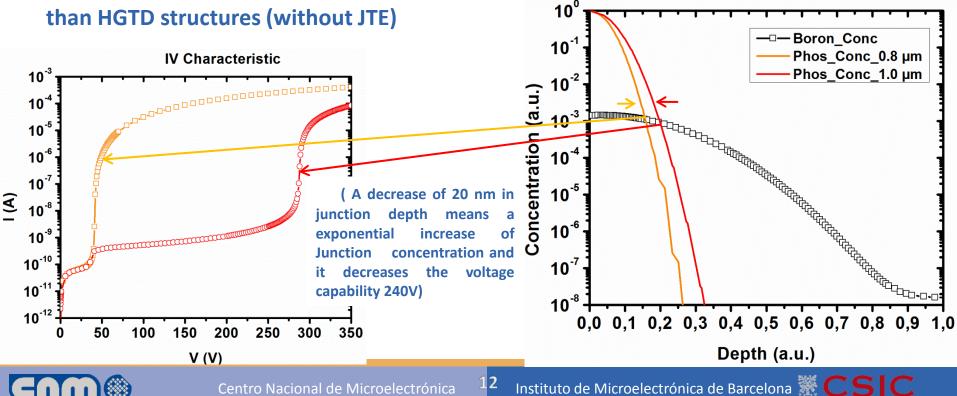
- First 50 µm thick LGAD on SOI Wafers was fabricated at CNM facilities
 - After irradiation, the probability of trapping decreases for thin \checkmark devices.
 - Thin LGAD has boron removal too \checkmark
- First design has a good electrical and timing performance

Low yield \checkmark

Thanks to Gregor for the measurements

castod

Nplus Diffusion


Causes of low yield

Nplus Diffusion

 Electrical simulations of the core region with a different Nplus diffusion depths show a Maximum Electric Field at the Junction Flat Area drastic decrease of voltage capability.

Absence of JTE

✓ LGAD structures (with JTE) shows better yield

2016/11/21

Future Plans: HGTD yield improvement

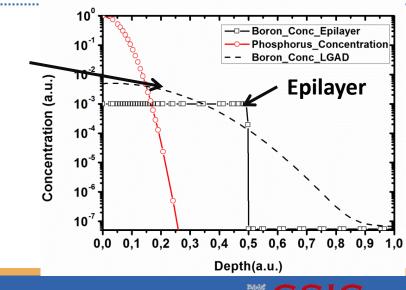
Proposed options to improve the yield of HGTD

New 4" HGTD Fabrication Process

New mask with JTE in all structures and test structures to control the double diffusion

process:

Sheet resistance measurement

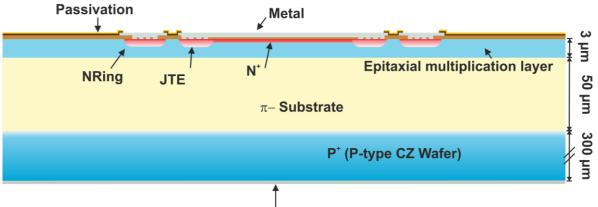

Multiplication layer diffusion.

Boron conc. after Drive-in

of

New 4" p-type epitaxial multiplication layer A constant epilayer doping concentration will reduce the sensitivity to Nplus diffusion depth. Better stability of voltage capability

is expected.



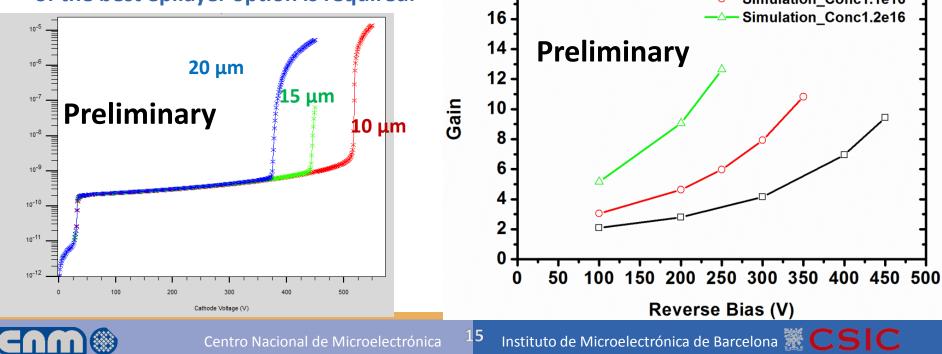
Doping Profile

Future Plans: New 4" p-type epitaxial multiplication layer

Metal

• Advantages:

- ✓ Control of the doping concentration at the N⁺/P junction
- ✓ Simplification of the fabrication process. There will be 2 photolithography steps less and 2 implantation steps less (No PStop, No PWell)
- ✓ Epitaxial wafers have a lower carbon and oxygen concentration than FZ and CZ wafers. Maybe the Boron Removal effect will be less.
- Drawbacks:
 - ✓ JTE is required
 - ✓ New mask design

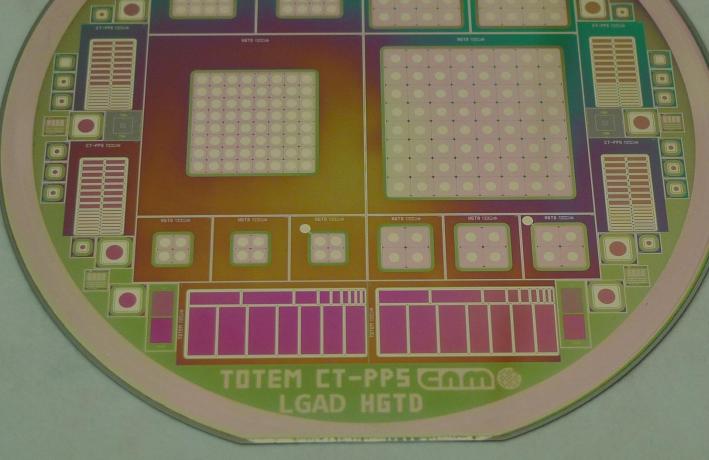


athode Current (/

Future Plans: New 4" p-type epitaxial multiplication layer

- The voltage capability of the structure depends on the inter-cell distance. Simulation shows an increase of voltage capability to 500V when the inter-cell distance is decreased to 10 μm.
- MIP Simulation shows gain. The gain depends on the epilayer doping concentration as well Epi-LGAD Gain
 as the epilayer thickness. A better study
 of the best epilayer option is required.
 18
 16

Conclusions


- The best option for Gallium multiplication layer LGAD was obtained from SIMS Ο data. Furthermore, LGADs with Gallium multiplication layer are under fabrication.
- **Control steps during fabrication processes, such as sheet resistance measurement** Ο of the multiplication layer, are been implemented in new 6" and 4" batches.
- The lack of JTE and variations in Nplus diffusion depth can be the causes of low Ο yield in HGTD batch.
- The introduction of JTE in all structures is one option to improve the HGTD yield. \bigcirc
- Another option is the Epitaxial multiplication layer. Furthermore It could reduce Ο the boron removal after neutron irradiation.

 $\mathbf{16}$

Thank you for your attention !

