

RD50 common project proposal: Thin film-based silicon sensors

Daniel Muenstermann

Motivation

- Radiation-hard silicon sensors are used in larger and larger areas
 - Full tracker replacements for HL-LHC, FCC trackers...
 - Calorimetry see e.g. HGC and as high-granularity direct sensors
 - Timing detectors (e.g. HGTD)
- cost-efficiency of increasing importance
 - visible in efforts to establish production on 8" wafers
- The solar cell industry also uses single-crystalline silicon
 - cost-efficiency requirements much more stringent due to competing substrates

Lancaster 🌌

Universi

- poly-Si, amorphous Si, CdTe, GaAs, …
- single-crystalline Si well-established → look for ways to reduce production cost for both substrate and processing
 - might benefit also particle sensors

Silicon thin films

- Basic idea:
 - grow silicon epitaxially (and fast) to the desired thickness
 - no thinning/waste of silicon
 - free choice of doping (profile)
 - detach and recycle the handling wafer/seed
 - optional, for cost and inactive material reduction
 - possible thanks to porous silicon interface layer
 - process developed by Fraunhofer ISE, now commercialised by Nexwafe
 - cost goal: less than 1 EUR/substrate (156mm x 156mm)
 - currently: R&D substrates from Fraunhofer, soon (2017) Nexwafe pilot production

What to do with the substrate?

- Option 1: standard processing to assess sensor performance and radiation tolerance of a plain/"vanilla" epi substrate
 - inquired with CiS whether they would process such substrates
 - for comparability and cost reduction: could recycle existing mask set
 - frame conditions:
 - 4" wafers (from Fraunhofer ISE's research reactor, for flexible trials)
 - "few 10¹³ cm⁻³" dopant concentrations achievable some 100 Ohm*cm
 - might have to try with Fraunhofer for higher resistivities
 - but probably not really worth it: look at acceptor removal in HV-CMOS...
 - "thin" film up to 200 μm thick, but as thin as we like
 - p⁺-"implant" could be made by epitaxial growth or diffusion from Cz handle wafer
 - could have additional layers → reduction of processing steps
 - n+ layer: etching away n⁺-layer outside of pixels instead of implanting?
 - include "p-spray"-like layer underneath surface?

What to do with the substrate?

- Option 2: cheap substrate for active "CMOS"/TFT sensor?
 - in-pixel (or on-pixel) amplification might allow for thin substrates and/or capacitive coupling of readout chips
 - inquired with TU Dortmund (Electrical Engineering) whether they would want to try out to create CMOS amplifiers on such substrates in their CMOS production street
 - were quite interested in the material
 - existing mask set with test structures could be used
 - am working with collaborators in Mexico on creating classical "TFT" transistors on top of thin-film substrates
 - very cheap technology (think of TFT screens)
 - not clear whether fast/homogenious enough for sensor applications

What to do with the substrate?

Option 3: LGADs?

Talk by Maria del Mar Carulla Areste from CNM yesterday proposed an epi layer on top of 50 µm of high-resistivity silicon for LGADs:

Lancaster 🌌

University

could be grown instead of wafer-to-wafer bonding?

Proposal: Let's try this substrate option

- Long-term goal: Use Nexwafe's substrates
 - n-bulk pilot production expected in Q1 2017
 - p-bulk subsequently, probably Q4 2017
 - most likely only "homogenious" dopant concentrations
 - we are almost parasitic users...
- Short-term goal: Try things out with Fraunhofer-produced substrates

Lancaster 🌌

Univers

- 4" wafers
- flexible dopant profiles
- unfortunately probably expensive: will depend on order size, thickness and dopant profile, but ~few 100 EUR/substrate likely
- Processing options:
 - CiS: classical hybrid pixel sensors
 - TU Dortmund: CMOS production street
 - TFT technology: ZnO transistor-based amplifier trials with Benemérita Universidad Autónoma de Puebla
 - LGADs? CNM? Anyone else?

Draft Proposal

- Joint procurement of substrates from Fraunhofer ISE:
 - 1 batch for CiS: ~18 wafers, divided between
 - 150 µm (ATLAS outer Pixel barrel layers) or 200 µm (ATLAS Pixel EC)?
 - 50 µm (innermost layers, has proven hard to produce)
 - 6 wafers for circuit trials at TU Dortmund, 4 wafers for TFT trials
 - thickness probably not relevant → go for cheapest option (thinnest?)
 - 2 wafers for substrate characterisation
 - SIMS, spreading resistance measuremens, …
- Naive costing estimate:
 - 30 wafers à 500 EUR/wafer (~worst case price): 15 kEUR
 - Sensor processing at CiS with existing mask set: ~10 kEUR
 - CMOS trials at TU Dortmund: Probably in-kind contribution if we provide the substrates
 - TFT trials: in-kind contribution from funded UK-Mexico project
 - LGAD production?
 - substrate characterisations: spreading resistance and SIMS: 2 kEUR?

Initial discussions showed interest from several RD50 groups