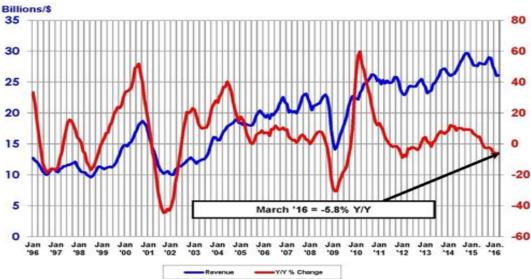
Computing Technology and Markets

Bernd Panzer-Steindel / CTO / CERN

4-Oct-2016

1

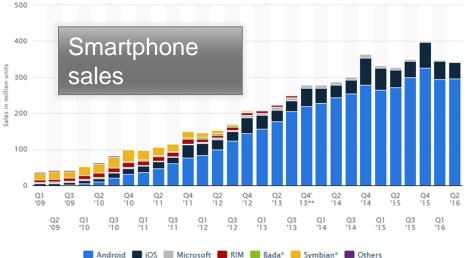
Outline

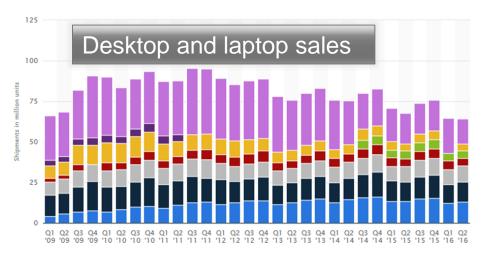

- Semiconductor market
- Device market
- Processors
- Hard Disk
- Solid-State Disks
- Memory
- Tapes
- Server
- Summary
- References

General Market

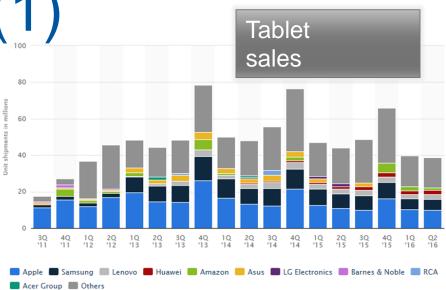
Few companies dominating the markets

Worldwide Semiconductor Revenues




Server CPUs	Intel (99%)	8
FPGA	Xilinx (49%), Intel (38%) source: WS	STS
GPU	Intel (72%), Nvidia (14%), AMD (14%)	
Hard disks	Western Digital (44%), Seagate (40%), Toshiba	
Tape drives	HP, IBM, Oracle	
Tape media	Fujifilm, Sony	
NAND	Samsung (45%), Toshiba, Western Digital, Intel	
DRAM	Samsung (47%), Hynix, Micron/Intel	

Forecast for 2016: -1% Total: ~330 B\$/y

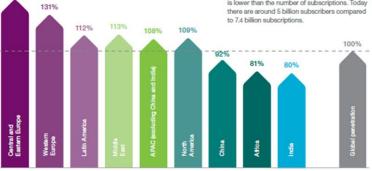


Device Markets (1)

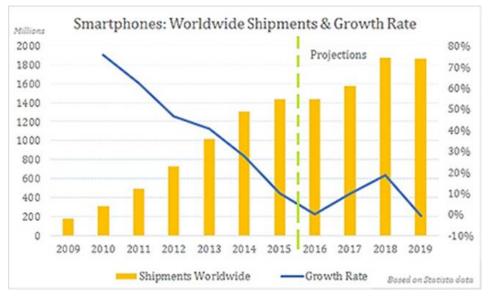
🗖 Lenovo 🔳 HP Inc** 🔲 Dell 📕 Asus* 🧮 Apple 📒 Acer 🔳 Toshiba* 📰 Others


Market saturation: minimal or negative growth rates Longer product lifetimes

Smartphones	0-2 %
Tablets	-12%
Desktops and laptops	-7%
Servers	-3%


4-Oct-2016

Device Markets (2)

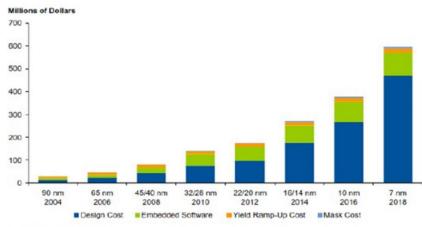


The number of mobile subscriptions exceeds the population in many countries. This is largely due to inactive subscriptions, multiple device ownership or optimization of subscriptions for different types of calls. This means the number of subscriptions. Today there are around 5 billion subscriptions. Today there are around 5 billion subscriptions.

Penetration (percent of population)

Saturation:

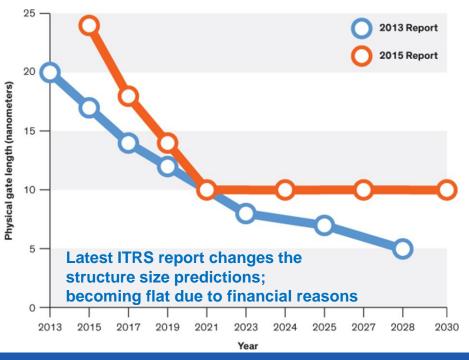
7.3 B phone subscriptions world-wide – more than the population


Replacement bump expected in 2018

144%

Processors (1)

Estimated Cost of Developing Lower Node Chips

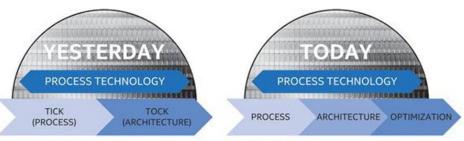

Market Realist

Source: Gartner

		_		-		-		-		-		_		٦
۱.	SMIC													1
н														
	Hitachi	Source: IBS, Inc. (Los Gatos, CA)												
Ц	NEC		SMIC											
	Sony		Sony											T
	NXP		NXP											
П	Infineon		Infineon											1
	Renesas		Renesas		Renesas									
П	Freescale		Freescale		SMIC									T
	TI		TI		TI		SMIC							
П	Fujitsu		Fujitsu		Fujitsu		Fujitsu							٦
	Panasonic		Panasonic		Panasonic		Panasonic							
П	Toshiba		Toshiba		Toshiba		Toshiba		SMIC					T
	UMC		UMC		UMC		UMC		UMC					
П	IBM		IBM		IBM		IBM		IBM		IBM			T
	STM		STM		STM		STM		STM		STM			
П	G'Foundries		G'Foundries		G'Foundries		G'Foundries		G'Foundries		G'Foundries		G'Foundries	T
	TSMC		TSMC		TSMC		TSMC		TSMC		TSMC		TSMC	
П	Samsung		Samsung		Samsung		Samsung		Samsung		Samsung	Т	Samsung	T
L	Intel		Intel		Intel		Intel		Intel		Intel		Intel	
	0.13µm	Т	90nm	Т	65nm	Т	40/45nm	Т	28/32nm	Т	20/22 nm	Г	14/16nm	1
-	2001		2003		2005		2007		2009		2012		2015	-

Non-linear costs for development

- Only four companies able to fabricate 14 nm chips
- 10 nm Samsung fab costs \$14 B



Technology tracking

Figure 4. Dramatic Consolidation of state of the art CMOS Fabs. Source: IBS , Inc. (Los Gatos, CA).

#TheConFab2016

Processors (2)

Intel moved from 2-year cycle to 3 years or more

Incubation Time

Strained Silicon

• 1992-> 2003

• 1996->2007

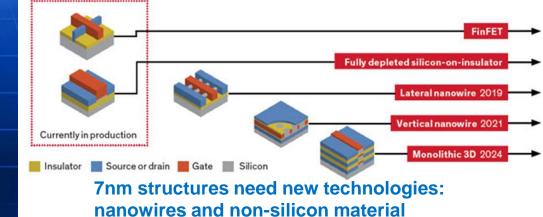
• 1993->2009

• 1997->2011

Raised S/D

MultiGates

HKMG


TSMC (16 nm) Intel (14 nm) Samsung (14 nm LPE) Feature Intel TSMC Samsung Gate length (nm) 24 33 30 Min contacted gate pitch (nm) 90 70 78 Intel transistors are smaller than Fin height under gate (nm) 42 37 37 **TSMC or Samsung** Fin pitch (nm) 43 45 49 Min metal pitch (nm) 52 70 67

16/14 nm finFET Comparison

Decrease of feature size goes along with new material technologies

CERN

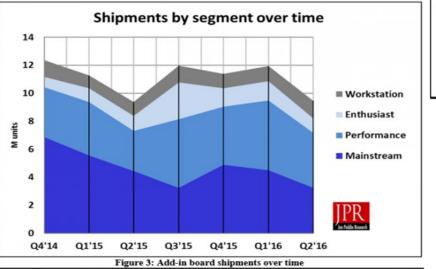
4-Oct-2016

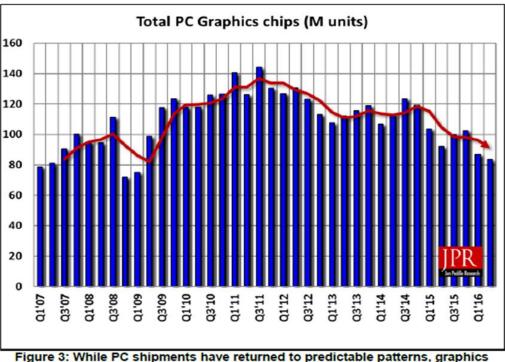
~ 12-15 years

Gate Insulator

1998

Accelerators: GPU (1)


Embedded market shares (CPU+GPU): Intel


72%,

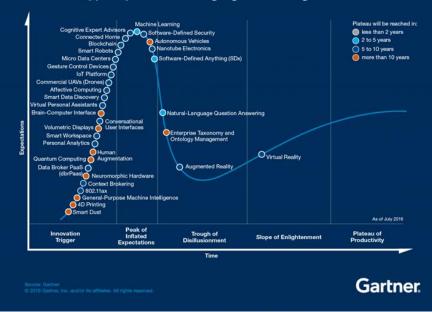
Nvidia 16%, AMD 12%

Discrete GPU cards: Nvidia 77%, AMD 23%

Desktop and notebook shipments declining

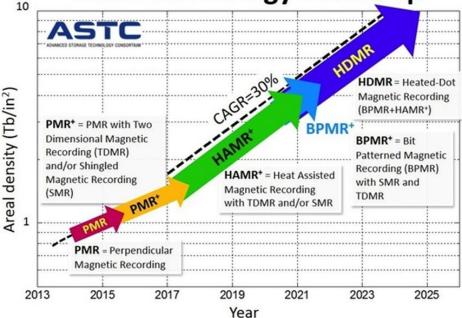
shipments have been erratic and defy any seasonal attributes

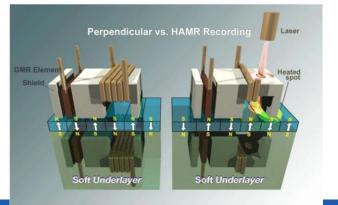
Focus: high-end Gamer (DP and FP16 artificially reduced)


Professional workstation cards and HPC: small niche, ~2 million cards per year (compared to 350 million total GPUs)

Accelerators: GPU (2)

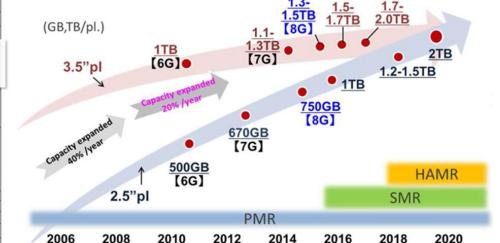
- New focus for graphic cards : machine learning
- Move to FP16 and even INT8 architectures, less precision → 8 bit processing !
- Google TPU Tensor Processing Unit
- New start-ups with special processor designs:
 e.g. KnuEdge, Nervana (just bought by Intel), krtkl, Eyeriss
- Essentially not usable as general purpose processors (online?!)
- Intel changing strategies also for their KnightsXX processors, 'forking' models (increase FP16 and decrease DP) ~100k units per year, very small market
- Qualcomm plans to add neuromorphic chips into the smartphone


Gartner Hype Cycle for Emerging Technologies, 2016



Hard Disks (1)

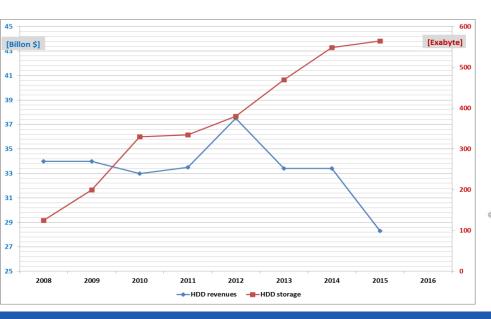
ASTC Technology Roadmap



PMR limit at 1 TbPSI SMR adds ~25%, market small HAMR should provide 5 TbPSI

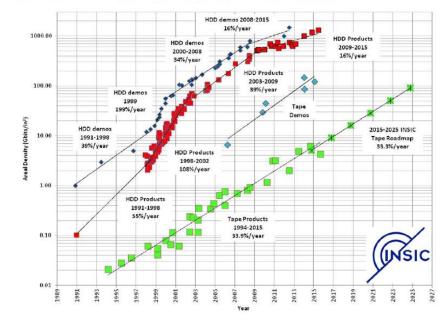
HAMR delayed, production in 2018

Combining bit density (30% annual growth rate) and volume density (number of platters, helium) \rightarrow 100 TB in 2025 conceivable



Hard Disks (2)

Continuous decrease in revenues Forecast changes every year


Gartner's Total HDD Revenue Estimates vs. Stifel Estimates

Areal Density Trends

Chart provided courtesy of the Information Storage Industry Consortium (INSIC)

©2016 Information Storage Industry Consortium - All Rights Reserved

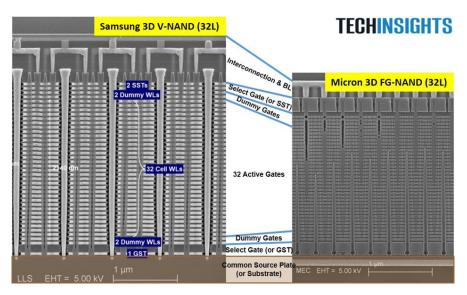
Areal density improvement dropped from ~40% to 16% per year

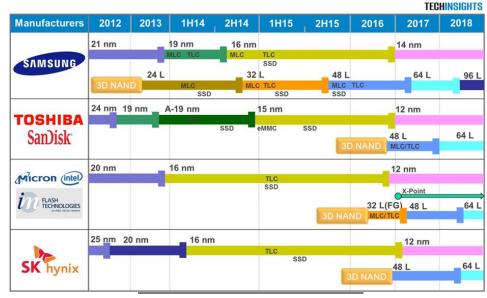
Hard Disks (3)

All numbers are in millions of units, data by Seagate and WD. Shipments of Toshiba are estimates. 63 63 60 60 56 57 54 49 49 49 22 22 22 22 23 23 2 016 2 013 Q2 2013 Q3 2013 Q2 2015 Q3 2015 **24 2015** Q3 2010 δ ő g δ δ б g δ δ Toshiba (estim ate) ____Western Digital Seagate

Shipments of HDDs by Seagate, Western Digital and Toshiba

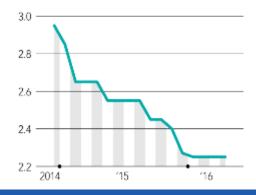
- HDD sales decreasing, related to PC sales decline
- Pressure from SSDs in the notebook area and in the enterprise performance drives (FC, 15krpm)
- Stable sales for capacity cloud drives
- HDD/SSD mergers


 e.g. WesternDigital bought
 SanDisk


Solid-State Disks (1)

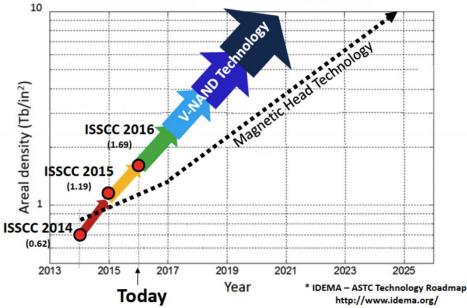
NAND:

- 2D scaling came to an end 2 years ago
- 3D: Samsung 48 layer products in the market; announced 4th generation (64 layers) for next year

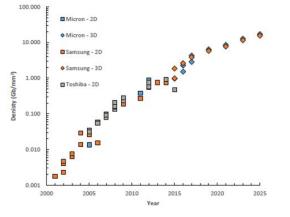


Same name, different technologies and sizes

64-gigabit MLC NAND chip prices

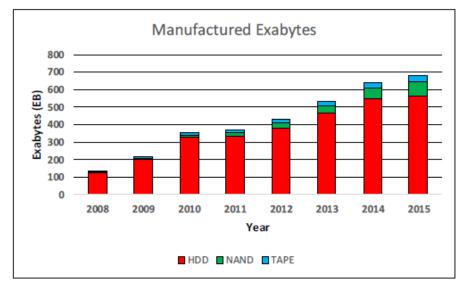

(in dollars per unit)

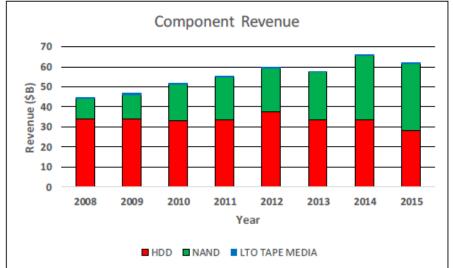
4-Oct-2016


Solid-State Disks (2)


3D NAND – scaling in the third dimension

- 2D NAND scaling beyond 16nm/15nm is uneconomical.
- 3D NAND adds additional layers for scaling in place of 2D lithographic scaling.
- Bit density is continuing to scale with the potential for terabit NAND die.


CKNOWLEDGE LLC



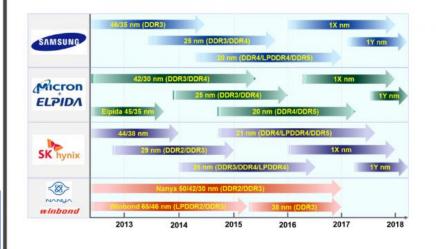
NAND density has surpassed HDD density

Solid-State Disks vs. Hard Disks

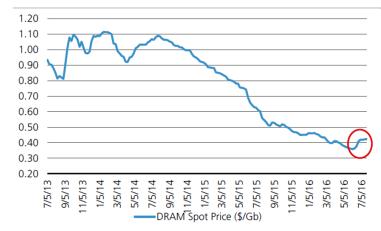
- 14 times more HDD capacity than SSD
- Price per TB decreasing about the same way
- Difference SSD/HDD costs per TB ~5-10 will slowly decrease
- Fab investment of 100-200 B\$ necessary to achieve HDD ExaByte deliveries

Memory: DRAM

Memory technology trend


- · GDDR6 with over 14Gbps, beyond 10Gbps GDDR5
- LP5, 20% more power-efficient than LP4X

DRAM Technology Review



Limited future improvements on performance and energy efficiency

Figure 1: DRAM Spot Price Trend

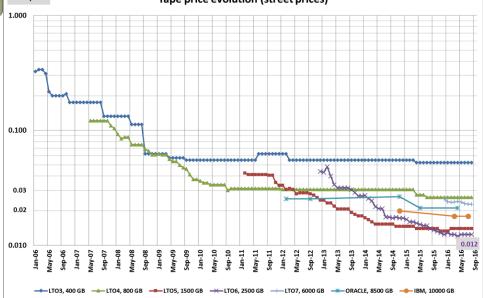
Source: DRAMeXchange

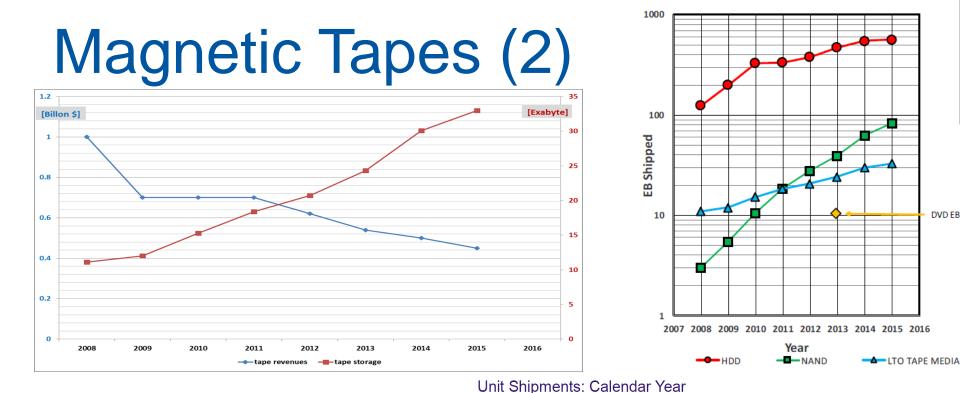
2 Chinese companies will enter the DRAM market in 2017

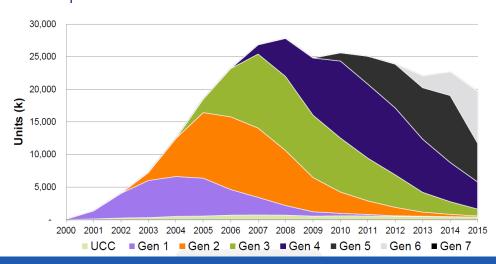
Further price decay likely

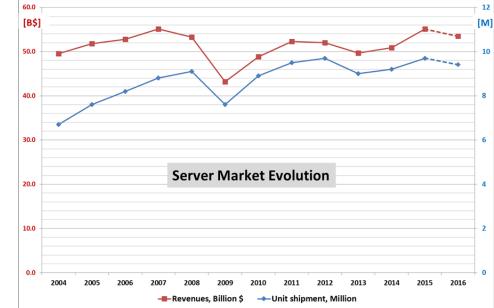
New Memory Technologies

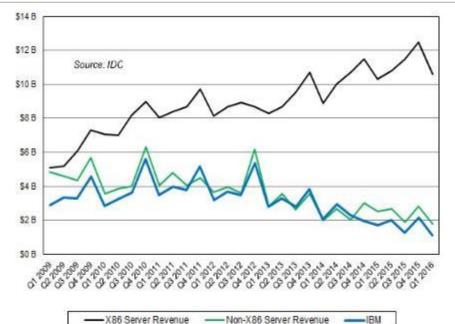
- 3d xpoint: new technology from Intel and Micron, presumably a variant of Phase Change Memory
 Specs are changing: Announcement 2015: 1000x faster, 1000x endurance, 10x denser than NAND IDF 2016: 10x faster, 3x endurance, 4x denser than NAND
 Will enter the high end server market in Q1 2017
- Memristors: developed since 2008; HPE now collaborating with SanDisk (ReRAM)
- Spin torque MRAM in larger production units available (Everquest + Globalfoundries) Low density and high price
- Tantalum memory, Rice University
- RRAM or ReRAM, various new categories being developed: Oxide RAM (OxRAM), Conductive-Bridge RAM (CBRAM) or Self-Rectifying Cells (SRC)
- → But... NAND fab investments are high, extended technology lifetime with 3D, hard to replace in the short term


Magnetic Tapes (1)

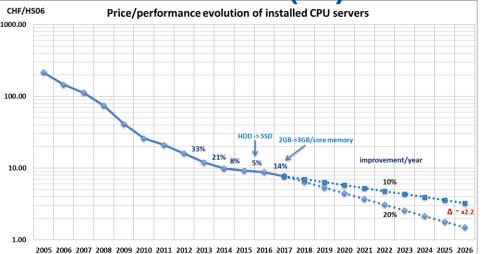

TAPE: source NSIC 2013


- Enterprise drives: Oracle 2017: 8.5 TB → 12 TB IBM 2018: 10 TB → 16 TB
- Technology in the lab: Fujifilm 154 TB, Sony 185 TB, IBM 220 TB
- Good improvements of price/capacity


- More NAND than LTO shipped
- Steady decrease of tapes shipped and revenues
- Will Oracle and/or IBM sell or drop these products?



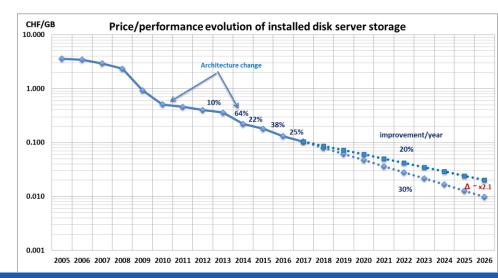
Servers (1)


- Server market is saturated: flat revenues and unit shipments
- High profit market
- Single vendor: Intel, 99% market share
- Several initiatives to change that:
- OpenPower (IBM): consortium with many members
 - But revenues still going down, little impact so far
 - Announcement of POWER9 might help
- ARM server:
 - AppliedMicro, Qualcomm, Cavium: new high end products Announcements for 2H2017 (third ARMv8 Wave 2017-2018), First two waves had little impact
 - Phytium (China), "Mars" processor
- AMD with new processor design (Zen) in 2017
- Fujitsu ARM-powered supercomputer
 - Add large vector instructions to the ARM design
 - Aimed for 2020, now ~2022

CERN

Servers (2)

Moore's Law and Kryder's Law are slowing down


- 18 months \rightarrow >= 3 years
- Real cost/performance evolution driven by financial and market aspects rather than technology

Preliminary extrapolation of CPU and disk server costs (based on CERN procurements)

Pessimistic and reasonable improvement extrapolations

Influence of changing software and hardware architecture requirements to be taken into account (programs, data model, data centre, ...)

e.g. CERN moves from 2 to 3 GB/core (+8% cost), Driven by experiment usage AND technology boundary conditions

Summary (1)

- Device markets (smartphones, tablets, PCs, notebooks, servers, HPC) saturated – negative growth
 - Replacement market
- Moore's Law in trouble, financial issues
 - Not clear how this effects price/performance evolution
 - So far okay for CPU and disk servers
- Technology improvements still continuing, but requires high CAPEX
 End-product price tag evolution more complicated
- Market dominance of few companies increases, competition diminishing

References

http://electroiq.com/blog/2016/05/global-semiconductor-sales-increase-slightly-in-march/

http://www.statista.com/statistics/266219/global-smartphone-sales-since-1st-quarter-2009-by-operating-system/

http://www.statista.com/statistics/263393/global-pc-shipments-since-1st-guarter-2009-by-vendor/

http://www.statista.com/statistics/276651/global-media-tablet-shipments-since-3rd-quarter-2011-by-vendor/

https://www.ericsson.com/res/docs/2016/ericsson-mobility-report-2016.pdf

http://www.nasdaq.com/article/the-evolution-of-smartphone-markets-where-growth-is-going-cm619105

http://www.potomacinstitute.org/steps/images/PDF/Articles/FritzeSTEPS_2016lssue3.pdf

http://www.pcper.com/news/Processors/Intel-officially-ends-era-tick-tock-processor-production

http://semimd.com/chipworks/

http://www.extremetech.com/extreme/223022-the-myths-of-moores-law

http://www.forbes.com/sites/gartnergroup/2016/08/29/track-three-trends-in-the-2016-gartner-hype-cycle-for-emerging-technologies/#59fc4d787286

http://jonpeddie.com/publications/market_watch

http://www.anandtech.com/show/10613/discrete-desktop-gpu-market-trends-g2-2016-amd-grabs-market-share-but-nvidia-remains-on-top

http://www.computerworld.com/article/3041947/data-storage/how-these-technologies-will-blow-the-lid-off-data-storage.html

http://www.computerworld.com/article/2852233/want-a-100tb-disk-drive-youll-have-to-wait-til-2025.html

http://www.anandtech.com/show/9866/hard-disk-drives-with-hamr-technology-set-to-arrive-in-2018

http://www.theregister.co.uk/2016/05/31/hdd_revenues_to_plummet_as_ssd_penetration_rises/

http://www.anandtech.com/show/10315/market-views-hdd-shipments-down-q1-2016

http://www.trendfocus.com/ssd-cq116_update/

http://www.forbes.com/sites/tomcoughlin/2016/02/03/flash-memory-areal-densities-exceed-those-of-hard-drives/#5dc24d2b4026

http://www.anandtech.com/show/10589/hot-chips-2016-memory-vendors-discuss-ideas-for-future-memory-tech-ddr5-cheap-hbm-more

http://asia.nikkei.com/Business/Trends/NAND-flash-memory-prices-likely-to-climb-again

http://www.techinsights.com/techinsights/about-techinsights/articles/deep-dive-into-the-intel-micron-3D-32L-FG-NAND/

http://amigobulls.com/articles/micron-technology-inc-stock-is-the-next-big-idea-for-2016

http://wccftech.com/micron-compete-samsung-16-nm-dram/

http://storageconference.us/2016/Slides/BobFontana.pdf

http://searchsolidstatestorage.techtarget.com/feature/New-memory-technologies-generate-attention-as-successors-to-NAND-flash

http://www.itjungle.com/tfh/tfh061316-story05.html

http://www.forbes.com/sites/tomcoughlin/2016/01/15/digital-storage-projections-for-2016-part-2/2/#35b1916a3aa8

http://www.lto.org/wp-content/uploads/2016/03/LTO_Media-Shipment-Report_3.22.16.pdf

http://semiaccurate.com/2016/09/12/intels-xpoint-pretty-much-broken/

