Instrumentation

- Introduction

- Particle ID
- Particle Energy measurement

Particle momenta measurement

The 'Real' World of Particles

W. Riegler:

"...a particle is an object that interacts with your detector such that you can follow it's track,
it interacts also in your readout electronics and will break it after some time,
and if you a silly enough to stand in an intense particle beam for some time you will be dead ..."

- "New directions in science are launched by new tools much more often than by new concepts.
- The effect of a concept-driven revolution is to explain old things in new ways.
- The effect of a tool-driven revolution is to discover new things that have to be explained" Freeman Dyson

How can a particle detector distinguish the hundreds of particles that we know by now?

$$
\begin{aligned}
& \gamma, W^{ \pm}, z^{0}, g, e, \mu, y_{1} \nu_{e_{1}} \nu_{\mu_{1}} \nu_{3}, \pi^{ \pm}, \pi^{0}, y, f_{0}(660), g(z / 0), \\
& \omega(782), y^{\prime}(358), f_{0}(980), a_{0}(980), \phi(1020), h_{1}(1170), b_{1}(1235) \text {, } \\
& a_{1}(1260), f_{2}(1270), f_{1}(1285), y(1295), \pi(1300), a_{2}(1320), \\
& f_{0}(1370), f_{1}(1420), \omega(1420), \eta(1440), a_{0}(1450), \rho(1450), \\
& f_{0}(1500), f_{2}^{i}(1525), \omega(1650), \omega_{3}(1670), \pi_{2}(1670), \phi(1680) \text {, } \\
& \varphi_{3}(1690), \rho(1700), f_{0}(1710), \pi(1800), \phi_{3}(1850), f_{2}(2010) \text {, } \\
& a_{4}(2040), f_{4}(2050), f_{2}(2300), f_{2}(2340), K^{ \pm}, K^{0}, K_{5}^{0}, K_{L}^{0}, K^{*}(892) \text {, } \\
& K_{1}(1270), K_{1}(1400), K^{*}(1410), K_{b}^{*}(1430), K_{2}^{*}(1430), K^{*}(1680) \text {, } \\
& K_{2}(1770), K_{3}^{*}(1780), K_{2}(1820), K_{4}^{*}(2045), D^{ \pm}, D^{0}, D^{*}(2007)^{0} \\
& D^{*}(2010)^{ \pm}, D_{1}(2420)^{0}, D_{2}^{*}(2460)^{\circ}, D_{2}^{k}(2460)^{ \pm}, D_{s}^{ \pm}, D_{s}^{* \pm}, \\
& D_{s 1}(2536)^{ \pm}, D_{s,}(2573)^{ \pm}, B^{ \pm}, B^{0}, B^{*}, B_{s}^{0}, B_{c}^{ \pm}, y_{c}(15), J / \psi(15) \text {, } \\
& x_{c o}(1 P), x_{c_{1}}(1 P), x_{c_{3}}(1 P), \psi(25), \psi(3770), \psi(4040), \psi(4160) \text {, } \\
& \psi(4415), r(1 S), x_{b o}(1 P), x_{b_{1}}(1 P), x_{b_{2}}(1 P), r(2 S), x_{b_{0}}(2 P) \text {, } \\
& \chi_{32}(2 P), r(35), r(45), r(10860), r(11020), p, n, N(1440) \text {, } \\
& N(1520), N(1535), N(1650), N(1675), N(1680), N(1700), N(1710) \text {, } \\
& N(1720), N(2190), N(2220), N(2250), N(2600), \Delta(1232), \Delta(1600) \text {, } \\
& \Delta(1620), \Delta(1700), \Delta(1905), \Delta(1910), \Delta(1920), \Delta(1930), \Delta(1950) \text {, } \\
& \Delta(2420), \Lambda, \Lambda(1405), \Lambda(1520), \Lambda(1600), \Lambda(1670), \Lambda(1690), \\
& \Lambda(1800), \Lambda(1810), \Lambda(1820), \Lambda(1830), \Lambda(1890), \Lambda(2100) \text {, } \\
& \Lambda(2110), \Lambda(2350), \Sigma^{+}, \Sigma^{0}, \Sigma^{-}, \Sigma(1385), \Sigma(1660), \Sigma(1670) \text {, } \\
& \sum(1750), \sum(1775), \sum(1915), \sum(1940), \sum(2030), \sum(2250), \text { 玉 }^{0}, \Sigma \text {, }
\end{aligned}
$$

$$
\begin{aligned}
& \Lambda_{c}^{+}, \Lambda_{c}^{+}, \Sigma_{c}(2455), \Sigma_{c}(2520), \bar{\Sigma}_{c}^{+}, \bar{\Sigma}_{c}^{0}, \bar{\Sigma}_{c}^{+}, \bar{E}_{c}^{0}, \Sigma_{1}(2645) \\
& \bar{I}_{c}(2790), \bar{\Xi}_{c}(2815), \Omega_{c}^{0}, \Lambda_{b}^{0}, \bar{\Xi}_{b}^{0}, \bar{\Xi}_{b}^{-}, t \bar{t}
\end{aligned}
$$

There ore Mony move

These are all the known 27 particles with a lifetime that is long enough such that at GeV energies they travel more than 1 micrometer.

By 1959: 20 particles

```
\(\theta^{-}\): fluorescent screen
```

n : ionization chamber

7 Cloud Chamber:
\mathbf{e}^{+}
μ^{+}, μ^{-}
K^{0}
Λ^{0}
Ξ
Σ^{-}

2 Bubble Chamber:

Ξ^{0}
 Σ^{0}

3 with Electronic techniques:
anti-n
anti-p
π^{0}
\mathbf{K}^{+}, \mathbf{K}^{-}
6 Nuclear Emulsion:
π^{+}, π^{-} anti- Λ^{0}
Σ^{+}

The 8 Particles a Detector must be able to Measure and Identify

- Electrons ionize ond show Bremsstrahluy ave to the smoll mess
- Photons don't ionise but show Peir Production in high z Molevial. Fron ter on equal to $e^{ \pm}$
- Chorgar Hosrons ionite ond shaw Hadron Shower in derse roleviel.
- Neulval Hoslors dou'l ionize ona show Habror Shower in Cense Moterial
- Myons ionise oud Con'l shower

Basic particle interactions in detector processes LM

Ionization:

Electron

Pair
production:

Nucleus

Compton scattering:

Photon

Electron

Every effect of particles or radiation can be used as a working principle for a particle detector. Claus Grupen

NOBEL PRIZES FOR INSTRUMENTATION

http://www.lhc-closer.es/ php/index.php?
$\mathrm{i}=1 \& \mathrm{~s}=9$ \&p=2\&e=0

1927: C.T.R. Wilson, Cloud Chamber

1939: E. O. Lawrence, Cyclotron

1948: P.M.S. Blacket, Cloud Chamber

1950: C. Powell Photographic Method

1954: W. Bothe Coincidence method

1960: Donald Glaser, Bubble Chamber

1968: L. Alvarez Hydrogen Bubble Chamber

1992: G. Charpak Multi Wire Prop. Chamber

2009: W. S. Boyle \& G. E. Smith
CCD sensors

Start of a HEP experiment, one needs

Clear and easy understandable drawings
(0). Walona/2006

and a cafeteria

Physicists to operate detector/analyze data
 the detectors
Q. 90.alana/2006

HEP Experiment: Simplified View

The interesting things ("the dinosaurs" - HIGGS and New Particles) disappear almost instantly.
We "see" the resulting particles - so we have to be like detectives - precisely reconstruct particle tracks in the detector to understand what happened !

Concepts for the detector

- For which Physics? - =>detector structure and organisation
- Higgs $=>$ one require $=>$ photon and lepton reconstruction
- Top =>one require => lepton and jets reconstruction
- SUSY $\Rightarrow>$ one require $=>$ soft leptons, jets and Missing transverse energy
- B mesons =>one require =>.....
- In which environment?
- => electronics, granularity, size ...
- Radiation level
- Accessibility limited sitting on the Collider
- A difficult compromise : look for the best performance within a given budget and feasibility
- => Real detector

Physics case 1: Higgs => 2 photons +4 leptons LU

- Reconstruct and identify isolated photons and leptons in a huge hadronic background (large pileup).

Questions:

- How to measure the photon energy with precision. $\underline{I s a}$ tracker necessary?
- Which is the dominant background and how do I get rid of it?
- What kind of calorimeter do I need

The response is straight forward Best tracking system and Best Electromagnetic calorimeter

- In a cascade disintegration : look for soft leptons and large number of jets as well as "Missing ET"

- Other Physics and technical goals :
- Blast of Higgs sector
- Extra dimensions
- Vector Boson fusion
<== Impose constraints
- Forward Physics
- tau lepton reconstruction algorithms
- live at very high luminosity

Challenges

boson

\square Inelastic: $10^{9} \mathrm{~Hz}$
\square Higgs ($100 \mathrm{GeV} / \mathrm{c}^{2}$): 0.1 Hz
\square Higgs ($600 \mathrm{GeV} / \mathrm{c}^{2}$): $10^{-2} \mathrm{~Hz}$
\square Selection : 1:1010-11
\square Operate in high radiation environment
\square Resolve 20-25 superimposed events per BX
\square High granularity detectors
\square Fast electronics/detectors (25 ns)

Energy scale crucial!

Particle detector concept (1)

All detector concept are based on basic knowledge of particle interactions with matter. Most involved processes are implying : electromagnetic interaction, ionisation, excitation, photo-electric effects, pair creation, bremsstrahlung, Cerenkov effect, transition radiation....

- The detector construction
- result from a detailed study of all types of particles propagation through the detector
- and the confirmation of the prediction by the results obtained in a test beam
- The detector should be as radiation hard as possible :
- it's a strong constraint on the detector material and on the electronics

Particle Detector concept (2)

- What determines the Size, Material and Geometry of the Detector?
- Impact Parameter Measurement
- Momentum Measurement
- Energy Measurement
- Muon Measurement

Material budget

- Constraints
- Multiple scattering which has to be reduced as much as possible
- Impact Parameter resolution
(Secondary Vertex)
- Lever arm and Magnetic Field for Momentum Measurement
- Material budget

LHC detectors must have fast response

- Otherwise will integrate over many bunch crossings \rightarrow large "pile-up"
- Typical response time : 20-50 ns
\rightarrow integrate over 1-2 bunch crossings \rightarrow pile-up of 25-50 min-bias
\rightarrow very challenging readout electronics
LHC detectors must be highly granular
- Minimize probability that pile-up particles be in the same detector element as interesting object (e.g. γ from $\mathrm{H} \rightarrow \gamma$ decays)
\rightarrow large number of electronic channels
\rightarrow high cost
- LHC detectors must be radiation resistant:
- high flux of particles from pp collisions \rightarrow high radiation environment e.g. in forward calorimeters:
- up to $10^{17} \mathrm{n} / \mathrm{cm}^{2}$ in 10 years of LHC operation
- up to $10^{7} \mathrm{~Gy}(1 \mathrm{~Gy}=$ unit of absorbed energy $=1 \mathrm{Joule} / \mathrm{Kg})$

Measure stable and quasi-stable particles (e, v, μ, π, K, p, n, v): Kinematics (momentum and/or energy)
The way particle interacts with / passes through detectors

All other particles reconstructed via their decays to (quasi-) stable particles:
Invariant mass of the system of daughter particles

+ Decay vertex separated from production vertex for some particles decaying via weak interaction

Main goal of instrumentation for HEP :
Precisely/fast measure kinematics of (quasi-) stable particles
Unambiguously/fast identify them

> For that:

We study how particles interact with the matter
and

We choose the detector technologies that match the physics tasks

- Protons are composite

Partons (valence+sea quarks, gluons) carry longitudinal momentum fraction of the proton (x)
Longitudinal parton momenta are unknown

- Parton distribution functions (PDFs): estimate the momentum fraction carried by a parton inside the proton

What do we want to measure

- Number of particles
- Event topologie
- momentum / Energie
- Particle identity
- Transverse Missing energy/momentun

Can't be achieved with a single detector

Integrate detectors to a detector system

Exemple : Atlas and CMS Detector

Muon Detectors

Electromagnetic Calorimeters

Solenoid
Forward Calorimeters
Detector characteristics Width: $\quad 44 \mathrm{~m}$ Diameter: 22m Weight: \quad 7000t End Cap Toroid

- Large volume for precise charged tracks measurement
- Strong magnetic field
- Hermetic
- Best stand alone muon chambers system
- Highly segmented
- Radiation hard

The $\mathcal{E F C}$ Spectrometers: Triumph of Instrumentation

the largest and most complex "microscopes" we've ever built

The detectors together have 140 million data channels observing at 40 million times a second.

Particle detection

Particles characteristics are measured through different type of detectors and identified thanks to specific behaviours due to their interaction with matter

γ, e, jets (q,g), missing energy (e.g. v), are detected with calorimeters

- Use of a magnetic field

Obvious now but UA2 (SPS) and D0 (run I) had no magnetic field !!!

- Use of position detectors :
- gazeous : multi wires chambers, Time Projection chambers, drift tube
- Solid : Silicium detectors
- Try to do if possible a non destructive measurement
$==>$ minimize the amount of material in the detector itself
- Use calorimetry for the Energy measurement
- A coverage of full solid angle (no cracks, fine segmentation...)
- A measurement of momentum and/or energy
- Detect, track and identify the particles (mass, charge, decay length)
- Fast, no dead time and no dead regions
- Such an ideal detector does not exist! Conception of a detector is a compromise between
- Detectors technologies (advantage/disadvantage)
- Space allocated
- Cost
- An optimized detector should provide all characteristics of the end products of a collision. Therefore it needs :
- Monte Carlo simulation (Geant4) and
- test of prototypes in beam lines are keys elements of the conception of a detector

Precise knowledge of the processes leading to signals in particle detectors is necessary.
The detectors are nowadays working close to the limits of theoretically achievable measurement accuracy - even in large systems.

Due to available computing power, detectors can be simulated to within 5-10\% of reality, based on the fundamental microphysics processes (atomic and nuclear crossections)
e.g. GEANT, FLUKA, MAGBOTLZ, HEED, GARFIELD

Particle Detector Simulation

Electric Fields in a Micromega Detector

Electrons avalanche multiplication

Very accurate simulations of particle detectors are possible due to availability of Finite Element simulation programs and computing power.

Follow every single electron by applying first principle laws of physics.

For Gaseous Detectors: GARFIELD by R. Veenhof

Electric Fields in a Micromega Detector

Towards detector definition

Lets look how were build the LHC detectors

Muon Detectors Electromagnetic Calorimeters

The Compact Muon Solenoid (CMS)

Creation of the Signal

Detectors based on Registration of Ionization: Tracking in Gas and Solid State Detectors

- Charged particles leave a trail of ionization (and excited atoms) along their path: Electron-Ion pairs in gases and liquids, electron hole pairs in solids.
- The produced charges can be registered what provide a Position measurement in the Tracking Detectors.
- Cloud Chamber: Charges create drops => photography.
- Bubble Chamber: Charges create bubbles => photography.
- Emulsion: Charges 'blacked' the film.
- Gas and Solid State Detectors: Moving Charges (electric fields) induce electronic signals that can be read by dedicated electronics.
- In solid state detectors the charge created by the incoming particle is sufficient.
- In gas detectors (e.g. wire chamber) the charges are internally multiplied in order to provide a measurable signal.

Electromagnetic Interaction of Particles with Matter

Interaction with the atomic electrons. The incoming particle loses energy and the atoms are excited or ionized.

Interaction with the atomic nucleus. The particle is deflected (scattered) causing multiple scattering of the particle in the material. During this scattering a Bremsstrahlung photon can be emitted.

Electromagnetic Interaction of Particles with Matter

- Ionization and Excitation:

Charged particles traversing material are exciting and ionizing the atoms.

- The average energy loss of the incoming particle by this process is to a good approximation described by the Bethe Bloch formula.
- The energy loss fluctuation is well approximated by the Landau distribution.
- Multiple Scattering and Bremsstrahlung:
- The incoming particles are scattering off the atomic nuclei which are partially shielded by the atomic electrons.
- Measuring the particle momentum by deflection of the particle trajectory in the magnetic field, this scattering imposes a lower limit on the momentum resolution of the spectrometer.
- The deflection of the particle on the nucleus results in an acceleration that causes emission of Bremsstrahlungs-Photons. These photons in turn produced ede- pairs in the vicinity of the nucleus, which causes an EM cascade. This effect depends on the ${ }_{38}{ }^{\text {nd }}$ power of the particle mass, so it is only relevant for electrons.
- Cherenkov Radiation:
- If a particle propagates in a material with a velocity larger than the speed of light in this material, Cherenkov radiation is emitted at a characteristic angle that depends on the particle velocity and the refractive index of the material.
- Transition Radiation:
- If a charged particle is crossing the boundary between two materials of different dielectric permittivity, there is a certain probability for emission of an X-ray photon.
- The strong interaction of an incoming particle with matter is a process which is important for Hadron calorimetry and will be discussed later.

Knowing the basic principles of interaction of particles with matter you can

- understand detector performance to 20% level 'on the back of an envelope'.
- In addition it's a crucial knowledge when you think about a new instrumentation ideas.
- It is up to you to design the next generation of particle detectors!

Particle identification (1)

- What other information do we need?
- Since the interactions of charged hadrons are similar, the most direct way to distinguish them is to determine their (rest) mass
- Their momentum is measured by the tracking system, so this is equivalent to determining their velocity, since $p=\gamma \mathrm{m} v$, so $\mathrm{m}=\mathrm{p} / \gamma \mathrm{v}=\mathrm{p} / \gamma \beta \mathrm{c}$
- There are four main processes that depend on the velocity of a particle :

1. Most direct is to measure the Time Of Flight (TOF) of the particles over a fixed distance
2. Alternatively one can look at the detail of their interaction with matter The main source of energy loss is via Ionization ($d E / d x$)
3. If the velocity of the particle changes compared to the local speed of light it will radiate photons, detected as Transition radiation
4. If a particle travels at greater than the local speed of light, it will radiate Cherenkov radiation
-For low-momentum- typically up to a few GeV

- charged particles can be identified by processes that depend on their velocity (β).
- A simultaneous measurement of $\mathrm{p}=\beta \gamma \mathrm{m}$ and β allows extracting the mass.
- For momenta above a few GeV,
- pions, kaons, and protons cannot be separated.
- However electrons, muons, hadrons, and neutrinos interact differently with the matter. The measurement of their energies and/or momenta depend from their different modes of interaction.

Interaction with matter :

-. . Interaction of photons : (for detaits clic
-S. Nuclear Interactions: (for details clic

Partucle ID : Experimental Challenge

 Objects for Top Quark identification- Mainly produced in pairs via strong interactions: ttbar

- Top quark decays via the electroweak interactions

- Final state characterized by the decay of the W boson
- Dilepton (lepton $=$ e or μ) (7%) : 2 leptons, 2 b quarks, 2 neutrinos
- Lepton+Jets (lepton $=\mathrm{e}$ or $\mu)(34 \%): 2 \mathrm{~b}$ quarks, 2 light quarks, 1 lepton, 1 neutrino
- All-Jets (44\%): 2 b quarks, 4 light quarks

Needed Objects

- electrons
- muons
- b quarks
- Jets
- ETmiss

Object reconstruction

- Object reconstruction
- Tracking
- finding path of charged particles through the detector
- Calorimeter reconstruction
- finding energy deposits in calorimeters from charged and neutral particles
- Combined reconstruction : tracker + calorimeter informations
- Electron/Photon identification
- Muon identification
- Jet finding
- Calibrations and alignments applied at nearly every step (see lectures 2 and 3)

Requirements based on b-jets parameters
-B hadrons lifetime : average of $\sim 1.6 \mathrm{ps}$
-semi-leptonic fraction $\sim 10 \%$ for e, and 10% for μ
-c $\tau=470$ microns \rightarrow impact parameter $\mathrm{d} \sim 100$ microns
-need accuracv : <20 microns on d

Accuracy limited by
-lever arm,
-granularity,

- number of layers

Solution:
-3 layer pixel detector

-first layer as close as possible to beam pipe
-single hit accuracy < 15 microns in $\mathrm{r} \varphi$
-equipped with fast electronics
Beware -of radiation damage
-multiple scattering in material
-power dissipation

Objects: Electrons ID

- Signature
- Energy deposited in EM Calorimeter
- Track pointing at the energy deposition and with momentum consistent with calorimeter energy
- Little or no energy in hadronic calorimeter
- Backgrounds
- Jets
- Early showering charged pions
- Conversions: $\pi^{0} \rightarrow \gamma \gamma \rightarrow \mathrm{ee}+\mathrm{X}$
- Semileptonic b-decays
- Photon conversions
- Photons similar to electrons

- Signature
- Track passes through all the detectors and is reconstructed in muon spectrometer
- Minimum ionizing energy deposits in EM ad HAD calorimeter
- Track match between inner tracker and muon spectrometer
- Backgrounds
- Decays in flight: π and K decays inside jets
- Punchthrough
- Cavern background (LHC)

- Identifying muons

- Matching of track parameters between inner detector and muon system powerful at high p_{T}
- Verification of minimum ionizing energy in calorimeter
- Performance
- Measured using Z's
- 60-100\% depending on $|\eta|$

Objects: Jets ID

- Measurement of the kinematics of a hard parton emission requires
- Reconstruction:

One needs : best matching to hard parton and jet identification. Many algorithms available: Cone, midpoint, KT

- Scale:
calibration of the energy response, minimizing the measurement error
- Resolution:
different reconstruction algorithms provide varied performance in the precision of the energy measurement
- Reconstruction and Energy Scale are fundamental for precision measurements. Resolution is critical for the successful identification of low S/B signal

Objects: Neutrino ID

- Signature
- No interaction in the detector
- Reconstruction
- Look for momentum imbalance and assign the missing momentum to the v
- But in hadron colliders, limited to using only the 2 transverse components of the momentum $->\mathrm{p}_{\mathrm{T}}$
- ETmiss Resolution depends on calorimeter resolution
- Degrades with detector imperfection (cracks) and pile up

- Efficiency

- how often do we reconstruct the object - e.g. tracking efficiency

Efficiency = (Number of Reconstructed Tracks) / (Number of True Tracks)

Important figures of merit for reconstructed objects

- Efficiency

- how often do we reconstruct the object - e.g. tracking efficiency
- Resolution
- how accurately do we reconstruct it - e.g. energy resolution

Energy resolution = $($ Measured_Energy - True_Energy)/ True_Energy

- Efficiency
- how often do we reconstruct the object - e.g. tracking efficiency
- Resolution
- how accurately do we reconstruct a quantity - e.g. energy resolution
- Fake rate
- how often we reconstruct a different object as the object we are interested in - e.g. a jet faking a electron

Fake rate $=$ (Number of jets reconstructed as an electron) / (Number of jets)

- Efficiency

- how often do we reconstruct the object - e.g. tracking efficiency
- Resolution
- how accurately do we reconstruct a quantity - e.g. energy resolution
- Fake rate
- how often we reconstruct a different object as the object we are interested in - e.g. a jet faking a electron
- For physics analysis it is important to have high efficiency, good resolution, and low fake rates
- It is not easy to be able to measure the efficiencies, resolutions and fake rates and their uncertainties
- Robust against detector problems
-Noise
-Dead regions of the detector
- Be able to run within the computing resources limitations
-CPU time per event
- M F emory use

- Particle identification is a crucial aspect of most high energy physics experiments, in addition to tracking and calorimetry
- Short-lived particles are reconstructed from their decay products
- Most long-lived particles seen in the experiment can be identified from their signatures in the various different detectors
- Distinguishing the different long-lived charged hadrons ($\pi, \mathrm{K}, \mathrm{p}$) is more challenging, and usually requires dedicated detectors
- Their identification is based on four main processes:

TOF, $\mathrm{dE} / \mathrm{dx}$, Transition radiation and the Cherenkov effect

- Particle physics, 'born' with the discovery of radioactivity and the electron at the end of the $19^{\text {th }}$ century, has become 'Big Science’ during the last 100 years.
- A large variety of instruments and techniques were developed for studying the world of particles.
- Imaging devices like the cloud chamber, emulsion and the bubble chamber took photographs of the particle tracks.
- Logic devices like the Geiger Müller counter, the scintillator or the Cerenkov detector were (and are) widely used.
- Through the electronic revolution and the development of new detectors, both traditions merged into the 'electronics image'in the 1970ies.
- Particle detectors with over 100 million readout channels are operating now at LHC.
which particles are the most penetrating? depending on energy?
what particle qualities (mass, charge...) are the most important for the interaction with matter
* how to distinguish photons and electrons at 100 GeV in matter?
compare decay and interaction probability for GeV pion
compare $\lambda_{\text {hatr }}$ and x_{0} sizes of e.m. and hadronic showers
multiple scattering angle vs. momentum of particle, vs. thickness of absorber
compare ratio of particle energies to masses in hadronic and e.m. showers
draw dE/dx from Bethe-Bloch for muons in iron in the range of 0.1 to 100 GeV

To extend your knowledge

Text books (a selection)

- C. Grupen, B. Shwartz, Particle Detectors, 2nd ed., Cambridge University Press, 2008
- G. Knoll, Radiation Detection and Measurement, 3rd ed. Wiley, 2000
- W. R. Leo, Techniques for Nuclear and Particle Physics Experiments, Springer, 1994
- R.S. Gilmore, Single particle detection and measurement, Taylor\&Francis, 1992
- K. Kleinknecht, Detectors for particle radiation, 2nd edition, Cambridge Univ. Press, 1998
- W. Blum, W. Reigler, L. Rolandi, Particle Detection with Drift Chambers, Springer, 2008
- R. Wigmans, Calorimetry, Oxford Science Publications, 2000
- G. Lutz, Semiconductor Radiation Detectors, Springer, 1999

Review Articles

- Experimental techniques in high energy physics, T. Ferbel (editor), World Scientific, 1991.
- Instrumentation in High Energy Physics, F. Sauli (editor), World Scientific, 1992.
- Many excellent articles can be found in Ann. Rev. Nucl. Part. Sci.

Other sources

- Particle Data Book Phys. Lett. B592, 1 (2008) http://pdg.lbl.gov/pdg.html
- R. Bock, A. Vasilescu, Particle Data Briefbook http://www.cern.ch/Physics/ParticleDetector/BriefBook/
- ICFA schools lectures : http://www.ifm.umich.mx/school/ICFA-2002/
- O. Ullaland http://lhcb-doc.web.cern.ch/lhcbdoc/presentations/lectures/Default.htm
- Proceedings of detector conferences (Vienna VCI, Elba, IEEE, Como)
- Journals: Nucl. Instr. Meth. A, Journal of Instrumentation

Trigger and DAQ

R. Fernow : Introduction to experimental particle physics (C.U.P. 1986)
R. Frühwirth, M. Regler, R.K. Bock, H. Grote and D. Notz ; Data Analysis Techniques for High-Energy Physics (2nd ed.) (C.U.P. 2000)

CERN-匹atin American Schools of Physics : Usually an article on trigger and DAQ

Useful material \& acknowledgments

I have taken part of the content of these lecture from Werner Riegler's summer student lectures in 2011 and Erika Garutti's DESY lecture notes
Useful books

- Detector for particle radiation, Konrad Kleinknecht
- Techniques for Nuclear and Particle Physics Experiments, W. R. Leo
- Particle Detectors, Claus Grupen
- Introduction to Experimental Particle Physics, R. Fernow
- The Physics of Particle Detectors, D. Green
- Review in data particle book on Passage of particles through matter
- Review in data particle book on Particle Detectors at accelerators
a D.H. Wilkinson: Ionization Chambers and Counters (Cambridge Univ. Press, 1950)
S.A. Korf: Electron and Nuclear Counters (Van Nostrand, 1955)
P. Rice-Evans: Spark, Streamer, Proportional and Drift Chambers (Richelieu, 1974)
F. Saull: Principles of Operation of Multiwire Proportional and Drift Chambers (CERN 77.

Th. Ferbel, Editor: Techniques and Concepts of High-energy Physics (Plenum, 1983)
R.C. Fernow: Introduction to Experimental Particle Physics (Cambridge Univ. Press, 198 W.R. Leo: Techniques for Nuclear and Particle Physics Experiments (Springer, 1987)
C. Fabjan and J. Pilcher, ed.: Instrumentation in Elementary Particle Physics (World Scie 1988)
C.F.G. Delaney and E.C. Finch: Radiation Detectors (Clarendon Press, 1992)
R. Cilmore: Single Particle Detection and Measurement (Taylor and Francis, 1992)
F. Sauli, ed.: Instrumentation in High Energy Physics (World Scientific, 1992)
K. Grupen: Particle Detectors (Cambridge Monographs on Part. Phys. 1998)
K. Kieinknecht: Detectors for Particle Radiation (Cambridge Univ. Press 1998)
G.F. Knoll: Radiation Detection and Measurements, 3d Ed. (Wiley, 2000)
W. Blum, W. Riegler and L. Rolandil: Particle Detection with Drift Chambers, 2d Ed. (Sprit
BACKUP -

More \square

- Definitions and Units
for details chic
- Time Of Flight for details chic
- Ionization for details chic
- Transition radiation
- Particle Detection princíple
for details chic for details chic
- About Cross Section for detailsclic
- Electromagnetic Shower Development
- Diffusion in gases for details chic
- Particle ID - Distinguishing particles nature
- Historical examples for details chic
- Applications for details chic
- Neutrino detectors for details chic
- Effective mass calculation
- Detector Systems for details chic for details chic

Some important definitions and units

$E^{2}=p^{2} c^{2}+m_{0}^{2} c^{4}$

- energy E : measure in eV
- momentum p :
- mass m_{o} :
measure in eV/c measure in $\mathrm{eV} / \mathrm{c}^{2}$

$$
\beta=\frac{v}{c} \quad(0 \leq \beta<1) \quad \gamma=\frac{1}{\sqrt{1-\beta^{2}}}(1 \leq \gamma<\infty)
$$

$$
E=m_{0} \gamma c^{2} \quad p=m_{0} \gamma \beta c \quad \beta=\frac{p c}{E}
$$

1 eV is a tiny portion of energy. $1 \mathrm{eV}=1.6 \cdot 10^{-19} \mathrm{~J}$

$$
\begin{aligned}
& m_{\text {bee }}=1 \mathrm{~g}=5.8 \cdot 10^{32} \mathrm{eV} / \mathrm{c}^{2} \\
& v_{\text {bee }}=1 \mathrm{~m} / \mathrm{s} \rightarrow E_{\text {bee }}=10^{-3} \mathrm{~J}=6.25 \cdot 10^{15} \mathrm{eV} \\
& E_{L H C}=14 \cdot 10^{12} \mathrm{eV}
\end{aligned}
$$

For times practical units are

- $1 \mu \mathrm{~s}\left(10^{-6} \mathrm{~s}\right)$, an electron drifts in a gas 5 cm
- $1 \mathrm{~ns}\left(10^{-9} \mathrm{~s}\right)$, a relativistic e travels 30 cm
- $1 \mathrm{ps}\left(10^{-12} \mathrm{~s}\right)$, mean life time of a B meson

To rehabilitate LHC...
Total stored beam energy: $E_{\text {total }}=10^{14}$ protons $\cdot 7 \cdot 10^{12} \mathrm{eV} \approx 7 \cdot 10^{26} \mathrm{eV} \approx 1 \cdot 10^{8} \mathrm{~J}$

$$
\begin{aligned}
& m_{\text {truck }}=100 \mathrm{~T} \\
& v_{\text {truck }}=120 \mathrm{~km} / \mathrm{h}
\end{aligned}
$$

Stored energy in LHC magnets ~ 1 GJ

$$
\begin{aligned}
& m_{747}=400 \mathrm{~T} \\
& v_{747}=255 \mathrm{~km} / \mathrm{h}
\end{aligned}
$$

Time Of Flight

Back

- Simple concept: measure the time difference between two detector planes

$$
\beta=\mathrm{d} / \mathrm{c} \Delta \mathrm{t}
$$

- At high energy, particle speeds are relativistic, closely approaching to c

- For a 10 GeV K, the time to travel 12 m is 40.05 ns , whereas for a π it would be 40.00 ns , so the difference is only 50 ps
- Modern detectors + readout electronics have resolution $\sigma_{t} \sim 10 \mathrm{~ns}$, fast enough for the LHC (bunch crossings 25 ns apart but need $\sigma_{\mathrm{t}}<1 \mathrm{~ns}$ to do useful TOF
- TOF gives good ID at low momentum Very precise timing required for $\mathrm{p}>5$ GeV

Ionization

- Charged particles passing through matter can knock out electrons from atoms of the medium: ionization
- Energy loss described by the Bethe-Bloch formula, which gives the universal velocity dependence: $\mathrm{dE} / \mathrm{dx} \propto \log \left(\beta^{2} \gamma^{2}\right) / \beta^{2}$
- This can be used to identify particles, particularly at low momentum where $\mathrm{dE} / \mathrm{dx}$ varies rapidly
- Advantage:
uses existing detectors needed for tracking
- Note: these techniques all provide signals
 for charged leptons e, μ as well as $\pi, \mathrm{K}, \mathrm{p}$ But $\mathrm{m}_{\mu} \approx \mathrm{m}_{\pi}$, so they are not well separated

Transition radiation

- Local speed of light in a medium with refractive index n is $c_{p}=c / n$
- If its relative velocity $\mathrm{v} / \mathrm{c}_{\mathrm{p}}$ changes, a particle will radiate photons:

1. Change of direction v (in magnetic field) \rightarrow Synchrotron radiation
2. Change of $|\mathrm{v}|$ (passing through matter) \rightarrow Bremsstrahlung radiation
3. Change of refractive index n of medium \rightarrow Transition radiation

- Transition radiation is emitted whenever a relativistic charged particle traverses the border between two media with different dielectric constants ($\mathrm{n} \sim \sqrt{\varepsilon}$)
- The energy emitted is proportional to the boost γ of the particle

\rightarrow Particularly useful for electron ID
Can also be used for hadrons at high energy
- Named after the Russian scientist P. Cherenkov who was the first to study the effect in depth (Nobel Prize 1958)
To Backup Cherenkov light

Particle Detection Principle

In order to detect a particle

- it must interact with the material of the detector
- transfer energy in some recognizable fashion
i.e. The detection of particles happens via their energy loss in the material it traverses ...

Possibilities:

Charged particles
Hadrons
Photons
Neutrinos

Ionization, Bremsstrahlung, Cherenkov ...
Nuclear interactions
Photo/Compton effect, pair production
Weak interactions
Total energy loss via single interaction
\rightarrow charged particles
To Backup

Particle Interactions - Examples

Ionization:

Pair
production:

Compton scattering:

Electron

Energy Loss by lonization - dE/dx

For now assume: $\quad \mathrm{Mc}^{2} \gg \mathrm{me}_{\mathrm{e}} \mathrm{C}^{2}$
i.e. energy loss for heavy charged particles [dE/dx for electrons more difficult ...]

Interaction dominated
by elastic collisions with electrons ...

Bethe-Bloch Formula

$$
-\left\langle\frac{d E}{d x}\right\rangle=K z^{2} \frac{Z}{A} \frac{1}{\beta^{2}}\left[\frac{1}{2} \ln \frac{2 m_{e} c^{2} \beta^{2} \gamma^{2} T_{\max }}{I^{2}}-\beta^{2}-\frac{\delta(\beta \gamma)}{2}\right]
$$

Energy Loss of Electrons

Bethe-Bloch formula needs modification
Incident and target electron have same mass me Scattering of identical, undistinguishable particles

$$
-\left\langle\frac{d E}{d x}\right\rangle_{\text {el. }}=K \frac{Z}{A} \frac{1}{\beta^{2}}\left[\ln \frac{m_{e} \beta^{2} c^{2} \gamma^{2} T}{2 I^{2}}+F(\gamma)\right]
$$

[T: kinetic energy of electron]

$$
W_{\text {max }}=1 / 2 T
$$

Bethe-Bloch - Classical Derivation

Bohr 1913

Particle with charge ze and velocity v moves through a medium with electron density n.

Electrons considered free and initially at rest.

Interaction of a heavy charged particle with an electron of an atom inside medium.

Momentum transfer:

$$
\begin{aligned}
\Delta p_{\perp} & =\int F_{\perp} d t=\int F_{\perp} \frac{d t}{d x} d x=\int F_{\perp} \frac{d x}{v} \quad \Delta p_{\|}: \text {averages to zero } \\
& =\int_{-\infty}^{\infty} \frac{z e^{2}}{\left(x^{2}+b^{2}\right)} \cdot \frac{b}{\sqrt{x^{2}+b^{2}}} \cdot \frac{1}{v} d x=\frac{z e^{2} b}{v}\left[\frac{x}{b^{2} \sqrt{x^{2}+b^{2}}}\right]_{-\infty}^{\infty}=\frac{2 z e^{2}}{b v}
\end{aligned}
$$

More elegant with Gauss law:
[infinite cylinder; electron in center]

$$
\int E_{\perp}(2 \pi b) d x=4 \pi(z e) \rightarrow \int E_{\perp} d x=\frac{2 z e}{b}
$$

and then $\ldots \quad\left\{\begin{array}{c}F_{\perp}=e E_{\perp} \\ \Delta p_{\perp}=e \int E_{\perp} \frac{d x}{v}=\frac{2 z e^{2}}{b v}\end{array}\right.$

Bethe-Bloch - Classical Derivation

Energy transfer onto single electron for impact parameter b:

$$
\Delta E(b)=\frac{\Delta p^{2}}{2 m_{\mathrm{e}}}
$$

Consider cylindric barrel $\rightarrow N_{e}=n \cdot(2 \pi b) \cdot d b d x$
Energy loss per path length dx for distance between b and $\mathrm{b}+\mathrm{db}$ in medium with electron density n :

Energy loss!

$$
-d E(b)=\frac{\Delta p^{2}}{2 m_{\mathrm{e}}} \cdot 2 \pi n b d b d x=\frac{4 z^{2} e^{4}}{2 b^{2} v^{2} m_{\mathrm{e}}} \cdot 2 \pi n b d b d x=\frac{4 \pi n z^{2} e^{4}}{m_{\mathrm{e}} v^{2}} \frac{d b}{b} d x
$$

Diverges for $b \rightarrow 0$; integration only
for relevant range $\left[b_{\min }, b_{\text {max }}\right]$:

$$
-\frac{d E}{d x}=\frac{4 \pi n z^{2} e^{4}}{m_{\mathrm{e}} v^{2}} \cdot \int_{b_{\min }}^{b_{\max }} \frac{d b}{b}=\frac{4 \pi n z^{2} e^{4}}{m_{\mathrm{e}} v^{2}} \ln \frac{b_{\max }}{b_{\min }}
$$

Bethe-Bloch - Classical Derivation

Determination of relevant range $\left[\mathrm{bmin}, \mathrm{b}_{\text {max }}\right]$:
[Arguments: $b_{\min }>\lambda_{\mathrm{e}}$, i.e. de Broglie wavelength; $b_{\max }<\infty$ due to screening ...]

$$
\begin{aligned}
& b_{\min }=\lambda_{\mathrm{e}}=\frac{h}{p}=\frac{2 \pi \hbar}{\gamma m_{\mathrm{e}} v} \\
& b_{\max }=\frac{\gamma v}{\left\langle\nu_{\mathrm{e}}\right\rangle} ; \quad\left[\gamma=\frac{1}{\sqrt{1-\beta^{2}}}\right]
\end{aligned}
$$

Use Heisenberg uncertainty principle or that electron is located within de Broglie wavelength ...

Interaction time (b/v) must be much shorter than period of the electron $\left(\gamma / v_{e}\right)$ to guarantee relevant energy transfer ...
[adiabatic invariance]

$$
\begin{aligned}
& -\frac{d E}{d x}=\frac{4 \pi z^{2} e^{4}}{m_{\mathrm{e}} c^{2} \beta^{2}} n \cdot \ln \frac{m_{\mathrm{e}} c^{2} \beta^{2} \gamma^{2}}{2 \pi \hbar\left\langle\nu_{\mathrm{e}}\right\rangle} \\
& \text { Electron density: } \\
& n=N_{A} \cdot \rho \cdot Z / A!! \\
& \text { Effective lonization potential: } \\
& \mathrm{I} \sim \mathrm{~h}<\mathrm{V}_{\mathrm{e}}>
\end{aligned}
$$

Bethe-Bloch Formula

[see e.g. PDG 2010]

$$
-\left\langle\frac{d E}{d x}\right\rangle=K z^{2} \frac{Z}{A} \frac{1}{\beta^{2}}\left[\frac{1}{2} \ln \frac{2 m_{e} c^{2} \beta^{2} \gamma^{2} T_{\max }}{I^{2}}-\beta^{2}-\frac{\delta(\beta \gamma)}{2}\right]
$$

$\mathrm{K}=4 \pi \mathrm{~N}_{\mathrm{A}} \mathrm{re}^{2} \mathrm{~m}_{\mathrm{e}} \mathrm{C}^{2}=0.307 \mathrm{MeV} \mathrm{g} \mathrm{cm}^{-1}$
$T_{\max }=2 m_{e} C^{2} \beta^{2} \gamma^{2} /\left(1+2 \gamma m_{e} / M+\left(m_{e} / M\right)^{2}\right)$
[Max. energy transfer in single collision]
z : Charge of incident particle
M : Mass of incident particle
Z : Charge number of medium
A : Atomic mass of medium
I : Mean excitation energy of medium
$\delta:$ Density correction [transv. extension of electric field]
$N_{A}=6.022 \cdot 10^{23}$
[Avogardo's number]
$r_{e}=e^{2} / 4 \pi \varepsilon_{0} m_{e} C^{2}=2.8 \mathrm{fm}$
[Classical electron radius]
$\mathrm{m}_{\mathrm{e}}=511 \mathrm{keV}$
[Electron mass]
$\beta=\mathrm{V} / \mathrm{c}$
[Velocity]
$\gamma=\left(1-\beta^{2}\right)^{-2}$
[Lorentz factor]
Validity:

Energy Loss of Charged Particles

Dependence on
Mass A
Charge Z
of target nucleus

Minimum ionization:
ca. 1-2 $\mathrm{MeV} / \mathrm{g} \mathrm{cm}{ }^{-2}$ [$\mathrm{H}_{2}: 4 \mathrm{MeV} / \mathrm{g} \mathrm{cm}^{-2}$]

Bremsstrahlung

Bremsstrahlung arises if particles are accelerated in Coulomb field of nucleus

$$
\frac{d E}{d x}=4 \alpha N_{A} \frac{z^{2} Z^{2}}{A}\left(\frac{1}{4 \pi \epsilon_{0}} \frac{e^{2}}{m c^{2}}\right)^{2} E \ln \frac{183}{Z^{\frac{1}{3}}} \propto \frac{E}{m^{2}}
$$

i.e. energy loss proportional to $1 / \mathrm{m}^{2} \rightarrow$ main relevance for electrons ...
... or ultra-relativistic muons
Consider electrons:

$$
\begin{aligned}
& \frac{d E}{d x}=4 \alpha N_{A} \frac{Z^{2}}{A} r_{e}^{2} \cdot E \ln \frac{183}{Z^{\frac{1}{3}}} \\
& \frac{d E}{d x}=\frac{E}{X_{0}} \quad \text { with } \quad X_{0}=\frac{A}{4 \alpha N_{A} Z^{2} r_{e}^{2} \ln \frac{183}{Z^{\frac{1}{3}}}}
\end{aligned}
$$

[Radiation length in $\mathrm{g} / \mathrm{cm}^{2}$]
$\Rightarrow E=E_{0} e^{-x / X_{0}}$
After passage of one X_{0} electron has lost all but (1/e) th of its energy
[i.e. 63\%]

Total Energy Loss of Electrons

Fractional energy loss per radiation length in lead as a function of electron or positron energy

Energy Loss - Summary Plot for Muons

$\mathrm{dE} / \mathrm{dx}$ and Particle Identification

To Backup
Momentum $[\mathrm{GeV}]$

CrossSection - Definition

Absorbing target area
Incoming flux:

$$
\Phi=\frac{1}{A} \cdot \frac{\Delta N}{\Delta t}=\frac{\dot{N}_{\mathrm{in}}}{A}
$$

Reaction rate:

$$
\begin{aligned}
\dot{N}_{\text {reac }}=\dot{N}_{\text {in }} \frac{A_{\text {tar }}}{A} & =\Phi \cdot A_{\text {tar }} \\
& =\Phi \cdot N_{\mathrm{tar}} \cdot \sigma
\end{aligned}
$$

Cross section:

$$
\begin{aligned}
\sigma & =\frac{\text { Number of reactions (of given type) per unit time }}{\text { Incoming flux } \cdot \text { Number of target particles }} \\
& =\frac{\dot{N}_{\text {reac }}}{\Phi \cdot N_{\text {tar }}}=\frac{\dot{N}_{\text {reac }}}{\dot{N}_{\text {in }} \cdot N_{\mathrm{A}} \cdot \rho \cdot d / m_{\text {mol }}}
\end{aligned}
$$

Transition rate W_{fi} Unit: $[\sigma]=\mathrm{cm}^{2}$

Fermi's Golden Rule

Transition probability

Phase space

$$
\begin{gathered}
M_{\mathrm{fi}}=-i \int j_{\mu}^{(1)} \cdot\left(\frac{1}{q^{2}}\right) \cdot j_{\mu}^{(2)} d^{4} x \\
\sigma \sim\left|M_{\mathrm{fi}}\right|^{2} \\
\quad \sim g^{4} \cdot\left(\frac{1}{q^{4}}\right)
\end{gathered}
$$

Cross Section - Magnitude and Units

Standard

cross section unit:

$$
[\sigma]=\mathrm{mb}
$$

Estimating the
proton-proton cross section:

or in
natural units:

$$
[\sigma]=\mathrm{GeV}^{-2}
$$

using: $\quad \hbar c \quad=0.1973 \mathrm{GeV}$ fm
$(\hbar c)^{2}=0.389 \mathrm{GeV}^{2} \mathrm{mb}$

Proton radius: $\mathrm{R}=0.8 \mathrm{fm}$
Strong interactions happens up to $b=2 R$

$$
\begin{aligned}
\sigma=\pi(2 R)^{2} & =\pi \cdot 1.6^{2} \mathrm{fm}^{2} \\
& =\pi \cdot 1.6^{2} 10^{-26} \mathrm{~cm}^{2} \\
& =\pi \cdot 1.6^{2} 10 \mathrm{mb} \\
& =80 \mathrm{mb}
\end{aligned}
$$

Proton-Proton Scattering Cross Section

Vs GeV
1.92
10
10^{2}
10^{3}
10^{4}

Proton-Proton Scattering Cross Section

10^{9} Events/sec
100
~ 1010 rate reduction needed
[Storage rate: 100 Hz]

10 Events/min
$\left[m_{H} \approx 100 \mathrm{GeV}\right]$
with $\begin{array}{ll}0.2 \% & \mathrm{H} \rightarrow \mathrm{YY} \\ 1.5 \% & \mathrm{H} \rightarrow \mathrm{ZZ}\end{array}$
Trigger

82
To Backup

Electromagnetic Shower Development

Detecting a signal:
\rightarrow The contribution of an electromagnetic interaction to energy loss usually depends on the energy of the incident particle and on the properties of the absorber
\rightarrow At "high energies" (>~10 MeV):
\rightarrow electrons lose energy mostly via Bremsstrahlung
\rightarrow photons via pair production
\rightarrow Photons from Bremsstrahlung can create an electron-positron pair which can radiate new photons via Bremsstrahlung in a process that last as long as the electron (positron) has energy $E>E_{c}$
\rightarrow At energies $E<E_{c}$, energy loss mostly by ionization and excitation
\rightarrow Signals in the form of light or ions are collected by some readout system
Building a detector
$\rightarrow X_{0}$ and E_{c} depends on the properties of the absorber material
\rightarrow Full EM shower containment depends on the geometry of the detector

Electromagnetic Shower Development

A simple shower model (Rossi-Heitler)

Considerations:

B. Rossi, High Energy Particles, New York, Prentice-Hall (1952)
W. Heitler, The Quantum Theory of Radiation, Oxford, Claredon Press (1953)
\rightarrow Photons from bremsstrahlung and electron-positron from pair production produced at angles $\theta=m c^{2} / E(E$ is the energy of the incident particle $) \rightarrow$ jet character

Assumptions:
$\rightarrow \lambda_{\text {pair }} \approx X_{0}$
\rightarrow Electrons and positrons behave identically
\rightarrow Neglect energy loss by ionization or excitation for $E>E_{c}$
\rightarrow Each electron with $E>E_{c}$ gives up half of its energy to bremsstrahlung photon after $1 \boldsymbol{X}_{0}$
\rightarrow Each photon with $E>E_{c}$ undergoes pair creation after $1 X_{0}$ with each created particle receiving half of the photon energy
\rightarrow Shower development stops at $\boldsymbol{E}=\boldsymbol{E}_{c}$
\rightarrow Electrons with $E<E_{c}$ do not radiate \rightarrow remaining energy lost by collisions

Electromagnetic Shower Development

A simple shower model

Shower development:

Start with an electron with $E_{0} \gg E_{c}$
\rightarrow After $\mathbf{1} \boldsymbol{X}_{0}: \mathbf{1} e^{-}$and $\mathbf{1} \gamma$, each with $\boldsymbol{E}_{0} / \mathbf{2}$
\rightarrow After $2 X_{0}: \mathbf{2} e^{-}, \mathbf{1} e^{+}$and 1γ, each with $E_{0} / 4$

$$
\begin{aligned}
& \begin{array}{l}
\boldsymbol{t}\left(\boldsymbol{E}^{\prime}\right)=\frac{\ln \left(\boldsymbol{E}_{0} / \boldsymbol{E}^{\prime}\right)}{\ln 2} \\
\boldsymbol{N}\left(\boldsymbol{E}>\boldsymbol{E}^{\prime}\right)=\frac{1}{\ln 2} \frac{\boldsymbol{E}_{0}}{\boldsymbol{E}^{\prime}} \rightarrow \begin{array}{l}
\text { Depth at which the energy of a shower particle equals } \\
\text { some value } \mathrm{E}^{\prime}
\end{array} \\
\text { Number of particles in the shower with energy }>\mathrm{E},
\end{array} \\
& \text { Maximum number of particles reached at } \boldsymbol{E}=\boldsymbol{E}_{c} \rightarrow \begin{array}{l}
\boldsymbol{t}_{\max }=\frac{\ln \left(\boldsymbol{E}_{0} / \boldsymbol{E}_{c}\right)}{\ln 2} \\
\boldsymbol{N}_{\max }=\boldsymbol{e}^{t_{\max } \ln 2}=\boldsymbol{E}_{0} / \boldsymbol{E}_{c}
\end{array}
\end{aligned}
$$

Electromagnetic Shower Development

A simple shower model

Concepts introduce with this simple mode:
\rightarrow Maximum development of the shower (multiplicity) at $t_{\max }$
\rightarrow Logarithm growth of $\mathrm{t}_{\max }$ with E_{0} :
\rightarrow implication in the calorimeter longitudinal dimensions
\rightarrow Linearity between E_{0} and the number of particles in the shower

Electromagnetic Shower Development

A simple shower model

What about the energy measurement?
Assuming, say, energy loss by ionization
\rightarrow Counting charges:
\rightarrow Total number of particles in the shower:

$$
N_{\text {all }}=\sum_{t=0}^{t_{\max }} 2^{t}=2 \times 2^{t_{\max }}-1 \approx 2 \times 2^{t_{\max }}=2 \frac{E_{0}}{E_{c}}
$$

\rightarrow Total number of charge particles (e^{+}and e^{-}contribute with $2 / 3$ and γ with $1 / 3$)

$$
N_{e^{+} e^{-}}=\frac{2}{3} \times 2 \frac{E_{0}}{E_{c}}=\frac{4}{3} \frac{E_{0}}{E_{c}} \rightarrow \text { Measured energy proportional to } \mathbf{E}_{0}
$$

Electromagnetic Shower Development

A simple shower model

What about the energy resolution?
Assuming Poisson distribution for the shower statistical process:

$$
\begin{aligned}
& \frac{\sigma(E)}{E}=\frac{1}{\sqrt{N_{e^{*} e}}}=\frac{\sqrt{3 E_{c}} / 2}{\sqrt{E}} \\
& \frac{\sigma(E)}{E} \propto \frac{1}{\sqrt{E}}
\end{aligned}
$$

$$
\longrightarrow \text { Resolution improves with E }
$$

Example: For lead $(\mathrm{Pb}), \mathrm{E}_{\mathrm{c}} \approx 6.9 \mathrm{MeV}$:

$$
\frac{\sigma(E)}{E}=\frac{7.2 \%}{\sqrt{E[G e V]}}
$$

More general term: $\frac{\sigma(E)}{E}=\frac{a}{\sqrt{E}} \oplus b \oplus \frac{c}{E} \quad$ Noise, etc

> Statistic fluctuations

Constant term
(calibration, non-linearity, etc

Electromagnetic Shower Development

A simple shower model

Simulation of the energy deposit in copper as a function of the shower depth for incident electrons at 4 different energies showing the logarithmic dependence of $\mathrm{t}_{\text {max }}$ with E .

EGS4* (electron-gamma shower simulation)
*EGS4 is a Monte Carlo code for doing simulations of the transport of electrons and photons in arbitrary geometries.

Electromagnetic Shower Development

Shower Profile

\rightarrow Longitudinal development governed by the radiation length $\boldsymbol{X}_{\boldsymbol{0}}$
\rightarrow Lateral spread due to electron undergoing multiple Coulomb scattering:
\rightarrow About $\mathbf{9 0 \%}$ of the shower up to the shower maximum is contained in a cylinder of radius $<\boldsymbol{1} \boldsymbol{X}_{\boldsymbol{0}}$
\rightarrow Beyond this point, electrons are increasingly affected by multiple scattering
\rightarrow Lateral width scales with the Molière radius ρ_{M}

$$
\rho_{M}=X_{0} \frac{E_{s}}{E_{c}}\left[g / \mathrm{cm}^{2}\right] \quad, E_{s} \approx 21 \mathrm{MeV}
$$

95% of the shower is contained laterally in a cylinder with radius $2 \rho_{M}$

Electromagnetic Shower Development

Shower profile

From previous slide, one expects the longitudinal and transverse developments to scale with X_{0}

$\rightarrow \rho_{M}$ less dependent on \boldsymbol{Z} than $\boldsymbol{X}_{0}: \quad \boldsymbol{X}_{0} \propto \boldsymbol{A} / \boldsymbol{Z}^{2}, \quad \boldsymbol{E}_{c} \propto 1 / \boldsymbol{Z} \Rightarrow \rho_{M} \propto \boldsymbol{A} / \boldsymbol{Z}$

Electromagnetic Shower Development

Energy deposition

The fate of a shower is to develop, reach a maximum, and then decrease in number of particles once $\mathrm{E}_{0}<\mathrm{E}_{\mathrm{c}}$

Given that several processes compete for energy deposition at low energies, it is important to understand how the fate of the particles in a shower.
\rightarrow Most of energy deposition by low energy e"'s.

To Backup

Diffusion in gases (no E-field) To Backup

* In absence of other effects, at thermal energies, the mean speed of the charges (given by the Maxwell distribution of the energies) is:
$v=\sqrt{\frac{8 k T}{\pi m}}$
where k is Boltzmann's constant, T the temperature and m the mass of the particle
* The charges diffuse by multiple collisions, and a local distribution follows a Gaussian law:
$\frac{d N}{d x}=\frac{N_{0}}{\sqrt{4 \pi D t}} \exp \left(-\frac{x^{2}}{4 D t}\right)$ where N_{o} is the total number of charges, x the distance from the point of creation and D the diffusion coefficient
* Then the linear and volume r.m.s. of the spread are:

$$
\begin{aligned}
& \sigma_{x}=\sqrt{2 D t} \\
& \sigma_{v}=\sqrt{6 D t}
\end{aligned}
$$

For instance, the radial spread of ions in air in
normal conditions is about 1 mm after 1 second

Drift and mobility in gas

* In the presence of an electric field, electrons and ions will drift in the gas. The drift velocity for electrons can be much higher w.r.t. ions since they are much lighter.
* $\mu=\mathrm{v} / \mathrm{E} \quad$ is the mobility of a charge where v is the drift velocity and E the electric field.
* Ions:
- Mean velocity v^{+}is proportional to E / P
- Mobility μ^{+}is constant (average energy of ions almost unmodified up to very high electric fields)
* Electrons:
- Drift velocity $\mathrm{v}^{-}=(\mathrm{e} / 2 \mathrm{~m})$.E. τ where τ is the mean time between collision
- Typical value around $5 \mathrm{~cm} / \mu \mathrm{s}$ are obtained (ions thousand times slower)

Electrons drift and diffusion

Drift velocity and diffusion of electrons vary in a wide range, depending the gas mixture.
Relation between mobility and diffusion: $\frac{D}{\mu}=\frac{k T}{e} \approx 0.026 \mathrm{eV}$
The minimum diffusion at a given field is given by the thermal value:

$$
\sigma_{x}=\sqrt{\frac{2 k T}{e} \frac{x}{E}}
$$

Drift velocity:

Diffusion:

Magnetic field

The drifting electrons cloud is rotated by an angle θ_{B} in the plane perpendicular to E and B.

$$
\vec{E} \perp \vec{B}
$$

$\vec{E} \| \vec{B}$

$$
\begin{array}{ll}
v_{B}=v_{0} & \\
\sigma_{L}=\sigma_{0} & \text { Drift velocity unchanged } \\
\sigma_{T}=\frac{\sigma_{0}}{\sqrt{1+\omega^{2} \tau^{2}}} & \begin{array}{l}
\text { Transverse diffusion is } \\
\text { reduced }
\end{array}
\end{array}
$$

Transverse diffusion in magnetic field

In some gases the transverse diffusion is strongly reduced
\rightarrow improves the precision of the projected coordinate measurement in Time Projection Chambers

Avalanche phenomenon

* One electron drifts towards the anode wire:
- Electric field is increasing
- Ionizing collisions \rightarrow pair multiplication
* Due to lateral diffusion and difference of velocity of electrons-ions, a drop-like avalanche develops near the wire
* UV photons are emitted \rightarrow risk of uncontrolled amplification (spark)
* Electrons are collected in a very short time (few ns) and ions drift slowly towards the cathode

Charge multiplication

* $\alpha=1 / \lambda$ is the probability of ionization per unit length with λ the mean free path of the electron for a secondary ionizing collision
* For n electrons, there will be $d n=n \alpha d x$ new electrons created in a path $d x$
* Then $n=n_{0} e^{\alpha x}$ with α : first Townsend coefficient
* And we can define a multiplication factor M :

$$
M=\frac{n}{n_{0}}=\exp \left[\int_{r_{1}}^{r_{2}} \alpha(x) d x\right] \begin{aligned}
& \alpha \text { is a function of } x \text { (non } \\
& \text { uniform electric fields) }
\end{aligned}
$$

* Limitation of M : above 10^{8}, sparks occur (Raether limit)
* Calculating α (or gas gain) for different gases (model by Rose and Korff):

To Backup

$$
\frac{\alpha}{p}=A \exp \left(\frac{-B p}{E}\right) \quad \text { where } A \text { and } B \text { depend on the gas }
$$

Particle ID - Distinguishing Particles LIR

Particle ID
 Distinguishing Particles

HEP detector: Measures particle momenta ...
by means of a spectrometer (tracker and magnetic field)

With p, γ, β calculate particle mass mo...

Need second observable

 to identify particle type:Velocity:
Time-of flight Cherenkov angle Transition radiation

Energy loss: Bethe-Bloch

Total energy:
Calorimeter

$$
p=\gamma m_{0} \beta c
$$

Special signatures for neutrals:

Photons : Total energy deposited in electromagnetic shower; use energy measurement, shower shape and information on neutrality (e.g. no track) ...
Neutrons : Energy in calorimeter or scintillator (Li, B, $\left.{ }^{3} \mathrm{He}\right)$ and information on neutrality (e.g. no track) ...
$K_{0}, \Lambda, \ldots \quad$: Reconstruction of invariant masses ...
Neutrinos : Identify products of charged and neutral current interactions ...

Muons:

Minimum ionizing particles; penetrates thick absorbers; measure signal behind complete detector ...

Particle ID

Particle ID [CMS Detector Slice]

Basic idea:
Measure signal time difference between two detectors with good time resolution [start and stop counter; also: beam-timing \& stop counter]

Typical detectors:
Scintillation counter
Resistive Plate Chamber (RPC)
Coincidence setup or TDC measurement with common start/stop from interaction time

Time-of-Flight Method

Distinguishing particles with ToF:
[particles have same momentum p]

Particle 1 : velocity $\mathrm{v}_{1}, \beta_{1}$; mass m_{1}, energy E_{1} Particle 2 : velocity $\mathrm{v}_{2}, \beta_{2}$; mass m_{2}, energy E_{2}

Distance L: distance between ToF counters

$$
\begin{aligned}
\Delta t & =L\left(\frac{1}{v_{1}}-\frac{1}{v_{2}}\right)=\frac{L}{c}\left(\frac{1}{\beta_{1}}-\frac{1}{\beta_{2}}\right) \\
& =\frac{L}{p c^{2}}\left(E_{1}-E_{2}\right)=\frac{L}{p c^{2}}\left(\sqrt{p^{2} c^{2}+m_{1}^{2} c^{4}}-\sqrt{p^{2} c^{2}+m_{2}^{2} c^{4}}\right)
\end{aligned}
$$

Relativistic particles, $E \simeq p c \gg m_{i} c^{2}$:

$$
\begin{aligned}
& \Delta t \approx \frac{L}{p c^{2}}\left[\left(p c+\frac{m_{1}^{2} c^{4}}{2 p c}\right)-\left(p c+\frac{m_{2}^{2} c^{4}}{2 p c}\right)\right] \\
& \Delta t=\frac{L c}{2 p^{2}}\left(m_{1}^{2}-m_{2}^{2}\right)
\end{aligned}
$$

For L = 2 m :
Requiring $\Delta t \gtrsim 4 \sigma_{t} K / \pi$ separation possible up to $p=1 \mathrm{GeV}$ if $\sigma_{\mathrm{t}} \approx 200 \mathrm{ps} .$.

Cherenkov counter, RPC : $\sigma_{t} \approx 40$ ps ...
Scintillator counter : $\sigma_{\mathrm{t}} \approx 80 \mathrm{ps} \ldots$

Example:

Pion/Kaon separation ... $\left[m_{k} \approx 500 \mathrm{MeV}, \mathrm{m}_{\pi} \approx 140 \mathrm{MeV}\right]$
Assume:
$\mathrm{p}=1 \mathrm{GeV}, \mathrm{L}=2 \mathrm{~m} . .$.
$\rightarrow \Delta t \approx \frac{2 \mathrm{~m} \cdot \mathrm{c}}{2(1000)^{2} \mathrm{MeV}^{2} / \mathrm{c}^{2}}\left(500^{2}-140^{2}\right) \mathrm{MeV}^{2} / c^{4}$
$\approx 800 \mathrm{ps}$

Particle ID - Specific Energy Loss

Average energy loss in

Use relativistic rise of $\mathrm{dE} / \mathrm{dx}$ for particle identification ...

Key problem: Landau fluctuations
Need to make many dE/dx measurements and truncate large energy-loss values ...
[determination of 'truncated mean']

Energy loss distribution; 50 GeV pions and kaons
[1 cm layer Ar/Methane]

Particle ID - Specific Energy Loss

Truncated energy loss distributions for various momenta ... [ALPEH TPC]

Cherenkov angle:

$$
\cos \theta_{c}=\frac{1}{n \beta}
$$

A: $V<c / n$
Induced dipoles symmetrically arranged around particle path; no net dipole moment; no Cherenkov radiation
$B: \quad v>c / n$
Symmetry is broken as particle faster the electromagnetic waves; non-vanishing dipole moment; radiation of Cherenkov photons

$$
=1 / n \beta
$$

Threshold detection:
Observation of Cherenkov radiation $\rightarrow \beta>\beta_{\text {thr }}$

Choose n_{1}, n_{2} in such a way that for:

$$
\begin{array}{ll}
n_{2}: & \beta_{\pi}, \beta_{K}>1 / n_{2} \text { and } \beta_{\rho}<1 / n_{2} \\
n_{1}: & \beta_{\pi}>1 / n_{1} \text { and } \beta_{K}, \beta_{\rho}<1 / n_{1}
\end{array}
$$

Light in C_{1} and $\mathrm{C}_{2} \quad \rightarrow \quad$ identified pion
Light in C_{2} and not in $\mathrm{C}_{1} \rightarrow \quad$ identified kaon
Light neither in C_{1} and $\mathrm{C}_{2} \quad \rightarrow \quad$ identified proton

Particle ID - Cherenkov Radiation

Differential Cherenkov detectors:
Selection of narrow velocity interval for actual measurement ...

Threshold velocity:
$[\cos \theta=1]$

$$
\beta_{\min }=\frac{1}{n}
$$

Cherenkov angle limited
Maximum velocity: $\left[\theta=\theta_{\text {max }}=\theta_{t}\right]$
$\sin \theta_{t}=1 / n$

$$
\cos \theta_{\max }=\sqrt{1-\sin ^{2} \theta_{t}}=1 / n \beta_{\max }
$$

$$
\beta_{\max }=\frac{1}{\sqrt{n^{2}-1}}
$$

Example:

Diamond, $n=2.42 \rightarrow \beta_{\text {min }}=0.413, \beta_{\max }=0.454$, i.e. velocity window of $\Delta \beta=0.04 \ldots$

Suitable optic allows $\Delta \beta / \beta \approx 10^{-7}$

Working principle of a differential Cherenkov counter

Ring Imaging Cherenkov Counter

Optics such that photons emitted under certain angle form ring ...

Focal length of spherical mirror: $f=R_{S} / 2 \ldots$
Cherenkov light emitted under angle: $\theta_{\mathrm{c}} \ldots$
Radius of Cherenkov ring: $r=f \cdot \theta_{C}=R_{S} / 2 \cdot \theta_{C} \ldots$
$\rightarrow \beta=\frac{1}{n \cos \left(2 r / R_{s}\right)}$
Determination of β from $r \ldots$...

Photon detection:
Photomultiplier, MWPC
Parallel plate avalanche counter ...
Gas detectors filled with photosensitive gas ...
[e.g. vapor addition or TMAE $\left(\mathrm{C}_{5} \mathrm{H}_{12} \mathrm{~N}_{2}\right)$]

Working principle of a Ring Imaging Cherenkov Counter (RICH)

Transition radiation occurs if a relativist particle (large γ) passes the boundary between two media with different refraction indices ...
[predicted by Ginzburg and Frank 1946; experimental confirmation 70ies]
Effect can be explained by rearrangement of electric field ...

Rearrangement of electric field yields transition radiation

Energy loss distribution for 15 GeV pions and electrons in a TRD ...

Historical examples

cathode ray tube
J. Plücker 1858 Inm.J. Thomson 1897

From: J.J. Thomson: Cathode Rays.
Philosophical Magazine, 44, 293 (1897).

Historical Development

First

$$
\begin{aligned}
& \text { Detection of } \\
& \alpha-, \beta \text {-and } \gamma \text {-rays }
\end{aligned}
$$

Image of Becquerel's photographic plate which has been fogged by exposure to radiation from a uranium salt.

An x-ray picture taken by Wilhelm Röntgen of Albert von Kölliker's hand at a public lecture on 23 January 1896.

Historical Development

Rutherford's scattering experiment

lead screen
with slit
beam of alpha particles

1911

Geiger Counter

E. Rutherford 1909

H. Geiger 1927

The Geiger counter, later further developed and then called Geiger-Mülller counter
First electrical signal from a particle
E. Rutherford and H. Geiiger, Proc. Royall Soc. A81 (1908) 141
H. Geiiger and W. MüIIIler, Phys. Zeiits. 29 (1928) 839

Historical Development

Detection
 of cosmic rays

[Hess 1912; Nobel prize 1936]

1912
Victor F. Hess before his 1912 balloon flight
in Austria during which he discovered cosmic rays.

Cloud chamber (1911 by Charles T. R. Wilson, Noble Prize 1927)

The general procedure was to allow water to evaporate in an enclosed container to the point of saturation and then lower the pressure, producing a over-saturated volume of air. Then the passage of a charged particle would condense the vapor into tiny droplets, producing a visible trail marking the particle's path, their number per unit of length being proportional to the density of ionization (dIE/dxx).
was used at discovery of the positron (1932 by Carl Anderson, Noble Prize 1936)

Historical Development

Discovery of antimatter

[Anderson 1932; Nobel prize 1936]

63 MeV positron passing through lead plate emerging as 23 MeV positron.

The length of this latter pass is at least ten times greater than the possible length of a proton path of this curvature.

Historical Development

Discovery of the pion Nuclear emulsion technique

Pion
at rest

[Powell 1947; Nobel prize 1950]

Muon stopped

$$
\begin{aligned}
\pi \rightarrow & \mu v \\
& \mu \rightarrow e v V_{[n o t ~ s e e n] ~}
\end{aligned}
$$

Muon
\leftarrow Muon

Similar principle as cloud chamber:

- Bubble chamber (1952 by Donald Glaser, Noble Prize 1960)
- ($4.8 \times 1.85 \mathrm{~m}^{2}$) chamber with liquid (e.g. H_{2})

Donald Glaser

at boiling point ("superheated")

- charged particles leave trails of ions
- formation of small gas bubbles around ions
was used at discovery of the "neutral current" (1973 by Gargamelle Collaboration, no Noble Prize yet)

Historical Development

Historical Development

Discovery of the muon neutrino (1962)

Leon M. Lederman

Melvin Schwartz
Jack Steinberger
[Nobel prize 1988]
used to discover the muon neutrino

Large Size Mulliz-Wire Proportional Chamber (1972)

Geiger - Müller tube just good for single tracks with limited precision (no position information) \rightarrow in case of more tracks more tubes are needed or...

Multi Wire Proportional Chamber $\rightarrow 1968$ by Georges Charpak, Nobel Prize 1992)

The Nobel Prize in Physics 1992

Georges Charpak
CERN, Geneva, Switzerland

Historical Development

UA1
Detector

Discovery of the W/Z boson (1983)

Carlo Rubbia
Simon Van der Meer
[Nobel prize 1984]

First Z^{0} particle seen by UA1

Historical Development

Some relevant Nobel Prizes

1901	Physics	Wilhelm C. Röntgen	X-rays (1896) [Photographic plate]
1903	Physics	Antoine H. Becquerel Marie Curie	Radioactivity (1896/99) [Photographic plate \& electrometer]
1905	Physics	Philipp Lenard	Lenard window (1904) [Phosphorescent material]
1908	Chemistry	Ernest Rutherford	Atomic nucleus (1911) [Scintillating crystals]
1927	Physics	Charles T. R. Wilson	Cloud chamber (1912)
1935	Physics	James Chadwick	Neutron discovery (1932) [lonization chamber] Cosmic rays (1912)
1936	Physics	Victor F. Hess	Positron discovery (1932) [Electrometer \& cloud chamber]

Historical Development

Some relevant Nobel Prizes

1948	Physics	Patrick M. S. Blackett
1950	Physics	Cecil F. Powell
1953	Physics	Walter Bothe
1958	Physics	Pavel A. Cherenkov
1959	Physics	Emilio G. Segrè 1960
Owen Chamberlain		
1976	Physics	Donald A. Glaser
		Burton Richter Samuel C.C. Ting
1980	Physics	
		James Cronin Val Fitch

$e^{+} e^{-}$Production ... (1933)
[Advanced cloud chambers]
Pion discovery (1947) [Photographic emulsion]
Coincidence method (1924)
Cherenkov effect (1934)
Antiproton discovery (1955)
[Spectrometer; Cherenkov counter ...]
Bubble chamber (1953)
J/ Ψ discovery (1974)
[AGS Synchrotron; pBe collisions] [SLAC e'e- collider; MARK I]

CP violation (1963)
[Spark chamber; spectrometer]

Historical Development

Some relevant Nobel Prizes

1984	Physics	Carlo Rubbia, Simon Van der Meer
1988	Physics	Leon M. Lederman Melvin Schwartz Jack Steinberger
1990	Physics	Jerome I. Friedman Henry W. Kendall Richard E. Taylor
1989	Physics	Hans G. Dehmelt Wolfgang Paul
1992	Physics	Georges Charpak
2002	Physics	Raymond Davis Jr. Masatoshi Koshiba

W/Z discovery (1983)
[SPS; 4п multi-purpose detector]
Muon neutrino (1962)
[Neutrino beam; spark chambers]

Proton structure (1972+)
[ep scattering; spectrometer]

Electron g-2 (1986)
[lon trap technique]
Multi-Wire Chamber (1968)
Cosmic neutrino (1986)
[Large area neutrino detector]

Applications

Application 1

1/ Explain the difference between electrons and heavy ions when they interact with matter. Why the trajectory is different from the range in the case of electrons?

2/ Which effect arises when an electron beam is passing through an absorber?

3/ What is the critical energy for electrons in $\mathrm{Pb}(\mathrm{Z}=82)$? Are such electrons relativists?

4/ Below which energy the Bremsstrahlung is $<5 \%$? In order to have a good protection against relativist electrons, is it worth to use light or heavy materials?

5/ Calculate E_{c} for Carbon (Z=6). Calculate Bremsstrahlung ratio for 10 MeV electrons in carbone and compare with Pb . Then for 300 MeV .

1/ Heavy ions: collisions with electrons (no deviation, distance depending on the energy and material) then atomic collisions at low energy. The trajectory is almost equal to the path in the matter.
Electrons: collisions with electrons (deviation, numerous collisions when energy decreasing). Atomic collisions (radiative losses) arise at high E . Due to the high number of deviations, the trajectory of electrons is larger than their range.

2/ Bremsstrahlung is the major effect to take into account (for radioprotection purposes for instance). It is proportional to E and Z^{2}.

3/ $\quad E_{c}^{e}=800 \mathrm{MeV} /(82+1.2)=9.62 \mathrm{MeV}$

$$
\mathrm{E}=(\gamma-1) \mathrm{m}_{0} \mathrm{c}^{2} \Rightarrow \gamma=19.8
$$

$$
\beta=v / c=\sqrt{1-1 / \gamma^{2}}=0.9987
$$

4/ If r is the Bremsstrahlung ratio then $r=[b r e m] /[b r e m+c o l l]$ and 1/r = 1+ [coll] / [brem] = 1+700/ZE
$\rightarrow \mathrm{E}=449 \mathrm{keV}$
In any cases, it is better to minimize the Bremsstrahlung and so to use a low Z material.

5/Z=6 so $E_{c}=111,1 \mathrm{MeV}$.
For 10 MeV electrons the Brem. ratio is 7.9% in carbone and 54% in lead.

For 300 MeV electrons the Brem. ratio is 72% in carbone and 97% in lead.

Application 2

1 / In water, what is the minimum kinetic energy for an electron to undergo a Cherenkov effect?

2/ Calculate this energy for a proton and an alpha.

Water index of refraction: $n=4 / 3$

$$
\begin{aligned}
& m_{0}^{e} c^{2}=0,511 \mathrm{MeV} \\
& m_{0}^{p} c^{2}=938,3 \mathrm{MeV} \\
& m_{0}^{n} c^{2}=939,6 \mathrm{MeV}
\end{aligned}
$$

Application 2

The velocity of the charged particle must be $v>3 / 4 . c$

Electron kinetic energy is:

$$
T=m c^{2}-m_{0} c^{2} \text { with } m=\frac{m_{0}}{\sqrt{1-\frac{v^{2}}{c^{2}}}}
$$

So $\mathrm{E}_{\mathrm{e}}>0,26 \mathrm{MeV} ; \mathrm{E}_{\mathrm{p}}>480 \mathrm{MeV} ; \mathrm{E}_{\alpha}>1,922 \mathrm{GeV}$

Application 3

Photons detection:
A gamma source is located behind an aluminium plate of 0.5 cm thickness and detected by a counter at a distance of 4 cm with an effective detection area of $5 \mathrm{~cm}^{2}$.

The source is emitting 3700 photons/sec with an energy of $0,95 \mathrm{MeV}$.
For such photons, the mass attenuation coefficient of aluminium is $0,1 \mathrm{~cm}^{2} / \mathrm{g}$.

If the detection efficiency of the counter is 90%, calculate the number of counts per second in the detector.

Aluminium mass density: $2,7 \mathrm{~g} / \mathrm{cm} 3$

Application 3

Number of photons detected is related to the solid angle fraction, the photons attenuation in the aluminium and the detection efficiency.

$$
\begin{aligned}
& N=N_{0} \times \frac{S_{e f f}}{4 \pi r^{2}} \times \exp \left(-\mu_{m} \rho x\right) \times e f f i c i e n c y \\
& N=3700 \times \frac{5}{4 \pi 4^{2}} \times \exp (-0,1 \times 2,7 \times 0,5) \times 0,9=72,4 \quad \gamma \cdot s^{-1}
\end{aligned}
$$

To Backup

Energy loss for photons \rightarrow three major physics mechanisms:
\square Photo electric effect : absorption of a photon by an atom ejecting an electron
$\sigma=Z^{5} \alpha^{4}\left(\frac{m_{e} c^{2}}{E_{\gamma}}\right)^{n} n=7 / 2$ for $E \ll m_{e} c^{2}$ and $\rightarrow 1$ for $E \gg m_{e} c^{2}$
Strong dependence with Z, dominant at low photon energy
\square Compton scattering

$$
\sigma_{c}^{e} \propto \frac{\ln E_{\gamma}}{E_{\gamma}} \text { and atomic compton }=Z \sigma_{c}^{e}
$$

\square Pair creation (similar to bremsstrahlung) : dominant for $E \gg m_{e} c^{2}$
$\sigma_{\text {pair }} \approx 4 \alpha r_{e}^{2} Z^{2}\left(\frac{7}{9} \ln \frac{183}{Z^{\frac{1}{3}}}\right)=\frac{A}{N_{A}}\left(\frac{7}{9} \frac{1}{X_{0}}\right)$ Independent of energy !
Probability of pair creation in $1 X_{0}$ is $e^{-7 / 9}$, mean free path of a photon before creating a e ${ }^{+} e^{-}$pair is $\Lambda_{\text {pair }}=9 / 7 X_{0}$

Energy loss for photons

$\sigma_{\text {p.e. }}=$ Atomic photoelectric effect (electron ejection, photon absorption)
$\sigma_{\text {Rayleigh }}=$ Rayleigh (coherent) scattering-atom neither ionized nor excited $\sigma_{\text {Compton }}=$ Incoherent scattering (Compton scattering off an electron)

$$
\kappa_{\text {nuc }}=\text { Pair production, nuclear field }
$$

$$
\kappa_{e}=\text { Pair production, electron field }
$$

$\sigma_{\mathrm{g} \text {. d.r. }}=$ Photonuclear interactions

Electron (positron) interaction with matter

Define Radiation Length $\boldsymbol{X}_{\mathbf{0}}$
as the Radiative Mean Path : i.e. the distance over which the energy of electron/positron is reduced by a factor e by Bremsstrahlung. Measuredin, units of $[\mathrm{g} / \mathrm{cm} 2]$

Bethe-Bloch for heavy particles

$$
\text { Stop ping Power } \equiv \frac{d E}{d x} \equiv E \cdot \rho \frac{1}{X_{0}}
$$

Energy (kinetic) loss by Coulomb interaction of charged particles with the atoms/ electrons:
\square Excitation : the atom (or molecule) is excited to a higher level

$$
\text { atom } * \rightarrow \text { atom }+\boldsymbol{\gamma}
$$

low energy photons of de-excitation
\rightarrow light detection
\square Ionization : the electron is ejected from the atom
electron / ion pair
\rightarrow charge detection
\square Instead of ionization/excitation real photon can be produced under certain conditions
\rightarrow Cerenkov or Transition radiation
Contribute very little to the energy loss (<5\%), can be neglected but they are used for particle ID

$$
\text { Bethe-Bloch: } \quad \frac{d E}{d x}=K z^{2} \frac{Z}{A} \frac{1}{\beta^{2}}\left[\frac{1}{2} \ln \frac{2 m_{e} c^{2} \beta^{2} \gamma^{2} T_{\max }}{I^{2}}-\beta^{2}-\frac{\delta}{2}\right]
$$

Stopping power ($-<\mathrm{dE} / \mathrm{dx}>$) for positive muons in copper as a function of $\quad \beta \boldsymbol{\gamma}=p / \mathrm{Mc}$ over nine orders of magnitude in momentum (12 orders of magnitude in kinetic energy). Solid curvesomdicate the total stopping power. Kyiv, 2012

Minimum Ionizing Particle :

\square Minimum at $\beta \gamma \sim 3$... 4
\square Similar for all elements $\sim 2 \mathrm{MeV} /(\mathrm{g} / \mathrm{cm} 2)$

Cherenkov radiation detectors

Unique tool to identify charged particles with a high separation power over a range of momentum from few hundred $\mathrm{MeV} / \mathrm{c}$ up to several hundred $\mathrm{GeV} / \mathrm{c}$

A charged particle with velocity $\beta=\mathrm{v} / \mathrm{c}$ in a medium with refractive index $\mathrm{n}=\mathrm{n}(\lambda)$ may emit light along a conical wave front.

The angle of emission is given by:
$\cos \Theta_{C}=\frac{1}{\beta \cdot n} \quad \begin{aligned} & \cos \theta_{\max }=1 / n \\ & \beta_{\min }=1 / n\end{aligned}$

\rightarrow Particle ID: Threshold (detect Cherenkov light) and Imaging (measure Cherenkov angle) techniques
\rightarrow Fast particle counters, tracking detectors, performing complete event reconstruction,

Neutrino detectors

Stopping power

- We have seen that to stop a 450 GeV muon beam one needs 900 m of concrete.
- Muons interact mostly by electromagnetic interaction.
- Neutrino are neutral and interact only through the weak interaction
=> most of them will go through a 900 m block of concrete without interacting (and even through the earth)!
- There is no detector capable of detecting all neutrinos from a beam.
=> we can only sample a fraction of the neutrinos passing through a detector

Super Kamiokande

Sudbury Neutrino Observatory

- 1000 tonnes of heavy water.
- Located in Ontario, Canada
- Because heavy water contains a lot of neutrons, SNO is sensitive to both Neutral currents and charged currents
=> unique in the world.
=> Confirmed solar neutrinos oscillations

Antares / IceCube

- Because neutrino are (almost) unaffected by matter, they may give a different picture of the Universe than photons or cosmic rays
=> Neutrino telescopes in sea, lake (Baikal) or ice!

Invariant mass

- From relativistic kinematics, the relation between energy E, momentum p , and (rest) mass m is: $\mathbf{E}^{\mathbf{2}}=\mathbf{p}^{\mathbf{2}}+\mathbf{m}^{\mathbf{2}}$
- Consider a particle that decays and gives two daughter particles:

- The invariant mass of the two particles from the decay:

$$
M^{2}=m_{1}^{2}+m_{2}^{2}+2\left(E_{1} E_{2}-p_{1} p_{2} \cos \theta\right)
$$

\rightarrow to reconstruct the parent mass a precise knowledge of the momentum and the angle θ of decay products is needed, there are obtained :

- from the tracking system,
- and their particle type, which determines their masses m_{1} and m_{2}

Example: find Higgs boson via its decay :

$\mathrm{p}+\mathrm{p} \rightarrow \mathrm{HX} \rightarrow \mathrm{Z}^{0} \mathrm{Z}^{0 *} \mathrm{X} \rightarrow \mathrm{e}^{+} \mathrm{e}^{-} \mu^{+} \mu^{-} \mathrm{X}$
Compute (from the measured kinematics) :

$$
m_{H}^{2}=\left(E_{Z^{0}}+E_{Z^{0 *}}\right)^{2}-\left(\vec{p}_{Z^{0}}+\vec{p}_{Z^{0 *}}\right)^{2}
$$

Also for each Z^{0} compute (e.g. for $Z^{0} \rightarrow \mu^{+} \mu^{-}$) :

$$
m_{Z^{0}}^{2}=\left(E_{\mu^{+}}+E_{\mu^{-}}\right)^{2}-\left(\vec{p}_{\mu^{+}}+\vec{p}_{\mu^{-}}\right)^{2}
$$

The same for the other Higgs decay mode : $\mathrm{H} \rightarrow \gamma \gamma$
In all cases we have to reconstruct tracks (EM clusters for photons) and measure momenta, energies and idetify particles (charge and mass hypothesis).

Hadron Colliders: KinematicsLIR

- Given the characteristics of the collisions lets define some useful variables
- Transverse momentum, \mathbf{p}_{T} (very useful)
- Particles that escape detection $\left(\theta<3^{\circ}\right)$ have $\mathbf{p}_{\mathbf{T}} \approx 0$
- Transverse momentum conserved imply $\sum \mathbf{p}_{\mathrm{T}} \mathrm{\approx} \approx 0$
- Longitudinal momentum and energy, p_{z} (not useful)
- If particles that escape detection have large $\mathbf{p}_{\mathbf{T}}$
- It imply that the visible $\sum \mathbf{p}_{\text {Ti }}$ is not conserved
- Polar angle, θ (very useful)
- Not Lorentz invariant
- Rapidity: y
- Pseudorapidity: η

$$
y=\frac{1}{2} \ln \frac{E+p_{z}}{E-p_{z}} \quad y=\eta=-\ln \left(\tan \frac{\theta}{2}\right)
$$

- Azimuthal angle, φ (very useful)
- Well measured since detectors have complete coverage andsare azimuthally symmetric at a given η

Example of particle interactions

Llonization

Electron

DPair production

Nucleus

DCompion scatiening

Detector Systems (I)

Non-destructive methods: charged particles

Gaseous detectors

Silicon detectors

Measure: hit and/or drift time
\rightarrow Position resolution: ~ $50 \mu \mathrm{~m}$
\rightarrow Tracks reconstruction

+ Magnetic field
\rightarrow Momentum
Measure: energy losses dE/dx
\rightarrow Particle ID

Cherenkov detectors Measure: Cherenkov photons
\rightarrow Particle ID
Transifion radiation detectors, ...

Destructive methods

Calorimeters: electromagnetic and hadronic
Measure: shower energy and/or shower shape
\rightarrow Energy resolution
\rightarrow Position resolution: ~few mm
\rightarrow Particle ID

Muon detectors
Measure: hits
\rightarrow Muon track reconstruction after absorber
\rightarrow Particle ID

Typical

 arrangement of subdetectors

