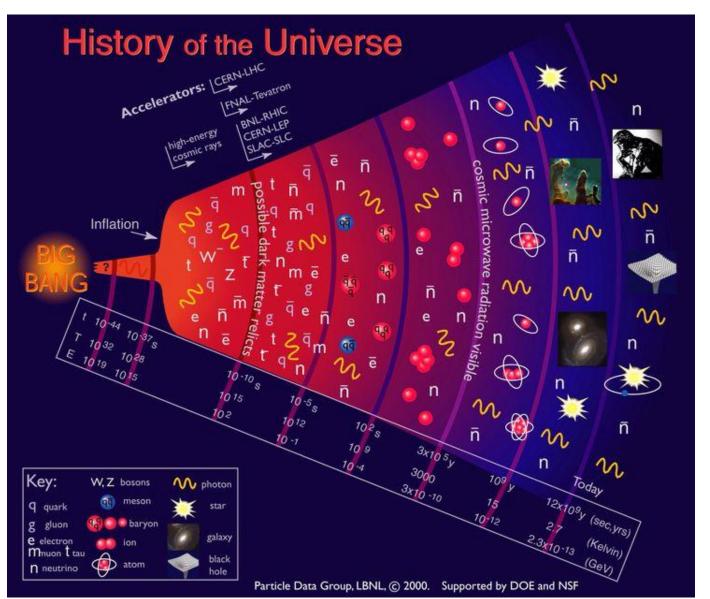

Physical Cosmology I 6th Egyptian School for HEP

Thermal History

Amr El-Zant (CTP@BUE)


Google 'Cosmic History' → Images: Things Like

Subject Matter

- Our universe is expanding \rightarrow Should have been 'hot' in the past
- \rightarrow As T rises:
- Atoms ionize
- Nuclei disassociate \rightarrow individual protons neutrons \rightarrow quarks-gluons
- SM phase transitions (electroweak, QCD) expected. Others (GUT) predicted mass nuclei
- → At some level universe is **testing ground for HEP**

Google some more: A **Thermal Bath** of **Particles and Antiparticles** that Leaves Relics

Tightly coupled, highly interacting, system

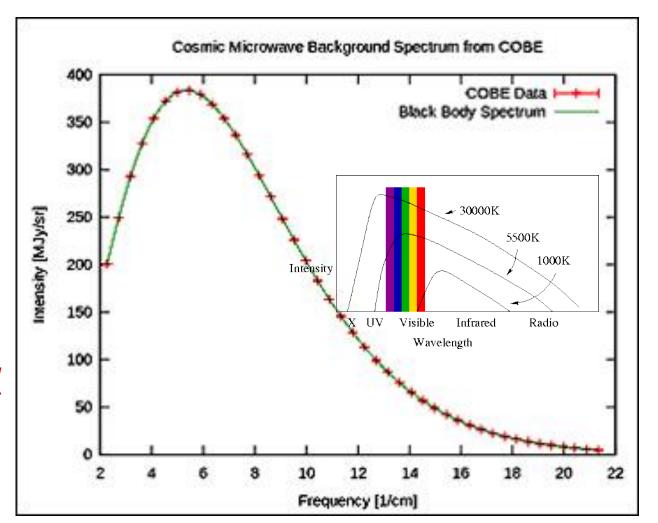
Couple of proper refs

Kolb & Turner: The Early Universe (standard text)

Daniel Baumann Tripos lectures Chapter 3 www.damtp.cam.ac.uk/user/db275/Cosmology.pdf (which I follow to some extent)

The Cosmic Microwave Background

- Tells us of prior thermal equilibrium
- Current temperature of spectrum: 2.728 Kelvin
- Current energy density of CMB:


 $(4\sigma/c)T^4 = 4.19 imes 10^{-14} \text{ J m}^{-3}$

- The average energy per photon ~ k T ~ h v (since distn ~ $e^{-\frac{E}{kT}}$)
- \rightarrow photon number density ~ 10⁸ m⁻³

<u>Compare with < one proton per cubic meter!</u>

Entropy ~ large ratio; well conserved

🔺 in comoving vol

Units, rates (and '~convention'!)

- Using 'natural units': $c = \hbar = G = k_B = 1$
- Temperature, energy, momentum and mass are in electron volts
- Length and time are in inverse electron volts
- In these units, during radiation era gives

Expansion rate

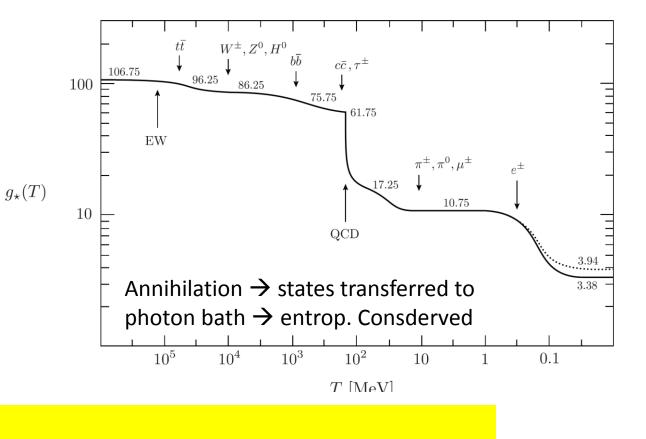
$$H \sim T^2/M_{\rm pl}$$

Using Stefan-Boltzmann and $H\sim\sqrt{\rho}/M_{\rm pl}$. law Natural units The reduced Planck mass $M_{Pl}=\sqrt{\hbar/8\pi G}$

- Already twiddle '~' sign reappearing!
- → we will be making mainly order of magnitude (factor ten) estimates

Relativistic Degrees of Freedom g*

 $\frac{T}{1 \,\mathrm{MeV}} \simeq 1.5 g_{\star}^{-1/4} \left(\frac{1 \,\mathrm{sec}}{t}\right)^{1/2}$


Expansion influenced by number of relativistic degrees of freedom (essentially number of species and their internal degrees of freedom; e.g. spin)

The total **energy density of relativistic species** is (using Stefan-Boltzmann again in natural units)

$$\rho_r = \sum_i \rho_i = \frac{\pi^2}{30} g_\star(T) T^4$$

(similar relation for entropy $s \sim \rho/T$) These act as 'radiation' with pressure 1/3 ρ

A thermal particle is relativistic if $(m \ll T)$

A particle is in the thermal equilibrium if: interaction rate with thermal bath > expansion rate

Number densities in Thermal Equilibrium

• Spatially homogeneous system with phase space density $f(p) \rightarrow$

 $d n = g f(p) dp_x dp_y dp_z \rightarrow n = 4 \pi g \int f(p) p^2 dp$

(isotropic momenta and number of internal deg. freed., e,.g. spin, g)

$$n = 4 \pi g \int_0^\infty \mathrm{d}p \, \frac{p^2}{\exp\left[\sqrt{p^2 + m^2}/T\right] \pm 1}$$

Chemical equilib. → particles are created – annihilated so as to keep these distn → Non-relativistic parts → more difficult

to make \rightarrow lose out and suppressed

Non-relativistic $(m \gg T)$

 $(m \ll T)$

Relativistic

$$n \sim q (mT)^{\frac{3}{2}} \rho$$

 $n \sim g T^3$

 \rightarrow As T \rightarrow 0 a massive particles should vanish... !

'Normal matter'; should vanish; it's existence suggests violations of baryon number and charge parity conservation
 → Baryogenesis through particle antipart asymmetry (probably BSM)

 $f(p) \sim \frac{1}{\frac{E(p)}{p^{T}+1}}$

Era of Tightly Coupled Plasma

- Currently interaction rate of CMB photons with matter negligible, but
- As universe changes scale $a \rightarrow$

Number density of photons $n \sim \frac{1}{a^3} \sim T^3$ $\rightarrow T \sim \frac{1}{a}$

$$T \sim \frac{1}{a} \qquad (\sim h \, \nu \sim 1/\lambda)$$

Back in time \rightarrow higher density and temperature \rightarrow universe ionised

Number of neutral atoms (~Hydrogen) suppressed by factor Boltzmann factor $e^{-\frac{B_H}{T}}$ (B_H = 13.6 eV is Hydrogen's binding energy)

There are ~ 10^9 photons per proton $\rightarrow T_{rec} \sim 14/\ln 10^9 = 0.7 \text{ eV}$ (proper calc gives 0.3)

 $3600 \text{ Kelvin} \rightarrow a (rec) = 1/1300 \rightarrow z (rec.) = 1300 \rightarrow t (rec) \sim 300\ 000 \text{ yr}$ for $a(t) = (t/t_0)^{2/3}$

Cosmic Plasma Coupling

- Gas fully ionized → strongly interacts with photons by Thompson scattering:
- Electron placed in EM field $\rightarrow m_e \frac{d^2 z}{dt^2} = -e E_0 \sin(\omega t)$, \rightarrow oscillates

• radiates back
$$\frac{dP}{d\Omega} = \frac{e^4 E_0^2}{32\pi^2 \epsilon_0 c^3 m_e^2} \sin^2 \theta$$
.

Crossection ~ power radiated / mean incident energy flux ~ Square of classical electron radius $r_e = \frac{e^2}{4\pi \epsilon_0 m_e c^2} = 2.82 \times 10^{-15} \,\mathrm{m}$

 $\sigma_T \approx 2 \times 10^{-3} \, {\rm MeV^{-2}}$

 $e^- + \gamma \leftrightarrow e^- + \gamma$ interaction rate $\Gamma_\gamma pprox n_e \sigma_T$ (note relative vely ~*c* = 1 here!)

Interaction Rate of Coupled Plasma

Electron dens. ~ Baryon dens ~ 10⁻⁹ photon dens ~ 0.1 T³
 →

Photon electron Interaction rate at decoupling $\sim \sigma_T T_{dec}^3$

$$\sim 10^{-10} \cdot 0.3^3 \ 10^{-18} \cdot 2 \ 10^{-3} \ MeV = 10^{-10} \cdot 0.3^3 \ 10^{-18} \cdot 2 \ 10^{-15} \ eV$$

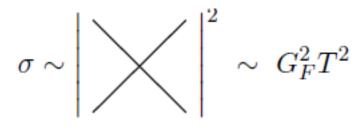
 $n \qquad \sigma$

Interaction Time ~ 2 10^{26} eV^{-1} ~ 1.4 10^{11} s ~ 4400 years (<< age of uni at recom.) $6.582119 \times 10^{-16} \text{ s}$

→Timescale for interaction much smaller than age of universe
 → Plasma tightly coupled in (kinetic) equilib. Before recom.

Similar process of binding in QCD phase trans. And BBN

Rough rule of thumb for equilibrium:


<u>Interaction rate > expansion rate (interaction time < age of universe)</u>

Neutrino Decoupling

Neutrinos are coupled to electrons through weak interactions
 →Much looser than Thompson coupling → early decoupling

Below electroweak scale (~100 GeV) but In relativistic limit \rightarrow crossection

('four Fermion' interaction)

 $G_F \sim \alpha/M_W^2 \sim 1.17 \times 10^{-5} \ {\rm GeV^{-2}}$

Neutrinos thus decouple at

$$\frac{\Gamma}{H} \sim \frac{\alpha^2 M_{\rm pl} T^3}{M_W^4} \sim \left(\frac{T}{1~{\rm MeV}}\right)^3 \text{ (recall H ~ T^2 in rad era)}$$

 \rightarrow When scales ~ 3 million times smaller than recombination ~ 1 s after start of expansion

Cosmological Element Production (BBN)

• Elements beyond hydrogen need neutrons, these are in equilibrium with protons before weak scale freeze out *Post QCD*

$$\begin{array}{ccc} n + \nu_e &\leftrightarrow p^+ + e^- & \not \\ n + e^+ &\leftrightarrow p^+ + \bar{\nu}_e \end{array} & \left(\frac{n_n}{n_p}\right)_{\rm eq} = e^{-\mathcal{Q}/T} \qquad \qquad \mathcal{Q} \equiv m_n - m_p = 1.30 \text{ MeV.} \end{array}$$

At Freeze out (1 MeV) neutron fraction ~ 1/6 ++ decay ~ 1/8

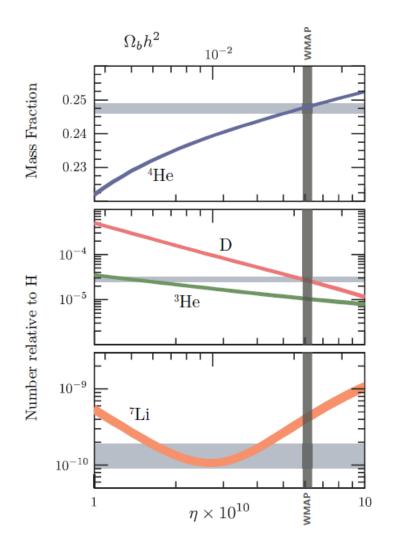
Elements cannot form until Boltzmann suppression ~ $10^{-9}e^{\frac{B_E}{T}}$ overcome

Virtually all neutrons go to Helium \rightarrow abundance ~ 1/16 \rightarrow by mass 1/4

Heavier elements absent due to low densities (process ends after three min...)

Of BBN and BSM

**Dependence on baryon dens. \rightarrow


Non-Baryonic Dark Matter dominant

** Dependence on expansion rate \rightarrow number of relativistic species (with m << T) (Recall the expansion rate $H^2 \sim \rho \sim g_*$)

\rightarrow puts bounds on neutrino species

(and any other relativistic species prior to T~MeV)

**Places constraints on G and G_F at early times ++ Constraints on non-standard cosmology

Vertical line Baryon fraction ~ 5 %

What Then is the DM: A WIMP Miracle?

- Assume DM is composed of weakly interacting massive particles
- Mass of order 100 proton mass ~ 1 GeV, consistent with BSM models

Rough feasibility estimate

Freeze out at interaction rate ~ **expansion rate**

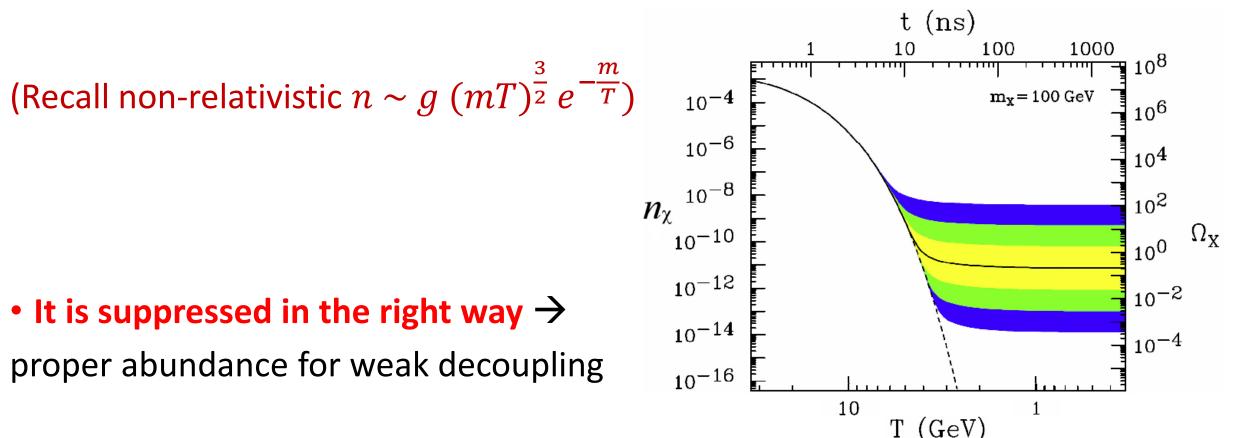
Recall for neutrinos this gave $\frac{\Gamma}{H} \sim \frac{\alpha^2 M_{\rm pl} T^3}{M_W^4} \sim \left(\frac{T}{1 \text{ MeV}}\right)^3$

Density of DM ~ 1/20 baryon density for ~100 GeV particle

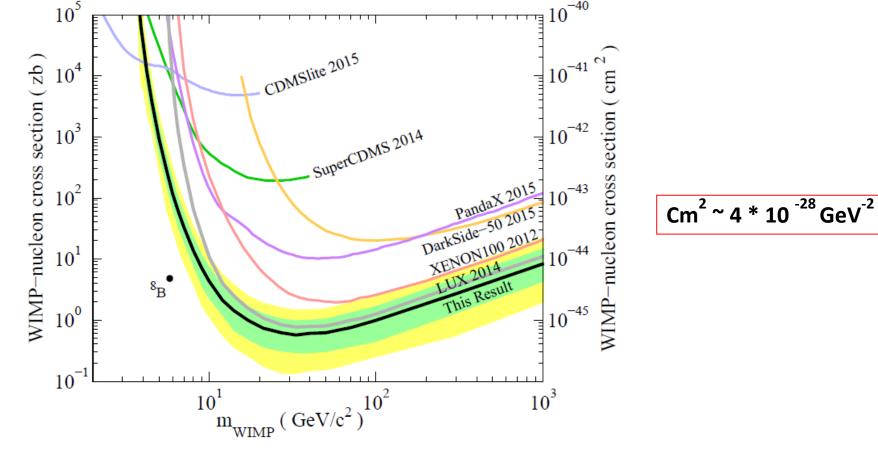
++ baryons less dense than neutrinos by a factor 10 $^{-9}$

And in non relativistic lim $\sigma \rightarrow const$

 \rightarrow T of non-relativistic relic $n \sigma \sim 10^{-10} T^3 \sigma \sim \frac{T^2}{M_{pl}} \rightarrow$


 $T_{dec} \sim 10^{10} \sigma^{-1} M_{Pl}^{-1} \sim \text{few GeV for } \sigma \sim 10^{-8} \text{ GeV}^{-2} \rightarrow \text{characteristic of weak interaction...}$

The Miracle more precisely


• Use Boltzmann equation for comoving number density

$$\frac{dN_X}{dt} = -s\langle\sigma v\rangle \Big[N_X^2 - (N_X^{\rm eq})^2\Big]$$

• The equilibrium abundance is Boltzmann suppressed

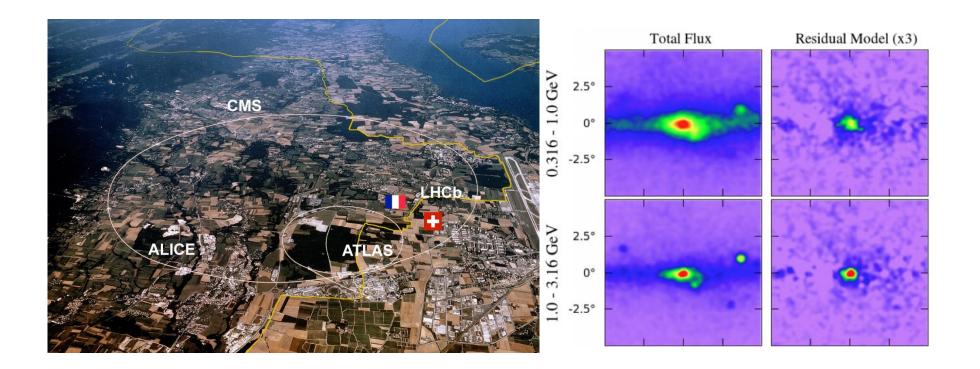
Direct detection constraints from Akerib et. al. (2016)

Experimental constraints \rightarrow WIMP miracle wither away?

(Also appears withering at LHC...)

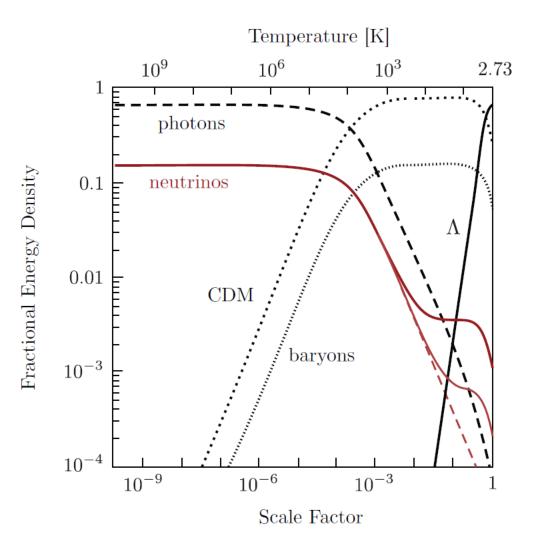
Some Alternatives

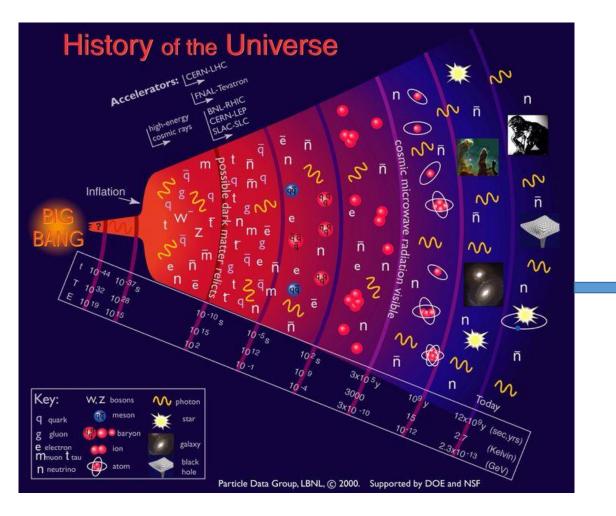
- Sterile neutrinos (can be produced from oscillations with regular ones)
 →'Warm dark matter' in keV range
- Axions (introduced to solve CP violation problem in QCD re neutron's electric dipole moment)
- \rightarrow Tiny mass but dynamical friction effect leads to similar behavior as cold dark matter
- Non-thermal production of WIMPS or WDM

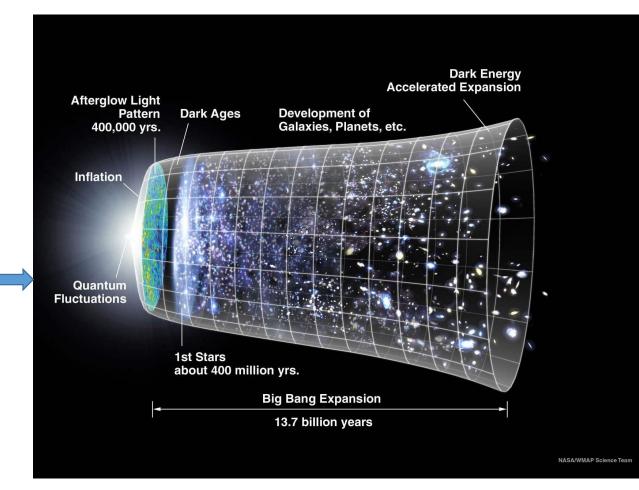

e.g., from direct decay of Inflaton like field \rightarrow escapes thermal constrains if equilibrium is not established (e.g., produced after T_decoup.)

This is normally accompanied by 'entropy production' (decay of field into relativistic particles) which can adjust expansion rate and thus the DM abundance (diluting it)

 \rightarrow Constrained by BBN and CMB


Searching for Dark Matter


- Detection experiments (DM in the room!)
- LHC (at CERN)
- Annihilation Signals (in the sky)



Overview of Evolution

Event	time t	redshift \boldsymbol{z}	temperature ${\cal T}$
Inflation	10^{-34} s (?)	-	-
Baryogenesis	?	?	?
EW phase transition	20 ps	10 ¹⁵	$100 \mathrm{GeV}$
QCD phase transition	$20 \ \mu s$	10^{12}	$150 { m MeV}$
Dark matter freeze-out	?	?	?
Neutrino decoupling	1 s	6×10^9	1 MeV
Electron-positron annihilation	6 s	2×10^9	500 keV
Big Bang nucleosynthesis	3 min	4×10^8	100 keV
Matter-radiation equality	60 kyr	3400	0.75 eV
Recombination	260–380 kyr	1100-1400	$0.26-0.33 \ eV$
Photon decoupling	380 kyr	1000-1200	0.23-0.28 eV
Reionization	100–400 Myr	11-30	$2.67.0~\mathrm{meV}$
Dark energy-matter equality	9 Gyr	0.4	0.33 meV
^{Pr} From lecture notes by Daniel Baumann ⁰			0.24 meV

