

GridPix detector with Timepix3 ASIC

<u>Jochen Kaminski</u>, Yevgen Bilevych, Klaus Desch, Kevin Heijhoff, Tobias Schiffer University of Bonn

Fred Hartjes, Peter Kluit, Gerhard Raven, Jan Timmermans, Harry van der Graaf Nikhef, Amsterdam

GEFÖRDERT VOM

MPGD 2017 Philadelphia 22.-26.05.2017

Improving Micromegas: GridPix

track of high energetic particle

Could the spatial resolution of single electrons be improved?

Ar:CH₄ 90:10
$$\rightarrow$$
 D_T = 208 μ m/ \sqrt{cm}

$$\rightarrow \sigma = 24 \mu m$$

Ar:iButane 95:5 \rightarrow D_T = 211 μ m/ \sqrt{cm}

$$\rightarrow \sigma = 24 \mu m$$

Smaller pads/pixels could result in better resolution!

At Nikhef the GridPix was invented.

Standard charge collection:

- Pads of several mm²
- Long strips (I~10 cm, pitch ~200 μm)

Instead: Bump bond pads are used as charge collection pads.

Timepix

Number of pixels: 256 × 256 pixels

Pixel pitch: $55 \times 55 \,\mu\text{m}^2$ Chip dimensions: $1.4 \times 1.4 \,\text{cm}^2$

ENC: $\sim 90 \text{ e}^{-1}$

<u>Limitations:</u> no multi-hit capability, charge and time measurement not possible for one pixel. Each pixel can be set to one of these modes: TOT = time over threshold (charge)

Time between hit and shutter end.

Application IAXO/CAST

Magnet is pointed to the Sun. Axions and chameleons produced in the Sun convert into X-ray photons. Detector requirements:

- Radiopure materials
- Good background separation (distinguish round X-rays and longer tracks)
- Good energy resolution
- Very low dead time
- => Detector optimized for spatial and energy resolution:
- Gas mixture
 (Ar:iC₄H₁₀: 97.7:2.3)
- Electric fields (E_{drift} = 500 V/cm)
- Gas gain (G~ 2500) and
- Analysis (pixel counting).

During the study energy resolutions of $\sigma_E/E=3.85\%$

for the photopeak of ⁵⁵Fe could be reached.

Application: ILC

International Linear Collider (ILC) is a linear e⁺e⁻ colliders with

 $\sqrt{s} = 500 \text{ GeV} - 1\text{TeV}$

International Large Detector

- Standard HEP detector
- TPC as main tracker

TPC Requirements:

Parameter	
Geometrical parameters	$egin{array}{llll} r_{ m in} & r_{ m out} & z \\ 329 \ \mbox{mm} & 1808 \ \mbox{mm} & \pm \ 2350 \ \mbox{mm} \end{array}$
Solid angle coverage	up to $\cos \theta ~\simeq~ 0.98$ (10 pad rows)
TPC material budget	$\simeq~0.05~{ m X_0}$ including outer fieldcage in r
	$<~0.25~{ m X}_0$ for readout endcaps in z
Number of pads/timebuckets	$\simeq 1\text{-}2 imes 10^6/1000$ per endcap
Pad pitch/ no.padrows	$\simeq~1 imes$ 6 mm 2 for 220 padrows
$\sigma_{ m point}$ in $r\phi$	$\simeq~60~\mu$ m for zero drift, $<~100~\mu$ m overall
$\sigma_{ m point}$ in rz	$\simeq 0.4-1.4$ mm (for zero – full drift)
2-hit resolution in $r\phi$	$\simeq 2$ mm
2-hit resolution in rz	$\simeq 6$ mm
dE/dx resolution	$\simeq 5$ %
Momentum resolution at $B=3.5 T$	$\delta(1/p_t) \; \simeq \; 10^{-4}/{ m GeV/c}$ (TPC only)

Benefits of GridPix readout:

- Lower occupancy → better track finding
- Identification/removal of δ -rays/kinks
- Improved dE/dx → primary e⁻ counting But to readout the TPC with GridPixes:
- ~100-120 chips/module 240 module/endcap (10 m²)
- → 50k-60k GridPixes

Timepix3

Number of pixels: 256 × 256 pixels

• Pixel pitch: $55 \times 55 \mu m^2$

• ENC: ~ 60 e⁻¹

- Charge (ToT) and time (ToA) available for each hit
- Timing resolution: 1.56 ns for duration of \sim 410 μ s
- Zero suppression on chip (sparse readout)
- Multi-hit capable (pixels sensitive after t_{ToT} +475 ns) Super-pixels store hits for some time
- Output rate up to 5.12 Gbps
- Power pulsing possible (800 ns for start up)

analog

discr

640MHz

clock 40MHz

clock ToT clk

Latch ToA

global

out

Protection Layer

During a 2 week test beam (5 GeV e⁻)

about 18 out of 160 chips were

destroyed.

Reason identified: Machine depositing Si_xN_y caused defects in the protective layer during growths.

Process has been switched to a different machine.

→ no defects anymore

→ Detector still works and shows good σ_E /E afterward

x [pixel]

[>] 100

New Grid Design

5762 of 65536 pixels covered => loss of 8.7 % of active area

1536 of 65536 pixels covered => loss of 2.3 % of active area

Remove stress relief gaps:

Grid sags in the stress relief gaps. At high gains these places are prone for discharges.

=> gaps have been removed

Production at IZM

Production was set up at the Fraunhofer Institut IZM at Berlin. This process is wafer-based → batches of up to 4 wafers (105 chips each) at a time.

2. Deposition of SU-8

3. Pillar structure formation

4. Formation of Al grid

5. Dicing of wafer

6. Development of SU-8

Pictures

First GridPix-Detector with TP3

Gas: Ar:CF₄:iButane 95:3:2

E_{deff}: 200 V/cm

 d_{max} : 17 mm

universität**bonn**

Laser Setup at Nikhef

- pulsed UV
 nitrogen
 laser
 λ = 337 nm
- duration:
 - 1 ns
- energy: few μJ

- divergence: near diffraction limit
- double photon absorption, ionization enhanced by traces of TMPD
 ionization is merely confined to the focal point

Events

- About 10 hits per laser pulse
- 960 laser pulses per spot
- Measured spot size dominated by diffusion. About 5 pixels (standard deviation) in the example on the right.

Gas Parameters

Absolute position of laser not known

→ use differences of two laser positions

Drift velocity: 6.6480±0.007 cm/µs

Because of time walk: split data according

to collected charge

Spatial variance of charge distribution:

Transverse diff. D_{τ} = 309.0± 2.2 μ m/ \sqrt{cm}

Time variance of charge distribution:

Longitudinal diff. $D_i = 254.1 \pm 2.7 \mu m / \sqrt{cm}$

Spatial Resolution

Residuals in x and y of each laser dot

Column

Outer part of detector shows larger residuals because of field distortions and grid inefficiencies. Central part has a very small residual

distributions.

d = 7.6 mm

$$N_{pulses}$$
 = 960
=> spatial res.
~ 20 μ m

- partially contained dots
- 2. low efficiency pixels
- 3. field distortions due to field cage
- 4. grid peeling off
- 5. guard electrode distorted

Plans New Module

Longterm plan: built a LCTPC – module with about 100 GridPixes

Module size: 22×17 cm² – keystone shaped

GridPixes are grouped into smaller units (4-8 GridPixes)

Short term plan: start with a module equipped with 1 or 2 of the small units

Currently: Quads, designed to minimize the dead area

Quad assembly

Summary

GridPix based on Timepix has demonstrated good performance in several applications. But limited because of Timepix performance.

New ASIC, Timepix3, has been developed which has multi-hit capability, a time resolution of 1.56 ns, gives charge and time information for each pixel and has a continuous readout.

InGrids have been built on top of Timepix3 forming new GridPixes. For this

- the quality of the protections layer has been improved
- the grid layout has been modified to decrease the covered pixels from 8.7 % to 2.3 %.

A detector has been built and tested with a laser setup.

Good performance could be demonstrated at the center of the chip.

E-field distortion expected from detector design.

First test beam with Timepix3 detector at 3 GeV e⁻ facility at Bonn in June.

New larger area detectors are in preparation.

