

# Radiation studies on resistive bulk-micromegas chambers at the CERN Gamma Irradiation Facility

B. Alvarez Gonzalez<sup>1</sup>, J. Bortfeldt<sup>1</sup>, M. T. Camerlingo<sup>2</sup>, E. Farina<sup>1,3</sup>, P. Iengo<sup>1</sup>, J. Samarati<sup>1</sup>,
O. Sidiropoulou<sup>1,4</sup>, J. Wotschack<sup>1</sup>

(1) CERN (2) Universita e INFN, Napoli (3) Universita e INFN, Pavia (4) Julius-Maximilians-Universität Würzburg

#### **Abstract**

Two resistive bulk-micromegas chambers were installed in May 2015 at GIF++ exposed to an intense  $\gamma$  irradiation with the aim to study the detector behavior under high irradiation and long-term aging. The results of the detector performance after this long-term irradiation period will be presented.

### Gamma Irradiation Facility (GIF++) at CERN

Located in the north area of the SPS accelerator at CERN [1] Unique place where high energy charged particle beams (mainly muons) are combined with a flux of high energy photons (662 KeV)



The high source activity, <sup>137</sup>Cs, produces a very intense background gamma field allowing to accumulate doses equivalent to High Luminosity LHC (HL-LHC) experimental conditions in a reasonable time

Measurements and simulations (*Geant4*) of the **photon field** were provided [1] and used as benchmarks for our measurements Filter system permits the attenuation of the photon rate in several steps to reach attenuation factors of several orders of magnitude ( $\sim 10^4 - 10^5$ )

#### Description of the MicroMegas used in GIF++

- Two resistive bulk-micromegas chambers (T5 & T8) [2] built at CERN
- ► Active area of 10x10 cm<sup>2</sup>
- Single readout plane with strip pitch  $400 \mu m$  and strip width  $300 \mu m$
- ► Readout strips covered with a  $50\mu m$  thick Kapton foil carrying high resistivity (~1M $\Omega$ /sq) carbon strips  $\rightarrow$  *spark protection*
- ▶ Mesh consisting of  $18\mu m$  diameter wires with  $64\mu m$  pitch
- ► Amplification gap of  $128\mu m$ , drift gap of 5 mm



# **Data-taking and Working Conditions**

Data acquired with APV-25 front-end ASICs [3] and RD51 Scalable Readout System (SRS)[4]

Data-taking varying attenuation filters and amplification voltages

Att. Factors: 1, 2.2, 4.6, 10, ..., 100

Amplification Voltage Scan: 420-540 V

► Drift Field: 600 V/cm

Source ON/OFF + Muon Beam

# Working conditions:

Gas: ArCO<sub>2</sub> 93%, 7%, Gas Flow: 5 l/h

#### **Integrated Charge**

After  $\sim$ 2 years of exposure to an intense  $\gamma$  irradiation the desired accumulated charge of more than 0.2 C/cm<sup>2</sup> has been reached for one of the two chambers; the equivalent charge expected after 10 years of HL-LHC operation



Chambers exposed at GIF++ from May 2015 to March 2017

#### **Efficiency Measurement**



The efficiency is measured with respect to the reference detectors using **muon tracks** 

- ► May 2015: muons from cosmic rays in the RD51 GDD lab
- ► May 2017: GIF++ muon beam
- ► Both datasets reach full efficiency at 500V
- Voltage was not corrected by T, P and H
- No degradation of the efficiency due to irradiation observed

#### **Gain Measurement**

Gain measurements were conducted on the T5 and T8 chambers using an <sup>55</sup>Fe source in the *RD51 GDD lab* 





No significant changes on the gain are observed for any of the two chambers  $\rightarrow$  No degradation of the gain due to irradiation observed

#### **Particle Rate and Detector Sensitivity**

Particle rate as a function of the amplification voltage per att. factor



- Left figure: November 2016 data-taking for T5 and T8
- Right figure: comparison of Nov. 2015 and 2016 data-takings for T8

The **detector sensitivity** is extracted from the measured particle rate from the fully efficient region @ 520 V and the photon current at **U1** and is estimated to be ~3x10<sup>-3</sup>. This agrees with the Geant4 simulations which include the resistive bulk-micromegas chambers

#### Conclusions

The efficiency, gain and particle rate measurements have been presented. After two years of irradiation at GIF++ **no aging effects** have been observed in either of the two chambers. This confirms earlier results obtained in a  $\gamma$  ray exposure at CEA Saclay [5].

#### References

- [1] **D.Pfeiffer et al.**, arXiv:1611.00299v1
- [2] **T. Alexopoulos et al.**, Nucl. Instr. Meth. Phys. Res. A 640 (2011) 110-118
- [3] **M .Raymond et al.**, IEEE Nucl. Sci. Symp. Conf. Rec. 2 (2000), 9/113
- [4] S. Martoiu et al., JINST 8 (2013) C03015
- [5] J. Galán et al., JINST 7 (2012) C01041