Radiation studies on resistive bulk-micromegas chambers at the CERN Gamma Irradiation Facility

B. Alvarez Gonzalez1, J. Bortfeldt1, M. T. Camerlingo2, E. Farjina3,5, P. Iengo1, J. Samarati1, O. Sidiropolou1,4, J. Wotschack1

(1) CERN (2) Universita e INFN, Napoli (3) Universita e INFN, Pavia
(4) Julius-Maximilians-Universitat Wurzburg

Abstract

Two resistive bulk-micromegas chambers were installed in May 2015 at GIF++ exposed to an intense γ irradiation with the aim to study the detector behavior under high irradiation and long-term aging. The results of the detector performance after this long-term irradiation period will be presented.

Gamma Irradiation Facility (GIF++) at CERN

Located in the north area of the SPS accelerator at CERN [1]

Unique place where high energy charged particle beams (mainly muons) are combined with a flux of high energy photons (662 keV)

The high source activity, 60Co, produces a very intense background gamma field allowing to accumulate doses equivalent to High Luminosity LHC (HL-LHC) experimental conditions in a reasonable time

Measurements and simulations (Geant4) of the photon field were provided [1] and used as benchmarks for our measurements

Filter system permits the attenuation of the photon rate in several steps to reach attenuation factors of several orders of magnitude ($\sim 10^4$ - 10^6)

Description of the MicroMegas used in GIF++

- Two resistive bulk-micromegas chambers (T5 & T8) [2] built at CERN
 - Active area of 10x10 cm2
 - Single readout plane with strip pitch 400 μm and strip width 300 μm
 - Readout strips covered with a 50 μm thick Kapton foil carrying high resistivity (~1MΩ/sq) carbon strips \rightarrow spark protection
 - Mesh consisting of 18 μm diameter wires with 64 μm pitch
 - Amplification gap of 128 μm, drift gap of 5 mm

Data-taking and Working Conditions

Data acquired with APV25 front-end ASICs [3] and RD51 Scalable Readout System (SRS)[4]

Data-taking varying attenuation filters and amplification voltages
- Att. Factors: 1, 2.2, 4.6, 10, ..., 100
- Amplification Voltage Scan: 420-540 V
- Drift Field: 600 V/cm
- Source ON/OFF + Muon Beam

Working conditions:
- Gas: ArCO$_2$ 93%, 7%, Gas Flow: 5 l/h

Integrated Charge

After ~ 2 years of exposure to an intense γ irradiation the desired accumulated charge of more than 0.2 C/cm2 has been reached for one of the two chambers: the equivalent charge expected after 10 years of HL-LHC operation

Chambers exposed at GIF++ from May 2015 to March 2017

Conclusions

The efficiency, gain and particle rate measurements have been presented. After two years of irradiation at GIF++ no aging effects have been observed in either of the two chambers. This confirms earlier results obtained in a γ ray exposure at CEA Saclay [5].

References

[1] D. Pleifler et al., arXiv:1611.00299v1