GEM single-mask characterization and influence of the GEM foil orientation

MPGD2017
22/05/2017

Jeremie A. Merlin
CERN

On behalf of the CMS muon group

Upgrade of the CMS muon spectrometer in the forward region with the GEM technology (Poster by M.Gruchala)

Results of the longevity study with triple-GEM technology for the upgrade of the CMS muon end-cap (Poster by J. Merlin)

Numerical predictions of GEM sheet nonlinear mechanical properties under large deformations (Talk by O. Bouhali)

https://indico.cern.ch/event/581417/contributions/2556708/
Historical development

GE1/1 prototyping:

- **Generations I and II**
 - First experience with large-size detectors

- **Generation III**
 - New configuration to fulfil CMS requirements
 - New stretching technique

- **Generation IV - VII**
 - Improvement of the stretching technique
 - Improvement of the mechanics

- **Generation X**
 - Final version for LS2 production

J. A. Merlin
On behalf of the CMS muon group
Historical development

GE1/1 prototyping:

- **Generations I and II**
 - First experience with large-size detectors
- **Generation III**
 - New configuration to fulfil CMS requirements
 - New stretching technique
- **Generation IV - VII**
 - Improvement of the stretching technique
 - Improvement of the mechanics
- **Generation X**
 - Final version for LS2 production

Inverted GEM foils

<table>
<thead>
<tr>
<th>GE1/1-I</th>
<th>GE1/1-II</th>
<th>GE1/1-III</th>
<th>GE1/1-IV</th>
<th>GE1/1-V</th>
<th>GE1/1-VI</th>
<th>GE1/1-VII</th>
<th>GE1/1-X</th>
</tr>
</thead>
</table>
GEM foils geometries

Double-mask technique:
- **“Standard” for small areas** \((\leq 40\times40 \text{ cm}^2) \)
- **Gives a perfect bi-conical shape**

<table>
<thead>
<tr>
<th>Hole location</th>
<th>Diam. ([\mu\text{m}])</th>
<th>Err. ([\mu\text{m}])</th>
</tr>
</thead>
<tbody>
<tr>
<td>Top</td>
<td>70.1</td>
<td>± 0.2</td>
</tr>
<tr>
<td>Middle</td>
<td>49.1</td>
<td>± 1.2</td>
</tr>
<tr>
<td>Bottom</td>
<td>69.4</td>
<td>± 0.8</td>
</tr>
</tbody>
</table>

Single-mask technique:
- **Suitable for large areas**
- **Gives a “asymmetric” bi-conical shape**

<table>
<thead>
<tr>
<th>Hole location</th>
<th>Diam. ([\mu\text{m}])</th>
<th>Err. ([\mu\text{m}])</th>
<th>Diam. ([\mu\text{m}])</th>
<th>Err. ([\mu\text{m}])</th>
</tr>
</thead>
<tbody>
<tr>
<td>Top</td>
<td>73.8</td>
<td>± 3.3</td>
<td>71.0</td>
<td>± 2.1</td>
</tr>
<tr>
<td>Middle</td>
<td>51.3</td>
<td>± 2.7</td>
<td>52.8</td>
<td>± 5.4</td>
</tr>
<tr>
<td>Bottom</td>
<td>85.5</td>
<td>± 4.1</td>
<td>86.1</td>
<td>± 4.9</td>
</tr>
</tbody>
</table>

- **How does this asymmetry affect the operation of the detectors?**
Special R&D prototype

10x10 detector with two orientations:
- Gap configuration
 - 2/2/2/2 mm
 (using the common 3/2/2/2 electric field configuration)
- RO board replaced by a single copper pad
- Using a second Kapton widow on the bottom side

Testing the two orientations without opening the chamber:
- Save time
- Reduce the risk of damaging foils during assembly
- Keep the same gap uniformity for all the tests.

Two sets of measurements:
- 3 “standard” double-mask 10x10 GEM foils
- 3 single-mask 10x10 GEM foils

19/05/17
J. A. Merlin
On behalf of the CMS muon group
Effective gain: test setup

Primary goal of the study:

- Compare the effective gain for the 2 sets of foils in both possible orientations
- HV powering through a HV divider
- Operation in Ar/CO₂ (70:30)
- Count rate measurement from G3 bottom
- Anode current from the RO electrode
Effective gain: results and discussion

Looking at the effective gain ratios:

Comments:
- Double-mask orientation A = double-mask orientation B \(\rightarrow\) confirms the symmetry of the config./holes
- Single-mask orientation A = double-mask \(\rightarrow\) enlarging entrance hole does not affect transparency/multiplication
- Single-mask orientation B = 3.6 x single-mask orientation A \(\rightarrow\) exit hole diameter strongly affect the extraction efficiency or the multiplication.
Effective gain: results and discussion

We reproduced with 10x10 cm² single-mask foils the effect observed with GE1/1 detectors.
Rate capability: test setup

Rate capability strongly correlated with GEM transparency:

- At fluxes of 10^4-10^5 Hz/mm2
- increase of the GEM transparency
- At fluxes above 10^6 Hz/mm2
- accumulation of ions near the holes
- Typical “gain bump” at high flux

Effects of High Charge Densities in Multi-GEM detectors – P. Thuiner et al. – MPGD2015
https://agenda.infn.it/getFile.py/access?contribId=106&sessionId=2&resId=0&materialId=slides&confId=8839

Test setup:

- Irradiation with AMPTEK mini-X
- Silver target, mostly converts in the copper drift
- Use sets of attenuators to scan different flux ranges
 - from 10^2 – 10^6 Hz/mm2
- Use 1mm collimator to define the size of the beam spot

Measuring:
- Count rate at high attenuation
- Anode current
Double-mask configuration results match the expectations at high interaction fluxes, showing a gain bump between 10^4 and 10^6 Hz/mm2.

- Single-mask orientation A = double-mask → confirms the collection efficiency is not affected.
- Single-mask orientation B results show a smaller increase of the GEM transparency → the extraction efficiency is already close to the maximum before the space charge affect the chamber’s operation.
Another characteristics strongly related to the GEM geometry:

- Also depending on the initial environmental conditions
 - Temp. / Atm. Pressure / humidity
 - Gas mixture
 - Initial gain
 - Properties of the source
 (interaction rate/ primaries)

Test setup:

- Fe55 source
 - Interaction rate = 1.1 kHz/cm2
- Monitoring continuously anode current and peak position from G3 during 5 hours
- Monitoring continuously environmental parameters
- Thermal insulation of the detector and All the pipes (SS and copper – no plastic)

Comment:

- Initial and final gain scans along the chamber were performed to disentangle global gain fluctuations and local variations due to charging up

19/05/17

J. A. Merlin

On behalf of the CMS muon group
Charging up: results and discussion

Comment:
- Initial and final scans show gain variation only in the irradiated position

J. A. Merlin
On behalf of the CMS muon group
Charging up: results and discussion

Comment:
- Initial and final scans show gain variation only in the irradiated position
- Single-mask orientation A = double-mask \(\rightarrow \) confirms the previous observations
- Single-mask orientation B has a lower gain variation and become stable before the other configuration

Summary and plans

From the CMS GEM point of view:
- **Confirmed the single-mask hypothesis concerning the low gain in GE1/1-IV**
- Reproducing the initial observation
- Testing the basic characteristics that involve the GEM transparency
- **Identified the best orientation (B) for the CMS chambers**
 - Higher gain (performance) at lower voltage
 - Better gain stability vs. time and vs. interaction rate
- **Plans to finalize this study**
 - Measure directly the GEM transparency vs. configuration/orientation
 - Support the experimental data with simulation

From the GEM community point of view:
- **Better understanding of the single-mask technology**
- New comparison study
- Effect of the hole geometry on GEM transparency
- **Another parameter that can be tuned to improve GEM performance**
 - Clues on how the hole asymmetry can affect the detector’s operation
 - Trigger interest for further development
Summary and plans

From the CMS GEM point of view:
- **Confirmed the single-mask hypothesis concerning the low gain in GE1/1-IV**
- Reproducing the initial observation
- Testing the basic characteristics that involve the GEM transparency
- **Identified the best orientation (B) for the CMS chambers**
- Higher gain (performance) at lower voltage
- Better gain stability vs. time and vs. interaction rate
- **Plans to finalize this study**
- Measure directly the GEM transparency vs. configuration/orientation
- Support the experimental data with simulation

From the GEM community point of view:
- **Better understanding of the single-mask technology**
- New comparison study
- Effect of the hole geometry on GEM transparency
- **Another parameter that can be tuned to improve GEM performance**
- Clues on how the hole asymmetry can affect the detector’s operation
- Trigger interest for further development

Thank you
Mechanical self-stretching:

- No glue – No spacers
- Assembly time reduced to few hours instead of days
- Introduced for the first time in GE1/1 generation III
Spare: GEM foil production techniques

Double-mask

- Raw material → *Vacuum deposited copper*
- Photo-resist and Masking → *UV exposure and development*
- Copper electro-etching →
- Chemical polyimide etching →

Single-mask

- Bottom copper etching →
- Photo-resist stripping →
- Bottom polyimide etching → *Hole geometry transformation*
Specification/parameter

<table>
<thead>
<tr>
<th>Specification/parameter</th>
<th>GE1/1 detector</th>
</tr>
</thead>
<tbody>
<tr>
<td>Detector technology</td>
<td>Gaseous detector / MPGD</td>
</tr>
<tr>
<td>Charge Amplification element</td>
<td>triple-GEM structure (tensioned at ~ 5N/m)</td>
</tr>
<tr>
<td>Number of chambers in overall system</td>
<td>144 (72 in each end-cap)</td>
</tr>
<tr>
<td>Chamber shape (active readout area)</td>
<td>Trapezoidal / opening angle 10.15° 2.6 mrad</td>
</tr>
<tr>
<td>Active area overlap between chambers</td>
<td></td>
</tr>
<tr>
<td>Short chamber dimensions</td>
<td>L: 106.1 cm, W: (23.1 – 42.0) cm, D: 0.7 cm</td>
</tr>
<tr>
<td>Long chamber dimensions</td>
<td>L: 120.9 cm, W: (23.1 – 44.6) cm, D: 0.7 cm</td>
</tr>
<tr>
<td>Total chamber thickness</td>
<td>D: 3.5 cm</td>
</tr>
<tr>
<td>Active readout area</td>
<td>0.345 m² (short ch.) / 0.409 m² (long ch.)</td>
</tr>
<tr>
<td>Active chamber volume</td>
<td>2.6 liters (short ch.) / 3 liters (long ch.)</td>
</tr>
<tr>
<td>Radial distance from beam line</td>
<td>130.2 cm (at inner edge of active area)</td>
</tr>
<tr>
<td>Geometric acceptance in η</td>
<td>1.61 – 2.18 (short ch.) / 1.55 – 2.18 (long ch.)</td>
</tr>
<tr>
<td>Signal readout structure</td>
<td>Truly radial copper strips</td>
</tr>
<tr>
<td>Readout strip angular dimensions</td>
<td>230 μrad width / 436 μrad pitch</td>
</tr>
<tr>
<td>Number of η-segments in readout</td>
<td>8</td>
</tr>
<tr>
<td>Number of readout strips per η-segment</td>
<td>384</td>
</tr>
<tr>
<td>Number of readout strips per chamber</td>
<td>3,072</td>
</tr>
<tr>
<td>Counting gas mixture</td>
<td>Ar/CO_2 70 : 30 or $Ar/CO_2/CF_4$ 45 : 15 : 40</td>
</tr>
<tr>
<td>Nominal operational gas flow</td>
<td>1 chamber volume per hour</td>
</tr>
<tr>
<td>Number of gas inlets / outlets</td>
<td>1 / 1</td>
</tr>
<tr>
<td>Nominal HV applied to drift electrode</td>
<td>3200 V (Ar/CO_2) / 4000 V ($Ar/CO_2/CF_4$)</td>
</tr>
<tr>
<td>Nominal operational gas gain</td>
<td>$1 – 2 \times 10^4$</td>
</tr>
<tr>
<td>Demonstrated rate capability</td>
<td>100 MHz/cm^2</td>
</tr>
</tbody>
</table>
Spare : HV configurations

<table>
<thead>
<tr>
<th>Region</th>
<th>Gap [mm]</th>
<th>Electric field [kV/cm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drift</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Transfer 1</td>
<td>1</td>
<td>3.5</td>
</tr>
<tr>
<td>Transfer 2</td>
<td>2</td>
<td>3.5</td>
</tr>
<tr>
<td>Induction</td>
<td>1</td>
<td>5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Region</th>
<th>Voltage [V]</th>
<th>Average Electric field [kV/cm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\Delta_{GEM1})</td>
<td>450</td>
<td>89</td>
</tr>
<tr>
<td>(\Delta_{GEM2})</td>
<td>440</td>
<td>88</td>
</tr>
<tr>
<td>(\Delta_{GEM3})</td>
<td>420</td>
<td>84</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Region</th>
<th>Gap [mm]</th>
<th>Electric field [kV/cm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drift</td>
<td>3</td>
<td>2.4</td>
</tr>
<tr>
<td>Transfer 1</td>
<td>2</td>
<td>3.6</td>
</tr>
<tr>
<td>Transfer 2</td>
<td>2</td>
<td>3.6</td>
</tr>
<tr>
<td>Induction</td>
<td>2</td>
<td>3.6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Region</th>
<th>Voltage [V]</th>
<th>Average Electric field [kV/cm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\Delta_{GEM1})</td>
<td>400</td>
<td>80</td>
</tr>
<tr>
<td>(\Delta_{GEM2})</td>
<td>360</td>
<td>72</td>
</tr>
<tr>
<td>(\Delta_{GEM3})</td>
<td>325</td>
<td>65</td>
</tr>
</tbody>
</table>
Use of attenuation filter to properly measure the interaction flux: