Simulation of the ATLAS New Small Wheel (NSW) System

Huacheng Cai on behalf of the ATLAS Muon Collaboration

5th International Conference on Micro-Pattern Gas Detectors and RD51 Collaboration Meeting

Temple University, Philadelphia, USA May 22-26, 2017

LHC upgrade overview

Current ATLAS Muon System

ATLAS New Small Wheel Upgrade

- The current Small Wheel is planned to be replaced by NSW during the LHC Long Shutdown 2.
- Non-IP originating background could be eliminated by $\Delta\theta$ > 15 mrad trigger selection. (Case C in the upper left figure.)
- Effectively reduce the trigger rate, and maintain a high efficiency at a high rate environment.

ATLAS NSW Technologies

Sketch of the layout of a sTGC detector

Two technologies: **sTGC** (Small-strip Thin Gas Chamber) and **MM** (resistive strip MicroMegas) are used for both trackers and triggers.

sTGC: primary trigger

MM: primary precision tracker focus!

- Each sector contains 8 sTGC layers and 8 MM layers.
- *Both sTGC and MM are used for triggering and tracking, which will have robust redundancy.

6

- 64 channels / VMM
- Select 1 out of 64 channels, output strip address only.

- Aggregateaddresses from 32VMMs and choose 8.
- 8 layer hit coincidence. (Look for hits every 50 ns.)
- Reconstruct track segment and angle.
- Maximum output 8 track segments per sector every 25 ns.

MM readout scheme at VMM

- Challenge: large amount of strips (~2M strips), impossible to output all the data.→ NEED REDUCTION!
- Solution: only output the strip address of the fastest channel readout out of 64-channels (per VMM).
 - Only 1 output out of 64-channels
 - Fastest readout corresponding to the shortest drift distance.
 - A good enough approximation for hit position due to the fine strip pitch (~0.4mm).
 - Only output the strip address
 - Information on charge and timing are not output.

>>> ART data: address in real time

VMM Timing Simulation Performance

- Drift timing distribution on MM trigger signal
 - \square Simulated VMM ART *signal for single muon* (100 GeV pT, flat distribution in η and φ).
 - Counting 2 bunch crossing (50 ns) will give a promising efficiency.
 - Using a small charge threshold → optimum results.

- 64 channels / VMM
- Select 1 out of 64 channels, output strip address only.

- Aggregate addresses from 32 VMMs and choose 8.
- 8 layer hit coincidence. (Look for hits every 50 ns.)
- Reconstruct track segment and angle.
- Maximum output 8 track segments per sector every 25 ns.

- 64 channels / VMM
- Select 1 out of 64 channels, output strip address only.

- Aggregate addresses from 32 VMMs and choose 8.
- 8 layer hit coincidence. (Look for hits every 50 ns.)
- Reconstruct track segment and angle.
- Maximum output 8 track segments per sector every 25 ns.

MM Trigger Algorithm: Track Segment Finding

- Some MM planes have a slight stereo tilt (1.5°) for azimuthal angle φ measurement.
- O Convert hits to slopes. Find the track segment aligned to a slope road.
- O Coincidence thresholds will effect the trigger efficiency.
 - ☐ 4X4UV: 4 out of 4 x layers + 4 out of 4 u or v layers → expect lowest efficiency.
 - ☐ 3X3UV: 3 out of 4 x layers + 3 out of 4 u or v layers.
 - 2X2UV: 2 out of 4 x layers + 2 out of 4 u or v layers.

- 64 channels / VMM
- Select 1 out of 64 channels, output strip address only.

- Aggregateaddresses from 32VMMs and choose 8.
- 8 layer hit coincidence. (Look for hits every 50 ns.)
- Reconstruct track segment and angle.
 - Maximum output 8 track segments per sector every 25 ns.

MM Trigger Algorithm: Angle Reconstruction

- Π η: derived from θ_x^{global}
- φ: derived from stereo slopes using a look-up table.

- end of the state o least square fit of X hits with
- **O**x global reconstructed by connecting IP and the average of registered hits.
 - Hit position (η, ϕ) :
 - $\Delta \theta = |\theta_{x}^{local} \theta_{x}^{global}|$
 - Defined as angular derivation of MM track with respect to an infinite momentum track from IP.
 - Cut at $\Delta\theta$ >15 mrad to eliminate non-IP pointing background.

MM Angular Resolution Performance

Δθ requirement: 1 mrad

η requirement: 5*10⁻³

φ requirement: 20 mrad

- Residual = |truth reconstructed|
- Consider hit coincidence threshold of 3X3UV, 160 events per bunch crossing.
- Gaussian fit on the residual distributions.
- OGood performance compared to the requirement.

MM Trigger Simulation Performance

- Track segment finding efficiency as a function of *μ*.
 - Considering <u>3 different LHC scenarios</u>.
 - Compare the efficiency requiring different hit coincidences.
 - 4X4UV: lowest efficiency as expected.
 - ≥3X3UV & 2X2UV: get 99% efficiency.

- 3 different LHC scenarios and 2 different hit coincidence thresholds (2X2UV and 3X3UV) are considered.
- Combining all cases, the efficiency is about 99%.

- 64 channels / VMM
- Select 1 out of 64 channels, output strip address only.

- Aggregateaddresses from 32VMMs and choose 8.
- 8 layer hit coincidence. (Look for hits every 50 ns.)
- Reconstruct track segment and angle.
- Maximum output 8 track segments per sector every 25 ns.

Average rate of track segments

- Average rate of track segments in one sector
 - 3 different LHC scenarios and 3 different hit coincidence thresholds are considered.
 - The occupancy is small enough the bandwidth limitation, which is at most 8 track segments per bunch crossing.

Summary & Future Look

- The ATLAS New Small Wheel is motivated to improve the tracking efficiency and reduce the fake trigger rate in future LHC runs.
- The design of the electronics for both sTGC and MM has been almost completed.
- The trigger algorithms have been developed and currently being commissioned in hardware.
- The simulations show the good performance at efficiency and resolutions.
 - Different numbers of interactions per bunch crossing has been considered.
 - Need to implement the cavern background of neutral particles.
- The simulation is for ideal case, now taking data to get a more realistic approach.
- We are looking forward the installation of the NSW in 2019!

Backups

NSW Terminologies

VMM ASIC operates for both sTGC and MM

MM ADDC Output Data Format

0b1010	BCID	ERR_FLAGS	HIT_LIST	ARTDATA_	ART							
	(12)	(8)	(32)	PARITY(8)	(6)	(6)	(6)	(6)	(6)	(6)	(6)	(6)

NSW Trigger Output Data Format

Field:	sTGC type	MM type	$\Delta\theta$ (mrad)	ϕ index	R index	spare
Num of bits:	2	2	5	6	8	1

Table 5: Data format of the output of the trigger processor sent to the Sector Logic. Format of a track vector candidate from the NSW (24-bits/track vector). The sTGC and MM type information can encode the quality of the candidate.

Phi Bias Explain

