Performance of the chromium GEM detector

B. Mindur, T. Fiutowski, S. Koperny, W. Dąbrowski

AGH University of Science and Technology
Faculty of Physics and Applied Computer Science

Work supported by The Polish National Science Centre
Grant no. DEC-2013/10/M/ST7/00568
Outline

» Motivation
» Front-end and readout system
» GEM with reduced Cu content
» Gas flow studies
» Gas mixtures studies
 – GEM relative gas gain variation
 – GEM energy resolution
» Long term stability
» Summary
Motivation

» Very significant reduction of the fluorescence radiation from Cu
 – GEM foils with much reduced Cu content
» Optimization of the detection efficiency of soft X-ray photons
 – Xe-based gas mixtures
 – Kr-based gas mixtures
» Optimization of the energy resolution
 – Detector properties
 • Different gas mixtures
 • Optimum gas gain (signal dynamic range)
 • Temperature and pressure corrections
 • Readout electronics and software configuration
» Long term stability
 – Gas gain variation
Readout system

New front-end electronics under the tests

See talk by Tomasz Fiutowski
“GEMROC2 – a self-triggered ASIC”

Thursday 14:30 - 14:50

- Switchable gain and signal polarity
- Self triggered mode
- Zero suppression and derandomization
- Ethernet interface for data readout – 2 Gbit/s throughput
Special GEM with reduced Cu

» Produced out of standard GEM foils
 – Etched Cu layers
 – Copper grid leftover to keep good mechanical and electrical GEM foil properties
 • Width 100 µm every 1 cm
 – Remains very thin (100 nm) Cr layer
» Drift electrode
 – The same post-processing
» Readout structure
 – Keep untouched
 – Most of the cooper remains on it
» The foils were produced by Techtra
 – Many thanks to Piotr Bielówka
Standard GEM foil vs. GEM-Cr

Standard GEM foil

GEM-Cr foil
Gas flow studies

<table>
<thead>
<tr>
<th>Gas flow [ml/hour]</th>
<th>Time to exchange one detector volume in [hour]</th>
<th>Relative change of gas gain</th>
<th>Relative change of energy resolution</th>
</tr>
</thead>
<tbody>
<tr>
<td>249</td>
<td>1.3</td>
<td>1.00</td>
<td>1.000</td>
</tr>
<tr>
<td>145</td>
<td>2.2</td>
<td>0.97</td>
<td>1.004</td>
</tr>
<tr>
<td>121</td>
<td>2.6</td>
<td>0.95</td>
<td>1.000</td>
</tr>
<tr>
<td>80</td>
<td>3.9</td>
<td>0.85</td>
<td>1.026</td>
</tr>
<tr>
<td>60</td>
<td>5.2</td>
<td>0.79</td>
<td>1.070</td>
</tr>
</tbody>
</table>

- Standard GEM used
- Standard gas mixture – Ar/CO₂ (70/30)
- Stable condition (HV, etc., correction for gas temperature and pressure)
Gas gain correction for gas T and p

- Uncorrected peak position (blue)
- Corrected peak position (orange)
- Gas temperature (green)
- Gas pressure (red)
GEM-Cr results for different gas mixtures

- All presented below results are for the GEM-Cr detector
 - They are presented in a chronological order
- The gas flow was set to at least 250 ml/h
- The gas gain was similar in all of the measurements
- The detector was biased and in operation for a long time
- The measurement were done in the same conditions
 - The only significant variation was due to the atmospheric pressure changes
 - The temperature was quite stable +/-1 C
 - All the others parameters were constant
Signal saturation (of individual hits)
Larger dynamic range needed – GEMROC2
Ar/CO$_2$ (70/30) gas mixture

Energy resolution Fe-55 (FWHM) - 19.8% @ 3860V
Ar/CO₂ (70/30) gas mixture

Relative gas gain map

Energy resolution map
Xe/CO₂ (90/10) gas mixture

Energy resolution Fe-55 (FWHM) – 20.3% @ 4000V
Xe/CO$_2$ (90/10) gas mixture

Relative gas gain map

Energy resolution map
Xe/TMA (95/5) gas mixture

Energy resolution Fe-55 (FWHM) – 18.9% @ 2420V
Xe/TMA (95/5) gas mixture

Relative gas gain map

Energy resolution map
Kr/CO$_2$ (80/20) gas mixture

Energy resolution Fe-55 (FWHM) – 18.2% @ 4080V
Kr/CO₂ (80/20) gas mixture

Relative gas gain map

Energy resolution map
Relative gas gain maps for Kr/CO₂ (80/20) @ 4010-4110 V
Summary for different gas mixtures studies

<table>
<thead>
<tr>
<th>Gas mixture</th>
<th>Energy resolution [%]</th>
<th>HV [V]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ar/CO₂ 70/30</td>
<td>19.8</td>
<td>3860</td>
</tr>
<tr>
<td>Xe/CO₂ 90/10</td>
<td>20.3</td>
<td>4080</td>
</tr>
<tr>
<td>Xe/TMA 90/10</td>
<td>18.9</td>
<td>2420</td>
</tr>
<tr>
<td>Kr/CO₂ 80/20</td>
<td>18.2</td>
<td>4080</td>
</tr>
</tbody>
</table>

- Measurements with premixed gas mixtures
- Kr-based gas mixture seems to be the most suitable
 - Relatively low cost (in comparison to Xe)
 - The best energy resolution
 - Low escape peak intensity and energy (for L-line)
- The dead volume in the detector shall be reduced or eliminated
 - The volume between the Kapton window and the drift electrode
 - Will result in better efficiency and more uniform response
Long term stability

Detector operation (with some stops)

- Started in June 2016 and operational till now
- Many measurements performed during this time
 - Detector and readout repeatedly controlled with Ar/CO₂ (70/30) gas mixture
 - Constant measurement of the gas gain and energy resolution for last 4 months
 - Ar/CO₂ (70/30) and Fe-55
 - Still ongoing tests
Relative gas gain maps – long term stability

(a) Ar/CO$_2$ (70/30) 2016-06-03, HV 3840.
(b) Xe/CO$_2$ (90/10) 2016-06-29, HV 4000.
(c) Ar/CO$_2$ (70/30) 2016-10-28, HV 3875.
(d) Xe/TMA (95/5) 2016-11-09, HV 2420.
(e) Ar/CO$_2$ (70/30) 2017-01-02, HV 3900.
(f) Kr/CO$_2$ (80/20) 2017-01-11, HV 4080.
Energy resolution – long term stability

(a) Ar/CO₂ (70/30) 2016-06-03, HV 3840.
(b) Xe/CO₂ (90/10) 2016-06-29, HV 4000.
(c) Ar/CO₂ (70/30) 2016-10-28, HV 3875.
(d) Xe/TMA (95/5) 2016-11-09, HV 2420.
(e) Ar/CO₂ (70/30) 2017-01-02, HV 3900.
(f) Kr/CO₂ (80/20) 2017-01-11, HV 4080.
Long term stability

<table>
<thead>
<tr>
<th>Gas mixture</th>
<th>Time period [d]</th>
<th>max R_gg</th>
<th>min R_gg</th>
<th>sigma R_gg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ar/CO₂ 70/30</td>
<td>0</td>
<td>1.250</td>
<td>0.801</td>
<td>0.069</td>
</tr>
<tr>
<td>Xe/CO₂ 90/10</td>
<td>26</td>
<td>1.472</td>
<td>0.559</td>
<td>0.166</td>
</tr>
<tr>
<td>Ar/CO₂ 70/30</td>
<td>147</td>
<td>1.356</td>
<td>0.721</td>
<td>0.090</td>
</tr>
<tr>
<td>Xe/TMA 90/10</td>
<td>159</td>
<td>1.472</td>
<td>0.556</td>
<td>0.166</td>
</tr>
<tr>
<td>Ar/CO₂ 70/30</td>
<td>213</td>
<td>1.584</td>
<td>0.555</td>
<td>0.205</td>
</tr>
<tr>
<td>Kr/CO₂ 80/20</td>
<td>222</td>
<td>1.538</td>
<td>0.584</td>
<td>0.194</td>
</tr>
<tr>
<td>Ar/CO₂ 70/30</td>
<td>245</td>
<td>1.471</td>
<td>0.594</td>
<td>0.181</td>
</tr>
<tr>
<td>Ar/CO₂ 70/30</td>
<td>287</td>
<td>1.624</td>
<td>0.585</td>
<td>0.176</td>
</tr>
</tbody>
</table>

- Clearly seen significant degradation of the detector after using the TMA
- Detector not recovered after switching to standard gas mixture
 - Slight decrease of the standard deviation of the relative gas gain values
Long term stability - gas gain changes

- Result of the constant GEM detector irradiation with Fe-55
 - About 1000 h with ~20 cps/mm² for the whole detector area
 - Peak position corrected for T and p changes
- Significant decrease of the absolute gas gain
- Visible changes of relative gas gain maps
GEM-Cr new foil and after irradiation

- Visual inspection shows no differences between the foils
 - No cracks or other indication of problems detected
 - Surface of the foil and holes look similar
 - All foils used for measurement were investigated
Summary

» Results
 – Promising results especially with Kr/CO$_2$ gas mixture
 – Energy resolution at the level of 18% for the whole detector
 • After all corrections
 – Significant changes of the relative gas maps
 • Degradation of the signal height (gas gain) with the time
 – Especially for TMA admixture
 – GEM Cr may be acceptable for the applications with low expected cumulative dose
 • Needs further investigation

» Plans for near future
 – Detector
 • Continue operation of the chromium GEM detector until it is completely aged or destroyed
 • Testing new detector without TMA
 • Estimation the ageing rate (dose)
 – Front-end electronics
 • Repeat the measurements with the GEMROC2 ASIC
References

» Front-end electronics

» DAQ hardware and software

» GEM-Cr Detector
 – B. Mindur et al., *First X-ray measurement results with the chromium GEM detector*, presentation @ MPGD 2016
 – *Soon we would like to publish all the results in JINST*
BACKUP Slides
Energy resolution maps for Kr/CO₂ (80/20) (@ 4010-4110 V)
Results of a discharge in the detector

GEM top

GEM middle
X-ray photon absorption

Absorption coefficient vs energy for Ar, Kr, Xe gases in 3 mm thickness of the drift gap