5th International Conference on Micro-Pattern Gas Detectors (MPGD2017) and RD51 Collaboration Meeting Temple University, Philadelphia, USA May 22-26, 2017

# A custom readout electronics for the BESII CGEM detector



### Michela Greco

**CGEM-IT group** 







Giulio Mezzadri' s talk

Introduction

#### Overview of the readout electronics for the BESIII-CGEM IT

#### **On detector electronics**

Design of a dedicated ASIC for CGEM Readout (TIGER) In silicon characterization of TIGER prototype First tests on CGEM detector

Outlook









ntroduction

Readout electronics

TIGER

In silicon

on detector

Outlook

#### Charge centroid method

- Digital Readout
- Analog Readout
   Loosening pitch (650 µm) & less channels (about 10 thousand)

#### **μTPC (Time Projection Chamber)**



time resolution 5 ns



readout with 160 dedicated, integrated 64-channel ASICs



N FN'SEZIONE DI TORINO

ISTITUTO NAZIONALE DI FISICA NUCI FARE



₿€SⅢ

# **TIGER:** Torino Integrated Gem Electronics for Readout

Expected signal from CGEM-IT: 30-50 ns duration, 30-40 ns rising time, 10 ns falling time depends on gas mixture, gain and electric field

- ▶ input charge: 1 50 fC
- ▶ up to 100 pF sensor capacitance
- ▶ 4-5 ns time resolution
- 60 kHz rate per channel (safety factor of 4 included)
- ▶ power ~10 mW/channel

#### 25 mm<sup>2</sup> UMC110 CMOS







provide time and charge measurement, feature a fully-digital output be SEU-tolerant





# **Chip architecture**





64 channels: VFE, signal conditioning, TDC/ADC, local controller on-chip bias and power management on-chip calibration circuitry fully digital output, LVDS IO 4 TX SDR/DDR links, 8B/10B encoding, 200 MHz SPI configuration link





# **Each channel**





T-BRANCH

timestamp on rising/falling edge (sub-50 ps binning quad-buffered TDC) charge measurement with Time-over-Threshold

#### **E-BRANCH**

timestamp on rising edge (sub-50 ps binning quad-buffered TDC) Sample-and-Hold circuit for peak amplitude sampling slow shaper output voltage is sampled and digitised with a 10-bit Wilkinson ADC



M. Greco, MPGD2017, 23 May 2017



+SEU protection

# **Test setup**











- ✓ R/W Channel/Global configuration registers
- ✓ Data TX and decoding
- $\checkmark\,$  Baseline and threshold equalisation

#### (dual-) TDC operation

#### Front-end performance

internal calibration circuitry external charge injection (channel 63)

unexpected amplifier baseline shift, may limit linearity of Sample and Hold

→operation at higher temperature to recover BL shift



In silicon



# **TDC operation: quantization error**



#### Scan over dynamic range sweeping internal test-pulse phase Create LUT with gain and offset correction

 $\Rightarrow$  Average TDC quantization error after calibration: 30-35 ps r.m.s.



#### Jitter measurements using internal calibration circuit test-pulse (e.g. 10 fC) sweeping input capacitance on channel 62







11



# Jitter measurements using internal calibration circuit test-pulse (e.g. 10 fC) sweeping input capacitance on channel 62









13

#### Noise evaluated for each input capacitance through a sigmoid fit from a typ 500 points threshold-scan with fixed test-pulse (10 fC) Measure repeated typ 50 times Noise vs Cin







#### Evaluated on channel 63 using an external pulse generator Gain: 10.4 mV/fC in agreement with simulations (expected ~11 mV/fC)







# **Charge measurements: Sample and Hold**



Calibration of dynamic range with external test-pulse generator Back-annotation to generate a parameter space for the internal calibration circuit





#### Time-based readout working properly

#### Baseline dependence on temperature

root cause: fragility of bias conditions of baseline holder circuit reproduced fairly well in simulations minor revision activities started

#### Charge measurement: S/H linearity assessed

Main result: no second prototype needed

#### →GEM testing

to assess the performance as it explores a realistic grounding and noise pick-up environment.







# **GEM testing**









# **GEM testing**

**₩**CGEM-IT





#### First signals with 90-Sr source







#### First signals with cosmic rays (night acquisition)





## Noise







Test board irradiated to about 30 krad to test radiation damage on Voltage Regulators

Analog power: TPS78601KTTT\_TPS78601DCO



| Digital power: |              |          |       | 2 |               |
|----------------|--------------|----------|-------|---|---------------|
|                | PRE (V)      | POST (V) | %     |   | -07/08        |
| Analog power   |              |          |       |   | -0.7/0.8      |
| T1             | 1,23         | 2 1,222  | 0,992 | 2 | ok!           |
| T2             | 1,23         | 2 1,222  | 0,992 | 2 |               |
| Digital power  |              |          |       |   |               |
| Тз             | 1,23         | 2 1,222  | 0,992 | 2 |               |
| Τ4             | 2,50         | 5 2,488  | 0,993 | 3 |               |
|                | LT3021       |          |       | ] |               |
| for            | Voltage refe | erence   |       |   |               |
|                | PRE (V)      | POST (V) | %     |   |               |
| Vref (T5)      | 0,835        | 0,867    | 1,038 | 3 |               |
| Vblh (T7)      | 0,301        | 0,327    | 1,086 | 6 | we wi         |
| Vout_th        | 0,575        | 0,452    | 0,786 | 6 | resistor volt |
| Vout_y         | 0,506        | 0,5      | 0,988 | 3 |               |



#### SEU test $\rightarrow$ run at Legnaro Sirad facility Higher dose TID test on planning







#### TIGER, in silicon electrical characterization

main result! a second prototype is not needed, minor revisions in engineering run (summer 2017)

#### First tests with cylindrical GEM & first signals acquired!

S/H dynamic range, noise under study
data analysis ongoing
→test with conditions more similar to final ones,
in terms of HV distribution system, FE cards, etc.

#### **Radiation hardness tests:**

Good results from first tests on voltage regulators SEU and other TID tests on planning







5th International Conference on Micro-Pattern Gas Detectors (MPGD2017)



#### and RD51 Collaboration Meeting

Temple University, Philadelphia, USA May 22-26, 2017



The BESIIICGEM project has been funded by European Commission within the call H2020-MSCA-RISE-2014.





#### **Torino TIGER WG**

Fabio Cossio, Marco Mignone, Angelo Rivetti Manuel Rolo, Richard Wheadon Maxim Alexeev, Martina Gertosio Michela Greco, Simonetta Marcello

Thank-You



# **Baseline scan**





events\_selected\_ch63



Introduction

Readout

TIGER

In silicon

on detecto

Dutlook







Both TAC and S/H circuits employ a quad-buffer scheme to de-randomize the input event rate and lessen the issue of the inherently high conversion time of this approach.

| K28.1 | 10 | channel<br>6 bit | tac | T_coarse<br>16 bit | E_coarse<br>10 bit | T_fine<br>10 bit | E_fine<br>10 bit |
|-------|----|------------------|-----|--------------------|--------------------|------------------|------------------|
|-------|----|------------------|-----|--------------------|--------------------|------------------|------------------|

