The RPWELL - its physics and potential applications

S. Bressler, L. Arazi, P. Bhattacharya, A. Breskin, A. Coimbra, E. Erdal, L. Moleri, A. Roy, D. Shaked-Renous, A. Tesi

Weizmann Institute of Science

Three fronts

- Upscaling
- Characterization
- Cooling down (not discussed today)

RPWELL

Resistive Plate WELL

JINST 8 (2013) P11004

- Single sided THick Gaseous Electron Multiplier (THGEM)
- Coupled to the readout anode through material of high bulk resistivity

RPWELL

Resistive Plate WELL

JINST 8 (2013) P11004

- Single sided THick Gaseous Electron Multiplier (THGEM)
- Coupled to the readout anode through material of high bulk resistivity

Main characteristics

- High gain ($>10^5$) with single element
- High detection efficiency (~99%)
- Moderate gain loss under high rate of incoming particle fluxes
- Discharge free operation
 - With Ne- and Ar-based gas mixtures
 - At muon and high rate pion beams
 - Under broad dynamic range of primary ionization

JINST 11 (2016) no. 01 P01005 NIM A845 (2017) 2620265 JINST 11 (2016) no. 09 P09013

From 3×3 cm² to 50×50 cm²

Motivation

- Applications requiring cost-effective large area detectors with moderate spatial resolution
 - (Semi) Digital Hadronic Calorimeter (S)DHCAL
 - Muon tomography for homeland security
 - Volcanology and many more

From 3×3 cm² to 50×50 cm²

 $3\times3~\mathrm{cm^2} \Rightarrow 10\times10~\mathrm{cm^2} \Rightarrow 30\times30~\mathrm{cm^2} \Rightarrow 50\times50~\mathrm{cm^2}$

Motivation

- Applications requiring cost-effective large area detectors with moderate spatial resolution
 - (Semi) Digital Hadronic Calorimeter (S)DHCAL
 - Muon tomography for homeland security
 - Volcanology and many more

From 3×3 cm² to 50×50 cm²

Assembly

- Strip readout (1 & 1.5 mm pitch)
- Silicate glass Resistive Plate ($10^9 \Omega cm$) [J.-b. Wang et al., NIM A621 151]
- Anode to glass coupling through graphite-epoxy layer (\sim M Ω)
- Gluing under vacuum

From 3×3 cm² to 50×50 cm²

Performance

- Studies conducted with X-Y scanner
 - Developed for the ATLAS sTGC
- Ag-target x-ray tube \Rightarrow 22 KeV photons
 - Penetrating the 3 mm FR4 cover (cathode)
- High intensity (~400 KH_z/mm²)
- HV current monitoring synchronized with the source position

 $3\times3 \text{ cm}^2 \Rightarrow 10\times10 \text{ cm}^2 \Rightarrow 30\times30 \text{ cm}^2 \Rightarrow 50\times50 \text{ cm}^2$

From 3×3 cm² to 50×50 cm²

Performance

- Studies conducted with X-Y scanner
 - Developed for the ATLAS sTGC
- Ag-target x-ray tube \Rightarrow 22 KeV photons
 - Penetrating the 3 mm FR4 cover (cathode)
- High intensity (~400 KH_z/mm²)
- HV current monitoring synchronized with the source position

 $Ar/CO_2(7\%)$ $\Delta V_{RPWELL} = 1800 \text{ V}$ $Flux \sim 400 \text{ kH}_z/\text{mm}^2$ 30 sec/point

- Stable operation
- Some non-uniformities
 - under study

From 3×3 cm² to 50×50 cm²

Next steps

- In the lab
 - Investigate & solve the non-uniformities (correlated with the glass tiles)
- In-beam evaluation (soon)
 - Detection efficiency
 - Uniformity
 - Discharge probability
 - Position resolution
 - Energy resolution
 - •

(S)DHCAL

- Project shared with LAPP and Demokritos
- Build prototype
 - With Pad readout
 - With the MICROROC chip
 - Design and assembly procedure identical to the one used
- Test in the lab and in the beam
- .
- •
- Incorporate within a stack of ~20 sampling elements; MICROMEGAS and RPWELL

Objectives

- Determine the performance of an RPWELL detector
- Understand the physics processes governing the RPWELL performance
- Optimize the detector
 - Geometry
 - Materials
 - Design

UV detection

Objective

- Characterize single-stage and doublestage RPWELL-based configurations as UV detectors
- Achieve high gain and high detection efficiency under stable operation
 - Expose to events with higher primary charge (dynamic range)

UV detection

Objective

- Characterize single-stage and doublestage RPWELL-based configurations as UV detectors
- Achieve high gain and high detection efficiency under stable operation
 - Expose to events with higher primary charge (dynamic range)

UV detection

Results

• Clear Polya distribution observed with both configurations

0.4 mm thick RPWELL0.4 mm thick THGEM0.4 mm thick Semitron10 mm drift gap (no field)2 mm transfer gap

UV detection

Results

- Clear Polya observed with both configurations
- Dual stage detector stable UV detection while exposed to 6 KeV x-rays background under a gain of $\sim 10^7$

Conclusions

- Dual-stage RPWELL based detector is an excellent candidate UV detector
- Rate dependence: under study

Position resolution

Background

- Imaging properties studied in THGEM-based structures
 - Resolution of a few 100 μ m (FWHM)
 - No access to local effect
- In beam measurements compares the reconstructed position to the real track position

$$\Delta X = X_{track} - X_{cluster}$$

- X_{track}- position reconstructed from track extrapolation
- X_{cluster} Position reconstructed from RPWELL cluster

 RPWELL

 X_{cluster}

 MM tracker 1

[Cortesi et. al. JINST 2 09 2007 P09002]

[Cortesi et. al. JINST 4 08 2009 P08001]

[Silva et. al. JINST 8 05 2013 P05016]

[Lopez et. al. JINST 8 09 2013 P09002]

MM tracker 3

Position resolution

This study

In beam measurement -

$$\Delta X = X_{track} - X_{cluster}$$

- Comparison to a detailed simulation
 - Primary charge deposited by 150 GeV muons
 - Drift into the THGEM holes
 - Charge multiplication
 - Signal induction (electron and ion drift)
 - Emulate electronics response
 - Cluster position reconstructed as the weighted average

Position resolution

In preparation

Results

• Global resolution 280 μ m

Position resolution

In preparation

Results

- Global resolution 280 μ m RMS
- Local resolution
 - Dictated by the hole pattern here hole pitch 0.96 mm
 - The probability for charge sharing between neighboring holes

Position resolution

Results

- Global resolution 280 μ m RMS
- Local resolution
 - Dictated by the hole pattern here hole pitch 0.96 mm
 - The probability for charge sharing between neighboring holes
- Results well reproduced in the simulations

Conclusions

• RPWELL (THGEM) resolution dictated by the hole pitch

In preparation

Position resolution

Possible optimization

- Similar response in Ne- and Ar-based gas mixtures (simulation only)
- Advantages to smaller pitch

The probability of an electron to focus into the central hole (hole 1) or the neighboring hole (hole 2) as a function of distance from the center of hole 1

The probability of an electron to focus into the central hole (hole 1) as a function of distance from the center of hole 1 for different pitch sizes

Signal formation

WEIZMANN INSTITUTE OF SCIENCE

Signal formation

Objectives

- Understand the effects determining the *measured* signal shape
- Including the effect of the readout electronics

Simulation framework

- Heed cluster properties size, count, energy, position
- Magboltz gas property drift velocity, diffusion coefficient, Townsend coefficient, attachment coefficient
- Drift of primary electrons and production of secondary electrons in the amplification zone
- Shockley-Ramo theorem raw signal

$$I = -q \, \frac{\vec{v} \times \vec{E}_{\scriptscriptstyle W}}{V}$$

Signal formation

Electronics response

- Convolution with the electronics transfer function
 - APV25 25 ns shaping time

Preliminary results

Qualitative comparison with APV25 data recorded in muon beam

Next steps

- Other sources
 - x-ray, UV
- Other readout elx
 - Charge, Current
- Other gas mixtures

- CCI I'XCI CCTU
WEIZMANN INSTITUTE OF SCIENCE

Edge effects

Edge effects

Objectives

- Understand the effect of the edge on the performance
- Control the active area

Setup

- Studies conducted with X-Y scanner (1 mm steps)
- Cu-target x-ray tube
 ⇒ 8 KeV photons
- High intensity
- Scans performed at different frame-edge distances from the holes, and without a frame

Edge effects

Analysis

For each point look at

$$R = \frac{G_{Frame}(i,j)}{G_{No-Frame}(i,j)}$$

- Cancels out systematic effects
 - Electrode thickness non-uniformity
 - Fringe field

[Alexeev et. al. JINST 9 2014 C03046]

Simulation

- Different field map along the Z-axis in the edge-hole compared to other holes
- Lower charge collection efficiency into the edge hole (~1.5 mm effect penetration)

Electron collection efficiency as a function of the distance from the edge

The gain as a function of the distance from the edge

Edge effects

Results

- Observed correlation between the penetration of the edge effect and the distance to the frame
- The effect is larger than anticipated by the simulation ⇒ we have more to understand

Transients

Transients

Objectives

- Study gain instabilities in RPWELL
 - Reported in many studies of THGEM detectors
- Understand the physics processes governing them
- Understand related time scales

The charge accumulation / evacuation paradigm

- Charges accumulate on the insulators [Correia et. al.]
- Charges evacuate through various mechanisms
- Gain stabilization occurs when the two processes reach equilibrium
- The "stable gain" is determined by the charge distribution at steady state

[Alexeev et. al. 2015]

[Cortesi et. al. 2015]

Transients

Methodology

- Expose the detector to extreme change in operation conditions
 - Operation voltage
 - Irradiation rate
- ⇒ Impose different initial conditions on the detector
- Wait sufficient time for gain stabilizations

Transients

In preparation

Highlights

- FR4 made (RP)WELL hole-electrode changes the steady state after the first transition from low to high rate
- Bare-THWELL (Thick-WELL with no RP) detectors are not affected by these rate changes
- RPWELL detectors are affected

Transients

In preparation

Highlights

- FR4 made (RP)WELL hole-electrode changes the steady state after the first transition from low to high rate
- Bare-THWELL (Thick-WELL with no RP) detectors are not affected by these rate changes
- RPWELL detectors are affected
- Epoxy made RPWELL is less affected by both kind of abrupt transitions and stabilizes faster

Summary

- Rich activity in three fronts
- Upscaling in the context of (S)DHCAL but not only $50 \times 50 \text{ cm}^2$ detector has been assembled and tested in the lab
 - Tests in the beam are foreseen in July
 - Tests as a sampling element in (S)DHCAL prototype are foreseen towards the end of the year
- Characterization
 - Stable operation as UV detector also when exposed to 6 KeV x-rays
 - Position resolution is measured and understood
 - Edge effects are addressed
 - Better handle on transients
 - Epoxy made THGEM responds faster than an FR4 THGEM
- Cooling down feasibility study for cryogenic applications
 - Look for resistive material with the right resistivity at cryogenic temperatures