Status and Future Developments of TPC's with MPGD readout systems

Paul Colas, Université Paris Saclay

History, principle of operation Advantages

New ideas with MPGDs

Projects in progress

- Nuclear Physics
- Neutrino oscillations
- Neutrinoless dble β decay
- Dark matter search
- ILC

Conclusions

Principle of operation

electrons are separated from ions

A magnetic field **reduces** Localisation in time and in x-y diffusion

25/05/2017

Introduction

Invented 40 years ago by Dave Nygren, the TPC concept (with wire chamber readout) was first applied in High Energy Physics:

TPC 2γ, LEP (ALEPH and DELPHI), neutrino cross-section measurements

And then in studies of Quark-Gluon Plasma (very high multiplicity events: STAR, ALICE).

Cryogenic gases were proposed as active medium (ICARUS)

20 years ago, the MPGD readout was proposed. It now finds dozens of applications

Figure 25.3: PEP4/9-TPC dE/dx measurements (185 samples @8.5 atm Ar-CH_4 80–20%) in multihadron events. The electrons

Advantages

Can cover a large volume with little matter and few electronic channels Allows continuous tracking Can provide the target

Active target TPCs

time projection chambers for (fundamental) nuclear physics

Nuclear Physics

200

Sup

Table of projects

Instrument	N° Ch	Hosting lab.	Funding Agency	
SπIRIT, ACTAR TPC LAMPS AT-TPC N_TOF CNS-AT E-15 ELI-TPC FARCOS TexAT-P ND-TPC Shanghai-TPC NEXT Lanzhou-TPC S ³ SpecMAT	10k 16k 2.5 -> 20k 10k 2.5k 2.5k 6k 1k 5k 2 -> 32k 1k 1k 1 -> 5k 2k 4k 2.5k	NSCL, Riken,, Jp GANIL, IRFU, IPNO, Fr IBS Korea, Korea NSCL,, US CERN, IRFU, Univ. Tokyo, Jp J-PARC,, Jp Univ. Warsaw, Pl INFN-Catania, It Texas A&M, US Univ. ND, US CAS, Cn Univ. of Zaragosa, Es IMP, Cn SPIRAL2, Fr KU Leuven	DOE, RIKEN, ERC, GANIL, IN2P3, BS NSF IRFU CNS J-PARC ELI-NP INFN-Catania Texas A&M Univ. ND CAS Univ. of Zaragosa IMP GANIL, IRFU ERC	
Focal-Plane eTPC SSD MINOS	256 1k 2k 6k	Orsay, IN2P3, Fr Univ. Warsaw IFNF-Catania, It IRFU	IN2P3 ELI-NP INFN-Catania ERC	80k Channels Total 20 experiments 4ch to 20k ch

Listed by E. Pollaco mid 2016

Nuclear Physics

Heavy ions : large multiplicities Upgrade ALICE : wires -> GEMs Challenge : large ion backflow.

20 to 25 TPC projects for Nuclear Physics

Neutrino oscillations Long baseline experiments

Huge Double-phase Argon TPCs are being built, equipped with LEMs/THGEMs, for the underground DUNE experiment. The final goal is 10-50 kiloton (the largest TPC ever). Demonstrators of 3 m3, 6x6x6 m3, and an even larger one, are being built at CERN.

Note: R&D still on-going for other concepts (ArgonCube :magnetized modular detector)

Neutrino oscillations Long baseline experiments

Neutrino oscillations: T2K Near Detector

Goal of the 280 m near detector : measure crosssections and beam content in electron neutrino

Includes 3 Micromegas TPCs 10 years of operation!

25/05/2017

The baseline design for the upgraded ND280

All this inside the EM calorimeter and the UA1 magnet

Add 4 horizontal TPCs to the existing 3. Use charge spreading, new grounding scheme (mesh at ground).

Neutrino-less double-beta decay

Several projects in progress, mainly ¹³⁶Xe TPCs 1 ton necessary Extreme radio-purity Very good energy resolution Good granularity for topological discrimination

PANDA-X III

5 TPC modules

In 10m-deep highly-purified water pool 200kg 10 bar gaseous Xenon mixture with 1% tri-methyl amine (TMA) Copper structure for low radioactivity 2 half TPC, 1.5m diameter and 2 m long in total

Read-out on both end-caps

Equipment of the first 200 kg underway. Probably Microbulk Micromegas

Prototype field cage assembled

In JinPing underground lab (Sechouan, China)

Dark Matter search

Many projects of WIMP search have already given results (see J. Galan's talk)

Future :

- go to lighter gas targets to explore low masses
- Become directional to beat the solar neutrino background

ILC tracking

ILD 4 technologies

Micromegas

Standard kapton triple GEM with ceramic spacers

GridPix

Mesh on top of a charge-dispersing resistive anode

European GEMs

Give record resolutions. New techniques to stretch GEM foils, to cool at room temp...

gating

Recently it was shown in a beam test that a Large Aperture gating GEM was transparent enough (with a few V across) to electrons, not to damage the resolution significantly (Yumi Aoki)

X-ray polarimetry

In the few-keV domain, the photo-electric effect dominates and the emitted electron direction keeps track of the polarization.

Under study by several groups (R. Bellazzini et al., Hua Feng et al., Tsinghua group, O. Limousin et al., Saclay group with Calliste chip,...)

Small-gap single-GEM or Micromegas

The first sealed prototype

NASA low-outgassing specifications

γ – Ray Astrophysics and polarimetry

HARPO (Hermetic Argon Polarimeter) -> balloon phase (ST3G) -> satellite

Conclusion

MPGDs are now at the heart of increasingly many TPC projects.

New techniques are being developped for these.

Starting new projects (ALICE and other Nuclear Physics, polarimetry, T2K-II, Dark Matter search, Double-beta decay, ILC tracking...) will require expertise on MPGDs : long life to RD51!

THERE IS ALWAYS A TPC FOR YOU!

