

Accelerators for Research with Photons

Quo Vadis Large Scale Research Facilities

Andreas Jankowiak Institute for Accelerator Physics Helmholtz-Zentrum Berlin

1913, Enrico Guazzoni, Italy First blockbuster in history of cinema!

Perspectives in Accelerator Physics and Technologies TU Darmstadt, 17.02.2017

- Synchrotron radiation why, how, history
- Different kind of facilities

state of the art and future for storage rings, FEL, ERL

• Different approach

novel accelerator concepts, PWA driven light source

Conclusion

accelerated charges loose energy by emitting electromagnetic radiation (Maxwell, Larmor, Liénard, Schwinger, ...)

G.E. Synchrotron, 70MeV, 1947

- high intensity from a small source point (electron beam)
- broad, tuneable spectrum
- photon energy up to many keV
- short pulses, depending on electron bunch length
- polarized radiation

The genealogy of storage ring based SR sources

1st Generation

"parasitic use" of a "by-product"

1970/80ies: DORIS, DESY

2nd Generation

"dedicated sources" bendings, some IDs

1980ies: SRS, Daresbury

1980ies: BESSY, Berlin

Appetite comes with eating!

3rd Generation

line spectrum, small line width, res. 100000, elliptic polarisation

3rd generation storage ring light source – e.g. BESSY II

Energy/current1.7GeV / 300mAEmittance5 nm radPulse length15 ps (rms)Circumference240 mStraight sections16Undulators / MPW+WLS12 / 1+2Beamlines46

5000 h user operation, 3000 user visits / a

specialties

low- α operation, femto slicing ps beams, CSR, THz, 100 fs, polarised x-rays

3rd generation storage ring light sources – the 90^{ies} ++

ESRF / France, 1993

SPring-8 / Japan, 1997

ALS / USA, 1993

BESSY II / D, 1998

ELETTRA / Italy, 1994

SLS / Switzerland, 2001

APS / USA, 1996

SOLEIL / France, 2006

DIAMOND / UK, 2007 PETRA III / D, 2010

ALBA / Spain, 2010

TPS / Taiwan, 2014

Energy: Beam Current: Natural Emittance: Pulse Length: 1.7 GeV – 8 GeV 100 mA – 500 mA 1 nm rad – 20 nm rad (coupling down to << 0.1% = 5 pm rad vertical) ~ 30 ps (~ ps in low- α and 100 fs slicing @ strongly reduced current)

The phase space of parameters

Andreas Jankowiak, Accelerators for Research with Photons, KfB Perspectives Workshop, TU Darmstadt, 17.02.2017

coh

Incoherent vs. coherent X-ray beams

http://erl.chess.cornell.edu/gatherings/2011_Workshops/talks/WS1Shpyrko.pdf

Brilliance

$$\mathsf{B}_{\text{average}}(\lambda) = \frac{\mathsf{N}_{\text{photon}}(\lambda)}{4\pi^2 \left(\varepsilon_x \oplus \varepsilon_{\text{photon}}(\lambda)\right) \cdot \left(\varepsilon_y \oplus \varepsilon_{\text{photon}}(\lambda)\right) \left(\mathbf{s} \cdot \mathbf{0.1\%BW} \cdot \mathbf{A}\right)}$$

defined by lattice="beam optics", beam energy
 λ

$$\varepsilon_{photon}(\lambda) = \frac{\lambda}{4\pi}$$
 (Gaussian), $\frac{\lambda}{2\pi}$ (undulator) : photon beam emittance

Electron beam emittance for diffraction limited radiation:

$$\epsilon_{x,y}(\lambda) = \frac{\lambda}{4\pi} \quad f_{coh}(\lambda) = \frac{\epsilon_{photon}(\lambda)}{\epsilon_x \oplus \epsilon_{photon}(\lambda)} \cdot \frac{\epsilon_{photon}(\lambda)}{\epsilon_y \oplus \epsilon_{photon}(\lambda)}$$

$$\epsilon = 1 \text{ nm rad}$$
 \rightarrow $\lambda = 13 \text{ nm (95 eV)}$ $\lambda = 10 \text{ nm (124 eV)}$ \rightarrow $\epsilon = 800 \text{ pm rad}$ $\lambda = 1 \text{ nm (1.240 keV)}$ \rightarrow $\epsilon = 80 \text{ pm rad}$ $\lambda = 1 \text{ A (12.4 keV)}$ \rightarrow $\epsilon = 8 \text{ pm rad}$

Storage ring – governed by equilibrium processes

Linac – governed by adiabatic damping and control

X-Rays

≙

LINEAR ACCELERATOR

Source

E₀

The quality of the beam is defined by the source, the rest is proper acceleration and phase space control ! (taking into account CSR, wakes, ...)

Storage ring versus Linac

equilibrium beam dimensions

"virtual" (internal) power

real (external) power

Lattice design evolution from double- and triple-bend achromats (DBA, TBA) to multi-bend achromats: increase N_D.

Multi-bend lattices are becoming a reality:

- MAX IV (Sweden) is in operation (~ 300 pm rad)
- Sirius (Brazil) just started construction
- ESRF MBA upgrade on the way (France)
- APS-U (US), ALS-U (US), SPRING-8 (Japan), PETRA IV (D), SLS2 (Switzerland), DIAMOND2 (UK), SOLEIL2 (F), ... planning

useful as "short puDLSR compared to 3G SR:

Emittance reduction < 1/10 (~ 100 pm), even down to < 1/100 (~ 10pm)

but:

- lattices with very strong quadrupoles (and multipoles)
- reduced dynamic aperture makes injection complicated
 "If you can inject in your lattice, your emittance is still too large" → new concepts for injection, e.g. "swap-out injection"

3 GeV, 500mA, 528m, 320 pm (200 pm with IDs)

• careful control of Intra Beam Scattering and Touschek lifetime

3G, 20ps

DLSR, 20ps

- high phase space density
- many scattering processes
- low lifetime, emit. increase

work around

- increase bunch length, 75 200 ps
- transfer hor. emittance to vert. "round beams"

2 examples of new designs – ALS U (short, low energy)

ALS-U: 2 GeV, C = 200 m, 50 pm rad (round beam), 500 mA, ~ 200 ps

PETRA IV: 6 GeV, C = 2300 m, ~ 10 pm rad (round beam), 100 mA, 100 ps

- 1. Lattice based on HMBA Cells
- Arcs: 9 HMBAs cells to build a 45° arc
- 8 identical arcs
- Straight sections: FODO cells

Horz. emittance of HMBA-based ring is 12 pm⋅rad at 6 GeV ✓ Cell not yet optimized, (small dynamic aperture) ×

2. <u>4D-phase space exchange and MBAs</u>

- arc cells with non interleaved sextupoles
- Undulator section, preliminary version with HMBA

Emittance ~ 20/20 pm ✓ (5 GeV, wigglers not yet included) Undulator cell not yet optimized ×

> R. Wanzenberg, R. Brinkmann, et al. **17**

Alternative approach - variable pulse length storage ring

Combining two RF systems with different frequencies (1.5 GHz & 1.75 GHz) generates long and short buckets, which can be filled individually to generate optimized fill pattern.

One cryo-module with: 2 x 4 cell @ 1.5 GHz & 2 x 4 cell @ 1.75 GHz operating at 1.8 K LHe temperature active length: 1.50 m with 20 MV/m total gradient: 2π 50 MV×GHz (x 60 increase)

VSR – adding advanced timing capabilities to storage rings

• ion clearing provided through gaps

multi functional hybrid mode

ps short single bunch, high current single bunch, slicing bunches, high average brilliance, background of intense CSR/THz radiation

preserving BESSY II emittance and TopUp capabilities

Quo vadis storage rings

Other line of development – coherence / FELs

- $I \sim n_e$ (bunchlength > wavelength)
- $I \sim n_e^2$ (bunchlength ~ wavelength)

SASE FELs

"nc copper machines" - only 10 to 120 pulse per second

2009, LCLS-SLAC, < 1 A

2011, SACLA-RIKEN, 0.6 A

plus FERMI SwissFEL, SASE FEL Pohang, ...

- full transverse coherence
- extreme peak brilliance -> new experimental regime
- low number of beamlines

Quo stas?

Longitudinal coherence – improving spectral brightness

Walk on the CW Side !

LCLS II adds CW SRF linac (4 GeV), 10⁴ more pulses (30x E-XFEL)

CW studies for FLASH and E-XFEL started

And in the future:

XFELO Output	
Photon energy coverage	5-25 keV (plus the third harmonic)
Spectral purity	$1 - 10 \text{ meV} (10^{-6} - 10^{-7} \text{ in relative BW})$
Coherence	Fully coherent transversely and temporally
X-ray pulse length	0.1 – 1.0 ps
Tuning range	2-6%
Number of photons/pulse	$\sim 10^9$
Pulse repetition rate	$\sim 1 \text{ MHz}$
Peak spectral brightness	$10^{32} - 10^{34} \text{ ph/[s*mm^{2}*mrad^{2}*(0.1\% \text{ BW})]}$
Average spectral brightness	$10^{26} - 10^{28} \text{ ph/[s*mm^{2*}mrad^{2*}(0.1\% \text{ BW})]}$

Energy Recovery Linacs – The idea

- high average ("virtual") beam power (up to A, many GeV)
- many user stations
- beam parameter defined by equilibrium
- typical long bunches (20 ps 200 ps)

- outstanding beam parameter
- single pass experiments
- high flexibility, short bunches (~ 10 fs)
- · low number of user stations
- limited average beam power (<<mA)

two staged injector

Combines the two worlds of storage rings and linacs

- with energy recovery: ~100mA @ many GeV possible
- always "fresh" electrons (no equilibrium)
 - \rightarrow ultra low emittance, round beams
 - \rightarrow high brilliance, high transversal coherence
 - \rightarrow short pulses (ps and shorter)
- individually tailored optics of each straight possible
- real multi-user operation at many beam lines
- single pass short pulse FEL facility as "add on" possible

Flexible operation modes (brilliance, short pulse, variable pulse patterns) adaptable to user requirements!

ERLs opens up the complementary dimensions of energy, space and time (spectroscopy, structure und dynamics)

seeded FEL

bunch

CAL light source design studies

Cornell ERL

5 GeV, 100mA, \epsilon = 8 pm rad (ϵ_{norm} = 0.08 µm (@77pC), 2ps)

Femto Science Facility (FSF)

(multi turn, split linac), A. Matveenko et al.

Ultra Compact Compton Sources (independent cavity ERL)

- 11 cell full scale cavity copper prototype is under construction.

PRAB paper: http://journals.aps.org/prab/abstract/10.1103/PhysRevAccelBeams.19.083502

Conclusion

DLSR with NC full energy injector linac

First of its kind: MAX IV (start 2016) Many upgrades and new rings: ESRF, ALS-U, PETRA, APS-U, DIAMOND2, SIRIUS, ... pulsed nc Injector + Linac short pulse facility, FEL facility (100 Hz, ~ fs) DLSR 20+ straights / IDs MHz rep rate: pulse length: some 10 to ~100ps emittance: < 10 pm rad – some 100 pm rad round beams average brilliance: > 1E22 /s/mm²/mrad²/0.1% ("usable" photons) > 1E23 /s/mm²/mrad²/0.1% peak brilliance: some 10eV – 10keV – ... energy: energy width [%]: 0.1

CW SC linac driven multi-user FEL facility

First of its kind: Design of "real" multi user facility: LCSL II (start 2019/20) NGLS like (Berkeley)

> many beamlines in parallel, longitudinal cascaded operation

sc cw Injector + LINAC

spreader

N = 10 (number of BL), $f_{rep} = 100 \text{ kHz}$, E = 10 GeV, q = 200 pC

 $P_{\text{beam}} = N \cdot f_{\text{rep}} \cdot E \cdot q = 2 \, MW$

rep. rate (per Beamline):100 kHz feasiblepulse length:sub fs to 100fsnormalized emittance/mm²:< 0.6 mm mrad</td>

average brilliance: peak brilliance: energy: bandwidth [%] FWHM: > 1E25 /s/mm²/mrad²/0.1% ("usable" photons)
> 2E32 /s/mm²/mrad²/0.1%
some 100eV - 5keV - 10keV - ...
0.005

many existing large scale facilities are aiming for upgrades

DLSR – ESRF, PETRA, ALS, APS, DIAMOND, SOLEIL, ...

VSR – BESSY

FEL – cw upgrades FLASH, XFEL, ... / more beam lines / higher Energy but upgrade = possibilities always somewhat constrained

• at present no proposal for a "new, greenfield" large scale facility

- we have many tools in hand (DLSR, VSR, cwFEL, ERL)

- science case "for the facility" will decide about technology

technology development will be important driver

- high gradient (100 T/m and more), multipole and combined function magnets
- permanent magnets, also for "more efficiency"
- fast kicker magnets (ns), transparent injection, beam separation in switch yeards
- new ID concepts, short period, low gap, making use of round beams and small dynamic aperture
- low aperture vacuum systems (< 5mm)
- high brightness, high current photon sources (< 0.1 μ m rad, mA 100mA+)
- high gradient, high Q, high temp. SRF / cwSRF, HOM extraction
- laser for seeding, pump-probe, synchronisation, seeding technics,

novel acceleration concepts (PWA, dielectric structure) have great potential

- LPWA as "laboratory scale devices", low rep. rate
- BD PWA have potential for "compact" multi user facility