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Challenge: Doubling CMS computing using Google
Cloud Engine

● Live demo during Supercomputing 2016

• Four days, 12 hours a day

● Expand the Fermilab facility to an additional 160,000 cores

• Production computing

● Use HEPCloud technology to do this as transparently as 

possible to the application
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HEPCloud

● A portal to an ecosystem of diverse computing resources, commercial or 
academic
• Provides “complete solutions” to users, with agreed-upon levels of service
• Routes to local or remote resources based on workflow requirements, 

cost, and efficiency of accessing various resources
• Manages allocations of users to supercomputing facilities (e.g. LCFs, NERSC)

● Pilot project to explore feasibility, capabilities of HEPCloud

• Collaborative effort with industry, academia
• Previously evaluated with AWS for NOvA computing

● Goal of moving into production by September 2018
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HEPCloud Architecture
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Pre-staging input data to Google Cloud Storage
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● Experiment-specific data placement service (“PhEDEx”) tracks datasets, schedules transfers

● File Transfer Service supports S3-compatibility mode (gfal-copy, davix)

● Google Cloud Storage mounted into preemptible VMs using gcsfuse via startup scripts

● Google to ESNet peering (via Equinix @SL) upgraded to 100 Gb/s capacity (but staging used 10Gb/s…)

● Converted multi-regional to regional bucket overnight: resulted in 30% less cost

Google Compute Engine
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Cores from Google
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Tale of the tape

● 6.35 M wallhours used; 5.42 M wallhours for completed jobs.

• 730172 simulation jobs submitted; only 47 did not complete

• Most wasted hours during ramp-up as we found and eliminated issues; goodput was at 94%

during the last 3 days. 

● Costs on Google Cloud during Supercomputing 2016

• $71k virtual machine costs

• $8.6k network egress

• $8.5k magnetic persistent disk (attached to VMs)

• $3.5k cloud storage for input data

● 205 M physics events generated, yielding 81.8 TB of data

● Cost: ~1.6 cents per core-hour (on-premises: 0.9 cents per core-hour assuming 100% utilization)
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Provisioning remote resources via glideinWMS

● GlideinWMS submits “pilot jobs” to compute resources based on demand

● Pilot jobs execute on the resource and fetch user jobs from a queue

• Pilot jobs hide heterogeneity of compute from the user and 
validate environment (will not start user jobs on bad resources)
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Cloud

APIs

Google Compute Engine

HTCondor: speaking Cloud APIs

HTCondor provisioner

● HTCondor provisioner initially written by HTCondor team @ UW-Madison

● Google contributed to the Open Source HTCondor project

• Added support for preemptible VMs and service accounts

• Fixed critical bug to address scaling
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Providing application software in a distributed world
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Architecture inside a single zone
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us-central-1
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Some lessons learned at scale

● Standard VM (3.75 GB) had more memory than the 

applications need

• Custom machine type with 2 GB

• 20% cost savings

● Bug in HTCondor provisioning code

• Ignoring the pagination API

• Only triggered above 500 VMs!

• Patch provided by Google

● Expanded subnet from 4096 to 16384 IPs gcloud 

compute networks subnets expand-ip-range

• But had firewall rule on the squid caches:

Allow-internal-squid 10.128.0.0/20 tcp:3128
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Next steps

● HEPCloud moves into production in September 2018

• Decision engine (when and how much to provision) is in R&D

● Supercomputers at Department of Energy Facilities

• Already provisioning cycles on Edison, Cori at NERSC

● Additional commercial cloud providers

• Done: Google Cloud Platform, Amazon Web Services

• Next: Microsoft Azure, ?

● Non-pleasingly parallel problems

• Deep learning

• New architectures
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