
Provisioning 160,000 cores with HEPCloud at SC17

Phil DeMar (FNAL)
LHCOPN/LHCONE Meeting – April 04, 2017

Challenge: Doubling CMS computing using Google
Cloud Engine

● Live demo during Supercomputing 2016

• Four days, 12 hours a day

● Expand the Fermilab facility to an additional 160,000 cores

• Production computing

● Use HEPCloud technology to do this as transparently as

possible to the application

(B. Holtzman; FNAL)

HEPCloud

● A portal to an ecosystem of diverse computing resources, commercial or
academic
• Provides “complete solutions” to users, with agreed-upon levels of service
• Routes to local or remote resources based on workflow requirements,

cost, and efficiency of accessing various resources
• Manages allocations of users to supercomputing facilities (e.g. LCFs, NERSC)

● Pilot project to explore feasibility, capabilities of HEPCloud

• Collaborative effort with industry, academia
• Previously evaluated with AWS for NOvA computing

● Goal of moving into production by September 2018

(B. Holtzman; FNAL)

HEPCloud Architecture

Workflow
(resource provisioning

trigger)

Facility
Interface

Authentication and
Authorization

Decision Engine Facility Pool

Provisioner

Cloud
Resources

Local
Resources

Local
Resources

Local
Resources

HPC
Resources

HPC
Resources

HPC
Resources

Grid
Resources

Grid
Resources

Grid
Resources

Cloud
Resources

Cloud
Resources

Monitoring

Monitoring takes input
from all components

(B. Holtzman; FNAL)

Pre-staging input data to Google Cloud Storage

File Transfer
Service

Data Placement
Service

Object Store

Input Data

Cloud Storage

10 Gb/s

Multi-regional Bucket
500 TB

● Experiment-specific data placement service (“PhEDEx”) tracks datasets, schedules transfers

● File Transfer Service supports S3-compatibility mode (gfal-copy, davix)

● Google Cloud Storage mounted into preemptible VMs using gcsfuse via startup scripts

● Google to ESNet peering (via Equinix @SL) upgraded to 100 Gb/s capacity (but staging used 10Gb/s…)

● Converted multi-regional to regional bucket overnight: resulted in 30% less cost

Google Compute Engine

(B. Holtzman; FNAL)

Cores from Google

(B. Holtzman; FNAL)

(B. Holtzman; FNAL)

Tale of the tape

● 6.35 M wallhours used; 5.42 M wallhours for completed jobs.

• 730172 simulation jobs submitted; only 47 did not complete

• Most wasted hours during ramp-up as we found and eliminated issues; goodput was at 94%

during the last 3 days.

● Costs on Google Cloud during Supercomputing 2016

• $71k virtual machine costs

• $8.6k network egress

• $8.5k magnetic persistent disk (attached to VMs)

• $3.5k cloud storage for input data

● 205 M physics events generated, yielding 81.8 TB of data

● Cost: ~1.6 cents per core-hour (on-premises: 0.9 cents per core-hour assuming 100% utilization)

(B. Holtzman; FNAL)

Additional/Backup
Slides

Provisioning remote resources via glideinWMS

● GlideinWMS submits “pilot jobs” to compute resources based on demand

● Pilot jobs execute on the resource and fetch user jobs from a queue

• Pilot jobs hide heterogeneity of compute from the user and
validate environment (will not start user jobs on bad resources)

condor
submit

VO Frontend

HTCondor
Central Manager

HTCondor
Schedulers
HTCondor
Schedulers

Frontend

GlideinWMS
Factory

HTCondor-G

Cloud Provider

Virtual MachineVM

Glidein
HTCondor

Startd
Job

(B. Holtzman; FNAL)

Cloud

APIs

Google Compute Engine

HTCondor: speaking Cloud APIs

HTCondor provisioner

● HTCondor provisioner initially written by HTCondor team @ UW-Madison

● Google contributed to the Open Source HTCondor project

• Added support for preemptible VMs and service accounts

• Fixed critical bug to address scaling

(B. Holtzman; FNAL)

Providing application software in a distributed world

Applications

FUSE

CernVM-FS

OS Kernel

HTTP Content

Distribution

Network

Worker Node
Memory Buffer

Worker Node
Disk Cache

Stratum 1
Web Server

Entire Software Stack

Megabytes Gigabytes Terabytes

VM

(B. Holtzman; FNAL)

Architecture inside a single zone

Input Data

Cloud Storage

Preemptible VM

Compute Engine

Multiple Instances

Cloud

APIs

Managed instance group

Compute Node

Standard VM

Multiple Instances

Worker nodes

Squid caches for
application software,
job-by-job calibration data

Object Store

Internal LB

Cloud Load Balancing

HTCondor provisioner

HTCondor head node

Google Compute Engine

(B. Holtzman; FNAL)

us-central-1

us-central-1a

Cloud

APIs

Preemptible VM

Compute Engine

Multiple Instances

Internal LB

Cloud Load Balancing

Managed instance group

Compute Node

Standard VM

Multiple Instances

us-central-1b

Cloud

APIs

Preemptible VM

Compute Engine

Multiple Instances

Internal LB

Cloud Load Balancing

Managed instance group

Compute Node

Standard VM

Multiple Instances

us-central-1f

Cloud

APIs

Preemptible VM

Compute Engine

Multiple Instances

Internal LB

Cloud Load Balancing

Managed instance group

Compute Node

Standard VM

Multiple Instances

us-central-1c

Input Data

Cloud Storage

Using 4 zones in us-central-1

Cloud

APIs

Preemptible VM

Compute Engine

Multiple Instances

Internal LB

Cloud Load Balancing

Managed instance group

Compute Node

Standard VM

Multiple Instances

(B. Holtzman; FNAL)

Some lessons learned at scale

● Standard VM (3.75 GB) had more memory than the

applications need

• Custom machine type with 2 GB

• 20% cost savings

● Bug in HTCondor provisioning code

• Ignoring the pagination API

• Only triggered above 500 VMs!

• Patch provided by Google

● Expanded subnet from 4096 to 16384 IPs gcloud

compute networks subnets expand-ip-range

• But had firewall rule on the squid caches:

Allow-internal-squid 10.128.0.0/20 tcp:3128

(B. Holtzman; FNAL)

Next steps

● HEPCloud moves into production in September 2018

• Decision engine (when and how much to provision) is in R&D

● Supercomputers at Department of Energy Facilities

• Already provisioning cycles on Edison, Cori at NERSC

● Additional commercial cloud providers

• Done: Google Cloud Platform, Amazon Web Services

• Next: Microsoft Azure, ?

● Non-pleasingly parallel problems

• Deep learning

• New architectures

(B. Holtzman; FNAL)

