A Clockwork Theory

Jeju Island 2017 June $2^{\text {nd }}$? 2017

Based on: Giudice, MMM, 2016

On Masses and Scales

There is a fundamental difference between masses and scales, sometimes overlooked.

Example: Global Symmetry Breaking

$$
V=\lambda\left(\frac{f^{2}}{2}-|\phi|^{2}\right)^{2} \longleftrightarrow \phi=\frac{f+\rho}{\sqrt{2}} e^{i \pi / f}
$$

Massless Goldstone boson, massive radial mode:

$$
m_{\pi}=0 \quad, \quad m_{\rho}=\sqrt{2 \lambda} f
$$

At low energies, Goldstone self-interactions

$$
\mathcal{L} \supset \frac{1}{\tilde{f}^{4}}(\partial \pi)^{4} \quad, \quad \tilde{f}^{4}=4 \lambda f^{4}
$$

On Masses and Scales

Example: Global Symmetry Breaking
If we could do Goldstone scattering at low energies, could measure this interaction scale:

May be tempted to think this points to UV-completion at $E \sim \tilde{f}$.

However, UV-completion enters at m_{ρ} which could be completely different:

$$
m_{\rho}^{4}=\lambda \tilde{f}^{4}
$$

In fact, not necessarily anything important at \tilde{f}.

On Masses and Scales

Example: Global Symmetry Breaking
If we could do Goldstone scattering at low energies, could measure this interaction scale:

May be tempted to think this
points to UV-completion at $E \sim \tilde{f}$. Although unitarity don enters at m_{ρ} which $-\rho \rho$ must kick in... In fact, not necessarily anything important aut...

A Clockwork Scalar

Take $\mathbb{N}+1$ copies of original story, assume $\lambda \approx 1$, such that at low energies only have Goldstones:

$$
\phi_{j} \sim \frac{f}{\sqrt{2}} e^{i \pi_{j} / f} \quad, \quad j=0, . ., N
$$

Now explicitly break N of the $U(1)$ symmetries explicitly with spurions,

$$
\mathcal{L}=\mathcal{L}\left(\phi_{j}\right)-\sum_{j=0}^{N-1} \epsilon \phi_{j}^{*} \phi_{j+1}^{3}+h . c .
$$

This action is justified by symmetry assignments for spurions.

A Clockwork Scalar

Choi \& Im, Kaplan \& Rattazzi

Take $\mathbb{N}+1$ copies of original story, assume $\lambda \approx 1$, such that at low energies only have Goldstones:

$$
\phi_{j} \sim \frac{f}{\sqrt{2}} e^{i \pi_{j} / f} \quad, \quad j=0, . ., N
$$

Now explicitly break N of the $U(1)$ symmetries explicitly with spurions,

$$
\mathcal{L}=\mathcal{L}\left(\phi_{j}\right)-\sum_{j=0}^{N-1} \epsilon \phi_{j}^{*} \phi_{j+1}^{3}+h . c .
$$

This action is justified by symmetry assignments for spurions.

A Clockwork Scalar

Action given by

$$
\mathcal{L}=\frac{1}{2} \sum_{j=0}^{N}\left(\partial_{\mu} \pi_{j}\right)^{2}-\frac{m^{2} f^{2}}{2} \sum_{j=0}^{N-1}\left(e^{\frac{i}{f}\left(q \pi_{j+1}-\pi_{j}\right)}+\text { h.c. }\right)
$$

Spontaneous symmetry breaking pattern:

$$
\mathrm{U}(1)^{N+1} \rightarrow \emptyset
$$

So expect $N+1$ Goldstones.

Explicit symmetry breaking:

$$
\mathrm{U}(1)^{N+1} \rightarrow \mathrm{U}(1)
$$

So expect N pseudo-Goldstones and one true Goldstone.

Can identify true Goldstone direction from remaining shift symmetry

$$
\pi_{j} \rightarrow \pi_{j}+\kappa / q^{j}
$$

A Clockwork Scalar

Identify Goldstone couplings by promoting shift parameter to a field:

$$
\pi_{j} \rightarrow \pi_{j}+a(x) / q^{j}
$$

Now, imagine we had some fields coupled to π_{N}. Coupling to massless Goldstone becomes:

Exponential separation between zero mode coupling and cutoff! This is generated entirely from the shift symmetry, not from the form of the interaction or potential.

A Clockwork Scalar

Peculiar spectrum, reminiscent of Condensed Matter...

Mass matrix	
$M_{\pi}^{2}=m^{2}$	$\left(\begin{array}{cccccc}1 & -q & 0 & \cdots & & 0 \\ -q & 1+q^{2} & -q & \cdots & & 0 \\ 0 & -q & 1+q^{2} & \cdots & & 0 \\ \vdots & \vdots & \vdots & \ddots & & \vdots \\ 0 & 0 & 0 & & 1+q^{2} & -q \\ 0 & & \\ & & & & \\ \text { a }\end{array}\right.$
Figenvalues for "Clockwork Gears"	
$m_{a_{k}}^{2}=$	$\begin{array}{r} \left(q^{2}+1-2 q \cos \frac{k \pi}{N+1}\right) m^{2} \\ k=1, . ., N \end{array}$

Mass spectrum

Discrete Very weakly Clockwork coupled state.

How might this be useful in practice?

A Clockwork Axion

See also
Farina et al 2016.

Imagine clockworking Peccei-Quinn at weak scale:

An invisible axion and band of weak-scale "gears":

- Cosmology / thermal history of invisible axion radically altered: stays in thermal equilibrium to late times.

A Clockwork Axion

The phenomenology of the clockwork gears would be very exotic:

Dijet spectrum likely too smeared, and background too large, to reveal anything here. Perhaps diphotons could reveal gears.

A Clockwork Axion

Tr This anology of the clockwork gears would pattern with this more applicat imos. ame phenomenology $\pi_{j}+\kappa / q^{j}$ and symmetry states, nology (mas and states, natur (mass ora ?

Clockwork Fermion

Can also construct analogous fermion models:

One Weyl fermion left over to be massless. If last site is the RHD Neutrino, then clockworked interaction is:

$$
\mathcal{L}=-\lambda H \bar{L}_{L} \psi_{N}^{R} \longrightarrow \mathcal{L}=-\frac{1}{q^{N}} \lambda H \bar{L}_{L} \tilde{\psi}
$$

Tiny Dirac neutrino masses! Again, much interesting phenomenology to look into.

Clockwork Photon
 First proposed by Saraswat.

Can even have clockwork photons:

If all scalars get vevs $\left\langle\phi_{j}\right\rangle=\frac{f}{\sqrt{2}}$, vector action
Clockwork

$$
\mathcal{L}=-\sum_{j=0}^{N} \frac{1}{4} F_{\mu \nu}^{j} F^{j \mu \nu}+\sum_{j=0}^{N-1} \frac{g^{2} f^{2}}{2}\left(A_{\mu}^{j}-q A_{\mu}^{j+1}\right)^{2} \text { mass terms }
$$

Interesting applications: millicharges, dark forces, etc...

Clioltrint Pbaton Prat moposed Clockwork Photon by saraswat.

Can even have clockwork photons:

Clockwork

$$
\mathcal{L}=-\sum_{j=0}^{N} \frac{1}{4} F_{\mu \nu}^{j} F^{j \mu \nu}+\sum_{j=0}^{N-1} \frac{g^{2} f^{2}}{2}\left(A_{\mu}^{j}-q A_{\mu}^{j+1}\right)^{2} \text { mass terms }
$$

Interesting applications: millicharges, dark forces, etc...

$$
\begin{gathered}
\text { Looking back to scalar } \\
\mathcal{L}=\frac{1}{2} \sum_{j=0}^{N}\left(\partial_{\mu} \pi_{j}\right)^{2}-\frac{m^{2} f^{2}}{2} \sum_{j=0}^{N-1}\left(e^{\frac{i}{f}\left(q \pi_{j+1}-\pi_{j}\right)}+\text { h.c. }\right)
\end{gathered}
$$

This action exhibits a single continuous $\mathrm{U}(1)_{C W}$ symmetry, under which the complex scalars have charge

$$
Q_{C W}=1,1 / q, . ., 1 / q^{N}
$$

The "j"th" field of carries charge $Q_{j}^{C W}=q^{-j}$ under $\mathrm{U}(1)_{C W}$. Axion of spontaneously broken symmetry couples proportional to charge, thus

$$
\Delta \mathcal{L}=\frac{\partial_{\mu} a_{0}}{f} Q^{C W} J_{C W} \rightarrow \frac{\partial_{\mu} a_{0}}{q^{N} f} J_{C W}
$$

This sets discrete gauge symmetry of axion.

Continue to Continuum

$$
\mathcal{L}=\frac{1}{2} \sum_{j=0}^{N}\left(\partial_{\mu} \pi_{j}\right)^{2}-\frac{m^{2} f^{2}}{2} \sum_{j=0}^{N-1}\left(e^{\frac{i}{f}\left(q \pi_{j+1}-\pi_{j}\right)}+\text { h.c. }\right)
$$

This action exhibits a single continuous $\mathrm{U}(1)_{C W}$ symmetry, under which the complex scalars have charge

$$
Q_{C W}=1,1 / q, . ., 1 / q^{N}
$$

Taking continuum limit, with q^{N} fixed.

Infinite number of states with charge between 1 and q^{N}. In other words, \mathbb{R}, not $\mathrm{U}(1) \cong \mathbb{R} / \mathbb{Z}$.

Continuum clockwork is non-compact, non-fun?

Continue to Continuum

So, if restricting to $m^{2} f^{2-1}\left(e^{\frac{i}{f}\left(q \pi_{j+1}-\pi_{j}\right)}+\right.$ hoc. $)$ action that to the gauged , that's the end of that clockwork

$$
\begin{gathered}
\text { non-compact ind of the story. No } \\
\text { theol symmetries }
\end{gathered}
$$

theory etc..
But
Taking contimurep looking anyway...
Infinite number of states with charge between and q^{N}. In other words, \mathbb{R}, not $\mathrm{U}(1) \cong \mathbb{R} / \mathbb{Z}$.

Continuum clockwork is non-compact, non-fun?

Continue to Continuum

Take original clockwork model
$\begin{array}{cc}\mathcal{L}=-\frac{f^{2}}{2} \sum_{j=0}^{N}\left(\partial_{\mu} \pi_{j}\right)^{2}-m^{2} f^{2} \sum_{j=0}^{N-1} \cos \left[\frac{1}{f}\left(\pi_{j}-q \pi_{j+1}\right)\right] & +\frac{\pi_{j}}{f} G^{\mu \nu} \widetilde{G}_{\mu \nu} \\ \text { Perform a field redefinition } & +\frac{1}{g^{2}} G^{\mu \nu} G_{\mu \nu}\end{array}$
in a 5D interval of length πR. Scalar action is

$$
\begin{array}{r}
\mathcal{L}=-\frac{1}{2} \sum_{j=0}^{N} q^{-2 j}\left(\partial_{\mu} \pi_{j}\right)^{2}-m^{2} f^{2} \sum_{j=0}^{N-1} \cos \left(\frac{q^{-j}}{f}\left(\pi_{j+1}-\pi_{j}\right)\right) \\
\frac{1}{g^{2}} G^{\mu \nu} G_{\mu \nu}+q^{-j} \frac{\pi_{j}}{f} G^{\mu \nu} \widetilde{G}_{\mu \nu}
\end{array}
$$

Continue to Continuum

Take original clockwork model

$\mathcal{L}=-\frac{f^{2}}{2} \sum_{j=0}^{N}\left(\partial_{\mu} \pi_{j}\right)^{2}-m^{2} f^{2} \sum_{j=0}^{N-1} \cos \left[\frac{1}{f}\left(\pi_{j}-q \pi_{j+1}\right)\right]+\frac{\pi_{j}}{f} G^{\mu \nu} \widetilde{G}_{\mu \nu}$
Perform a field redefinition

$$
\pi_{j} \rightarrow \pi_{j} / q^{j}
$$

in a 5D interval of length πR. Scalar action is
Warping in kinetic terms.
No more "by hand" than this.
$\left.\mathcal{L}=-\frac{1}{2} \sum_{j=0}^{N} q^{-2 j} \overleftarrow{\left(\partial_{\mu} \pi_{j}\right)^{2}-m^{2} f^{2} \sum_{j=0}^{N-1} \cos \left(\frac{q^{-j}}{\vec{f}}\right.}\left(\pi_{j+1}-\pi_{j}\right)\right)$
Symmetry (axion) shared symmetrically among sites, flat wavefunction!

Position-dependent $\longrightarrow q^{-j} \frac{\pi_{j}}{f} G^{\mu \nu} \widetilde{G}_{\mu \nu}$ coupling now explicit

Continue to Continuum

To This clockwork model
is a porticur

particular a
 minuting $]+\frac{\pi_{j}}{f} G^{\mu \nu} \widetilde{G}_{\mu \nu}$

 work in... If If uncomfortable$\pi_{j} \rightarrow q^{j} \pi_{j}$ reverse:
in a 5D inter warping in kinetic terms.
$\mathcal{L}=-\frac{1}{2} \sum_{j=0}^{N} q^{\downarrow} q^{\downarrow}\left(\partial_{\mu} \pi_{j}\right)^{2}-m^{2} f^{2} \sum_{j=0}^{N-1} \cos \left(\frac{q-j}{f}\left(\pi_{j+1}-\pi j\right)\right)$

Symmetry (axion) shared symmetrically among sites, flat wavefunction!

Position-dependent $+q^{-j} \frac{\pi_{j}}{f} G^{\mu \nu} \widetilde{G}_{\mu \nu}$ coupling explicit

Continue to Continuum

Take continuum limit

$$
m^{2}(a)=\frac{1}{a^{2}}, \quad q(a)=e^{k a}
$$

Including derivatives

$$
\pi_{j+1}-\pi_{j} \rightarrow a \partial_{y} \pi
$$

in a 5D interval of length πR

In continuum limit, only quadratic terms survive:

$$
\left[\frac{1}{a^{2}} \cos \left(\frac{a}{\kappa} \partial_{y} \pi\right)\right]_{a \rightarrow 0} \rightarrow\left(\frac{1}{\kappa} \partial_{y} \pi\right)^{2}
$$

Continue to Continuum

$T \delta$ continuum limit
In continuum
operate terms of comp lat $1+\epsilon$
trusted. Only from trusted. Only Er NT of pNGBS scald, non-local. in a 5D intervalorion_ can be

In continuum limit, only quadratic terms survive:

$$
\left[\frac{1}{a^{2}} \cos \left(\frac{a}{\kappa} \partial_{y} \pi\right)\right]_{a \rightarrow 0} \rightarrow\left(\frac{1}{\kappa} \partial_{y} \pi\right)^{2}
$$

Continue to Continuum

Take continuum limit...
$\mathcal{L}=-\frac{1}{2} \sum_{j=0}^{N} q^{-2 j}\left(\partial_{\mu} \pi_{j}\right)^{2}-m^{2} f^{2} \sum_{j=0}^{N-1} \cos \left(\frac{q^{-j}}{f}\left(\pi_{j+1}-\pi_{j}\right)\right)$

In continuum limit, only quadratic term survive:
$\mathcal{L}=-\frac{1}{2} \int d y e^{-2 k y}\left[\partial_{\mu} \pi \partial^{\mu} \pi+\left(\partial_{y} \pi\right)^{2}\right]+e^{-k y} \frac{\pi}{f} G^{\mu \nu} \widetilde{G}_{\mu \nu}$
Interaction explicitly breaks discrete gauge symm.

Deconstrinue to Continuum

clockwork model． original and and If uncomfor work model．

$$
\pi \rightarrow e^{k y} \tilde{\pi}
$$

In continuum limb，,$\quad \tilde{\pi} \rightarrow \tilde{\pi}+\kappa e^{-k y}$
$\mathcal{L}=-\frac{1}{2} \int d y e^{-2 k y}\left[\partial_{\mu} \pi \partial^{\mu} \pi+\left(\partial_{y} \pi\right)^{2}\right]+e$

$$
\begin{aligned}
& \text { le with basis, reverse field } \\
& \text { redefinition: } \\
& \text { = }
\end{aligned}
$$號

Continue to Continuum

Connection with the linear dilator model:
$\mathcal{L}=-\frac{1}{2} \int d y e^{-2 k y}\left[\partial_{\mu} \pi \partial^{\mu} \pi+\left(\partial_{y} \pi\right)^{2}\right]+e^{-k y} \frac{\pi}{f} G^{\mu \nu} \widetilde{G}_{\mu \nu}$
Where $\langle S\rangle= \pm 2 k y$. Interaction term arises from "k"-like parameter. This is the direct continuum limit of the original clockwork model.

What's the linear dilator model?
See e.g. Antoniadis, Dimopoulos, Giveon,

$$
\mathcal{S}=\int d^{4} x d y \sqrt{-g} \frac{M_{5}^{3}}{2} e^{S}\left(\mathcal{R}+g^{M N} \partial_{M} S \partial_{N} S+4 k^{2}\right)
$$

Solution of Einstein's equations:
$\langle S\rangle= \pm 2 k y$

Continue to Continuum

Connection with the linear dilaton model:
$\mathcal{L}=-\frac{1}{2} \int d y e^{-2 k y}\left[\partial_{\mu} \pi \partial^{\mu} \pi+\left(\partial_{y} \pi\right)^{2}\right]+e^{-k y} \frac{\pi}{f} G^{\mu \nu} \widetilde{G}_{\mu \nu}$
Where $\langle S\rangle= \pm 2 k y$. Interaction term arises from "k"-like parameter. This is the direct continuum limit of the original clockwork model.

If coupled at different sites, for example,

$$
y_{a}=0, y_{b}=\log (2) / 2 k
$$

Then compact discrete shift symmetry explicitly broken by brane couplings (not bulk action).
Symmetry is non-compact.

Continue to Continuum

Connection with the linear dilaton model:
 "k"-like parameter. Turb, as expected.

If coupled at different sites, for example,

$$
y_{a}=0, y_{b}=\log (2) / 2 k
$$

Then compact discrete shift symmetry explicitly broken by brane couplings (not bulk action). Symmetry is non-compact.

Continue to Continuum

Connection with the linear dilaton model:

$\mathcal{L}=-\frac{1}{2} \int d y e^{-2 k y}\left[\partial_{\mu} \pi \partial^{\mu} \pi+\left(\partial_{y} \pi\right)^{2}\right]+e^{-k y} \frac{\pi}{f} G^{\mu \nu} \widetilde{G}_{\mu \nu}$
Where $\langle S\rangle= \pm 2 k y$. This is the direct continuum limit of the original clockwork model. In GM, just coupled at $y=0$, to preserve compact symmetry.

Mass: $m_{0}^{2}=0$

Wavefunction:

$$
\psi_{0}(y)=\sqrt{\frac{k \pi R}{e^{2 k \pi R}-1}}
$$

Continue to Continuum

Connection with the linear dilaton model:
$\mathcal{L}=-\frac{1}{2} \int d y e^{-2 k y}\left[\partial_{\mu} \pi \partial^{\mu} \pi+\left(\partial_{y} \pi\right)^{2}\right]+e^{-k y} \frac{\pi}{f} G^{\mu \nu} \widetilde{G}_{\mu \nu}$
Where $\langle S\rangle= \pm 2 k y$. This is the direct continuum limit of the original clockwork model. In GMM, just coupled at $y=0$, to preserve compact symmetry.

Mass: $m_{n}^{2}=k^{2}+\frac{n^{2}}{R^{2}}$
Wavefunction:
$\psi_{n}(y)=\frac{n}{m_{n} R} e^{-k|y|}\left(\frac{k R}{n} \sin \frac{n|y|}{R}+\cos \frac{n y}{R}\right)$

Continue to Continuum

Connection with the linear dilaton model:

Mass spect $\left[_{2} \pi \partial^{\mu} \pi+\left(\partial_{y} \pi\right)^{2}\right]+e^{-k y} \frac{\pi}{f} G^{\mu \nu} \widetilde{G}_{\mu \nu}$ pattern all continarefunction, tinuum model, see QCD apm limit of coupling coupled at $y=0$, to papplication of discrete
Mass: $m_{n}^{2}=k^{2}+\frac{n^{2}}{R^{2}}$
Wavefunction:

$$
\psi_{n}(y)=\frac{n}{m_{n} R} e^{-k|y|}\left(\frac{k R}{n} \sin \frac{n|y|}{R}+\cos \frac{n y}{R}\right)
$$

Continue to Continuum

Connection with the linear dilaton model:
$\mathcal{L}=-\frac{1}{2} \int d y e^{-2 k y}\left[\partial_{\mu} \pi \partial^{\mu} \pi+\left(\partial_{y} \pi\right)^{2}\right]+e^{-k y} \frac{\pi}{f} G^{\mu \nu} \widetilde{G}_{\mu \nu}$
Where $\langle S\rangle= \pm 2 k y$. If coupled only at $y=0$ all features physically identical to being at the end of the clockwork chain, since this is the continuum of the clockwork.

Continue to Continuum

Connection with the linear dilaton model:
$\mathcal{L}=-\frac{1}{2} \int d y e^{-2 k y}\left[\partial_{\mu} \pi \partial^{\mu} \pi+\left(\partial_{y} \pi\right)^{2}\right]+e \chi^{k y} \frac{\pi}{f} G^{\mu \nu} \widetilde{G}_{\mu \nu}$
Where $\langle S\rangle= \pm 2 k y$. If coupled only at $y=0$ all features physically identical to being at the end of the clockwork chain, since this is the continuum of the clockwork.

Could also remove dilaton factor from topological term, but then zero mode couplings become position-independent: No longer a continuum limit of the clockwork.

Continue to Continuum

Connection with the linear dilaton model:
$\mathcal{L}=-\frac{1}{2} \int d y e^{-2 k y}\left[\partial_{\mu} \pi \partial^{\mu} \pi+\left(\partial_{y} \pi\right)^{2}\right]+e \nless k{ }^{k} y \frac{\pi}{f} G^{\mu \nu} \widetilde{G}_{\mu \nu}$
Where $\langle S\rangle= \pm 2 k y$. If coupled only at $y=0$ all features physically identical to being at the end of the clockwork chain, since this is the continuum of the clockwork.
Localisation in terms of zero-mode coupling to gluons no longer varies exponentially with position. This is the central objection of Craig et al, with regard to the original clockwork model, and we are in complete agreement on this. But can we still use it for other purposes?

Continue to Continuum

Connection with the linear dilaton model:
$\mathcal{L}=-\frac{1}{2} \int d y e^{-2 k y}\left[\partial_{\mu} \pi \partial^{\mu} \pi+\left(\partial_{y} \pi\right)^{2}\right]+e \chi^{k} y \frac{\pi}{f} G^{\mu \nu} \widetilde{G}_{\mu \nu}$
Where $\langle S\rangle= \pm 2 k y$. If coupled only at $y=0$ all features physically identical to being at the end of the clockwork chain, since this is the continuum of the clockwork.

Bulk unchanged, properties of continuum limit of:

$$
\mathcal{L}=\frac{1}{2} \sum_{j=0}^{N}\left(\partial_{\mu} \pi_{j}\right)^{2}-\frac{m^{2} f^{2}}{2} \sum_{j=0}^{N-1}\left(e^{\frac{i}{f}\left(q \pi_{j+1}-\pi_{j}\right)}+\text { h.c. }\right)
$$

preserved, including clockworked shift symmetry.

Continue to Continuum

Connection with the linear dilaton model:
$\mathcal{L}=-\frac{1}{2} \int d y e^{-2 k y}\left[\partial_{\mu} \pi \partial^{\mu} \pi+\left(\partial_{y} \pi\right)^{2}\right]+e \chi^{k} y \frac{\pi}{f} G^{\mu \nu} \widetilde{G}_{\mu \nu}$
Where $\langle S\rangle= \pm 2 k y$. If coupled only at $y=0$ all features physically identical to being at the end of the clockwork chain, since this is the continuum of the clockwork.

Localisation and hierarchy of zero-mode coupling

$$
\mathcal{L}=\frac{1}{2} \sum_{j=0}^{N}\left(\partial_{\mu} \pi_{j}\right)^{2}-\frac{m^{2} f^{2}}{2} \sum_{j=0}^{N-1}\left(e^{\frac{i}{f}\left(q \pi_{j+1}-\pi_{j}\right)}+\text { h.c. }\right)
$$

to cutoff the same. Can now have compact symm.

Linear Dilaton Model

This means that any massless field (scalar, fermion, vector, graviton) placed in the linear dilaton background

$$
\mathcal{L}=-\frac{1}{2} \int d y e^{-2 k y}\left[\partial_{\mu} \pi \partial^{\mu} \pi+\left(\partial_{y} \pi\right)^{2}\right]
$$

Has the same physical localisation, mass spectrum, and hierarchy between zero-mode coupling, all canonically normalized fields obey symmetry

$$
\pi_{j} \rightarrow \pi_{j}+\kappa / q^{j}
$$

Linear Dilaton Model

TH For us, all of hassles field (scalar,
enourn in e feature the linear Garcia-Garcia, and pointed out clockwo clockworked, but this means charges not non-compact to cows to go from coupling, all canonically normalized fro symmetry

$$
\pi_{j} \rightarrow \pi_{j}+\kappa / q^{j}
$$

Linear Dilaton Model

Things get really interesting when looking to the phenomenology...

See: Work in progress with Giudice, Kats, Torre, Urbano.

Previous related studies:

- Antoniadis, Arvanitaki, Dimopoulos, Giveon, 2011. (Large-k)
- Baryakhtar, 2012. (All-k)
- Cox, Gherghetta, 2012. (Dilatons)
- Giudice, Plehn, Strumia, 2004. Franceschini, Giardino, Giudice, Lodone, Strumia, 2011. (Large extra dimensions, pheno similar.)

Linear Dilaton Model

Irreducible prediction:

In this theory
Planck scale is:
$M_{P} \sim \sqrt{\frac{M_{5}^{3}}{k}} e^{k \pi R}$
So if all other parameters at the weak scale, require:

$$
k R \sim 11
$$

But the mass
spectrum is given by:

$$
m_{n} \sim k\left(1+\frac{n^{2}}{2(k R)^{2}}\right)
$$

Thus the first few states will always be split by \%'s, with the relative splitting decreasing for heavier modes.

This splitting is thus a key prediction of the theory.

Linear Dilaton Model

Linear Dilaton Model

At colliders would look something like:

$$
\sqrt{k^{2}+\frac{n^{2}}{R^{2}}}
$$

Most interestingly, due to splittings, signal appears to "oscillate". Thus get extra sensitivity by doing spectral analysis... The "power spectrum" of LHC

Can search for continuum spectrum at high energies. BG modelling essential... data!

Fin

