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Clockwork

« The simplified clockwork model and ifs zero mode distribution

[Choi, Kim, Yun 14]
[Choi, Im 15]

L= Z 0,5)% + Z m2(¢; — qoin 2] [Kaplan, Rattazzi 15]

bu(x) = 209 (@) + -+ W

« Naturally realized in the continuum limit
[Giudice, McCullough 16]

Jo— / " dy [(0,®)? + (8,8 — m®)?]
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®(z,y) = ™ Zyp (x) +




Deconstructed Ex-dim on the orbifold S/Z,

« The Lagrangian could be written as several forms

L= —% /0 "y (0,9)? + (9, — m®)?]

Integration by parts with boundary localized terms (M: «.,y)

_% /OW dy [(On®)? + m*®* 4+ 2m®@*(5(y) — 6(y — 7R))]

Field redef. (@ > e™ @) with a nontrivial metric, ds? = e4mY/3(dx?+dy?)

TR 5 1 TR - -
5 [ v @by =5 [y VGETY 0y ond)
0 0

Coordination transformation, dz = e?m dy (e27fm >> )
—%/ "z {(@@)2 + (2mz)2(82<f)2}

2m

ds* = (2mz)2/3d:c%4) + (2mz) %3422

* Profiles in field/coordinafe space depend on the basis
Nonfrivial geometry and/or bulk-boundary mass parameters in
5D models is needed



Motivation |

The interaction terms (beyond the quadratic) represent model
dependence See [Craig, Garcia, Sutherland 17 ]
| [Giudice, McCullough 17 ]

L=—; /OW dy [(0,@)* + (0, —m®)*] + g(y.)P(x, y.)Op(x)

Predict the interactions based on the symmetry in Ex-dim models.

A Linear Dilafon Model is a good starting point since it could give
natural variation of the warped geometry, ds* = e*¥daf,, + e***¥dy’

ki1 = ko (CW), k1 > ky (RS), ki < ko (LED)

from the shiff symmetry of the dilaton field, S, and the soft breaking
massive parameters.

M3
75 / d5$’\/ -G [R — GMN(?MS@NS -+ 4(6_0‘9]{)2]

S(z,y) = S(z,y) + a, Mgy — exp(ca)Meof



Periodicity in a clockwork axion
For the fields, { x;} with a period 2 xf, (q, qQ;) should be integers.

L = _1 i(a 7T.)2 _ QNZ_lmzfz COS (907%' — Q17Tz'+1)
2 i=0 o i=0 i f

One cycle along i, corresponds to the large field e w
™~ — TN +2nf = W(O)(SL') — 7 (z) + 27 (q1/q0)™ f ‘»
The additional potential of &y gives the potential of (0 with an

exponentially large period, f.4 = (q,/qy)N f.
AL =V(y) = V(g +2rf) = Vea(n'V) = Vea(r'V + 27 feqr)

Useful for inflationary, relaxion related model buildings, efc.
Deconstruction of the 5D model ?

y=¢€i, tTR=eN, m=—(q1/q0—1)/¢
m(2,y) = mi(x) m(z,y) = m(x,y) +2nf

e—>0, N— o0, (q,q1 €Z) —



Periodicity in a clockwork axion

The effective contfinuum Lagrangian

1

L= —5 /OWR dy [(8#,77)2 — 2m2 f? cos (%(@ﬂr — mw))]

Taking €q, finife :
the finite period, breakdown of 5D Lorentz symmetry

Taking q,/f finite :
could recover the 5D Lorentz symmetry, the infinite period (f-2> )

m=0 (finite q,=q,)
SD Lorentz invariant with a finite period, no exponentially large f_4

y=¢€i, tTR=eN, m=—(q1/q0—1)/¢
m(2,y) = mi(x) m(z,y) = m(x,y) +2nf

e—>0, N— o0, (q,q1 €Z) —



Motivation 2

Is it possible to have the property
w(x,y) = w(x,y) +2nf, x(x,y)= emyZOW(O)(g;) I

the 5" component of the 5D U(1) gauge field C,,, C.(x, y) yields the
Wilson line as the scalar zero mode,

exp (z /0 " dyC5) a(z) = a(z) + 2

which has the non-trivial wave-function profile, Cs(x,y) = €™ Zyp\% () +
The charged complex scalar, @(x,y) with a VEV v(y) breaks 5D U(1).
The zero mode of the 5D Goldstone of

®(x,y) = v(y) exp (Z-W(fﬂay)>

()

could be mixed with the zero mode of C
with suitable boundary conditions, C(z,0) = Cy(z,7R) =0

GMNDyrDym = (0,7 — quCl,)? + (9,1 — quCs)?



Moftivation summary

In a clockwork
a) hierarchically large period of the axion zero mode ( f ; >> f)
V(rn) = V(ny +21f) = Vea(r”) = Veg (7' + 27 fosr)

Trans-Planckian?
(e.9. fop ~Mp>>f~M; in [Giudice, McCullough 16010.07952] )

b) hierarchically different interaction strengths ( & 4 << @)
via quasi localization of zero modes : generalization to other spins

AL = (0,mn)On = q_NZ()(a/ﬂT(O))ON
c) observable degenerated KK spectrums, m%(/ mg}( < m%{ ~ O(TeV)

related with the solution to the hierarchy problem

Each parts could be independent. Still it would be interesting fo study
the possibilities through the extra-dimensional realization



Linear dilaton model

« CW geometryin a linear dilafon model with brane localized terms
[Antoniadis, Arvanitaki, Dimopoulos, Giveon 11 ]

M3 = - ) .
S iy = - / PV —Ge® [R + GMN 980N S + 4K
8k
5(y) — 6(y — 7R
= (0) 0y — 7))

 |n the Einstein frame with a canonical normalization of S,

M3 1
Sgravity — 75/d533\/ -G [R — GMN@MSaNS -+ 4(6 \/5516)2

~

=y

TR () sty - )

d52 = €2k1y(d$%4) + dyQ) G55

« Softly broken shiff symmetry

S = S+a, (kk)— eva®(k, k)

R < (k, k) < My <€ Mpy ~ Mze3Fimh/2



Linear dilaton model

« Taking a parameter, c

~ ~

S S+a, (ki) — ek, k)

M3
Seravity = 75 / >z —G [R — GMN 0y SOn S + 4(e™%k)?
+8<€_Csl~€>

V G55

the metric solution has the form as

(3y) = by — 7))

ds® = e%wdxa) + 22 gy

2k
where k = N ky = 3¢k, , and e~ 9) = g—k2y — /(355

« c221/3(CW limit),
c?2 20 (RS limit : dilaton is decoupled from the gravity sector)



General guadratic action for the scalar

Kinefic tferm

TR
—% / dy’\/ —Ge”SGMNaMCI)E?NCID (n = O)
0

Interactions between the scalar and the dilaton, <§> ~kvy
vanishing

TR
/ dy\/ -G (/ﬁGMN(@MS)CbaN(I) —+ HQ(DS)(I)Q + /ngMN(ﬁMS) (8]\]3)@2)
0

effective boundary mass effective bulk mass

Bulk and brane soft mass terms

TR
— / dyv —G
0

€_CS

\% G55

%G—QCSqu)Q 4

(1m0 () — mad(y — wR))@Q]

With a tuning of boundary mass terms, we get

TR
1 1
Lo=— / dy e 21 k2)y [5(@@)2 + 562(k1_k2)y(8y61> — M<I>)2]
0



Inferactions

The zero mode profile
eMy 0)
(I)(xa y) — 6(k1+l€2/2+M)7TR¢ (:U) + -

Brane localized interactions with dilatonic shift symmetry, n =m =0

enS GmS(I)(.CU, y)

TR
5(9 o y*) 2
dyv' —G ——G"G"F,,F,, + F, F*
/o / v Gss 4g° o —G(4)M5 :
Then, 1 ¢ TCLY g2(1)(x,y*) c Tocuv
AE — _ZF/‘LVF H —|_ M5 FMMF K

Overall suppression by e~ (k+k2)7R the hierarchical couplings by ¢V
M., in denominator ? (Ms — e ““mgog 7)

Needs UV construction, For M=0, @(x,y) as the phase field. If we
impose the periodicity as @(x,y) =2 @(x,y) + 2 v, one needs position
dependent charge of the quarks or guage coupling

Q|:Z’y'u<au o ie_(n—{—m)S/QA,u) + e—cSveify5<I>/vi| q
Y=Yx



Scalar from 5" component of 5D vector

U(1) gauge theory, Cy — Cy + OyA(x,y) . Csis the 4D scalar
_/ dyv/ — ( GMNGPQCMPCNQ>
0

Boundary conditions leaving only the scalar zero mode without vector
zero mode (including the gauge parameter)

Cu(x,0)=C,(z,mR) =0, A(z,0)=A(x,7R) =0

Integrating out all massive vector KK modes, the effective
Lagrangian for the scalar zero mode is

TR .
Log = _L dy €(2k:1—k:2)y0 50@5 [Choi 03]
© 2g2 0 H [Flacke, Gripaios, March-Russell, Maybury 06 ]
where TR
= d
Cus = (0,05 — 0,C,.) = e 7,9, a(x) a(z) /0 yCs

Without infroducing other soff ferms, the quasi-localization in
the 5D canonical field basis arises



Scalar from 5" component of 5D vector
U(1) gauge theory, Cy — Cy + OyA(x,y) . Csis the 4D scalar

R
T - /—N/ 1 ~ NI N DM
- Cg
0

Boundary condition > mode without vector
zero mode (includin
a(x)
Cu(z,0) = r,TR) =0
Integrating out all , the effective
Lagrangian for the
r _ ”Rd ‘ w0 y =R  [Choi03]
off 29% J, J March-Russell, Maybury 06 ]
where TR
Cs = (9,C5 — 9,C,) = =kl 709 () W”:A e

Without infroducing other soff ferms, the quasi-localization in
the 5D canonical field basis arises



Gauge fixing

Before integrating out KK modes, we can remove the mixing between
Csand C , by infroducing the gauge fixing term

TR 1
c,,:—/ dyv/—G
o/ 0 y 2g%€

(G"8,C, + £GP\ 18, (xCs)]”

Taking the Feynman gauge ( £=1), the Lagrangian for C,

TR 1
_/ dye(%l—lm)y [_(@MC5)2_|_
0

1
37 —? MRy Cp + (2 — ky)C5)?

2g°

e~ (2ki—k2)y ©)
05(«1', y) - 6_(k1—k2/2)7rR¢ (.f) T

Can we use this as the clockwork axion? Well... forbidden by
gauge symmetry, Cs(x,y) — Cs(x,y) + 9yA(z, y)ly=oxr

among the

hierarchies
) couplings

mh 0y — vs) Cs - 1
dun/—C u P A 1T
/0 Y Cor (¢—GM5 g My P




Spontaneous breaking of 5D U(1)

5D Higgs mechanism 2 5D Stuckelberg field at low energies
m(x,y) = 7(z,y) + quA(z,y)
1

TR
_5/ dy\/_Ge_%SGMN(aMW — quM)(a]\ﬂT — Q’UCN) my — QQU
0

A linear combinafion of the KK modes of x(x,y) and Cs(X,y) is
absorbed by the KK modes of C ,(x,y) by Higgs mechanism.

1 1 0 ) ()] 2
el Y o]

n=1

There are two zero modes that are not absorbed by the vector KK
modes. One way to see: infegrafing out KK modes, see the effective
action for the zero modes.

Other way: see the 5D action adding the gauge fixing term ( £=1)



Lagrangian for @ and C;

- The gauge fixing term that removes the mixing with C ,(x,y) does not

remove the mixing between & and C.. Taking the field basis as
m(x,y) = P cosf + P_sinb fon 9 — my

g 'Cs(x,y) = P_cos — d, sinb ki — ko/2

we get

1 TR - -
_ 5‘/ dye(le k2)y [<8M(I)_|_)2 + 62(k1 k2)y(ayq)+ o M+(I)_|_)2
0

+(0,0_)? + R0, 0_ — M_D_)?]

where

My = — (k1 — ko/2) £/ (b — a/2)? + m

« Since My >0, M_<0, two zero modes are quasi-localized in different
branes



Lagrangian for t and C.

- The gauge fixing term that removes the mixing with C ,(x,y) does not
remove the mixing beftween & and Cs. Taking the field basis as

m(x,y) = P cosf + P_sinb 90 — my
1 _ B , — /2
g Cs(x,y) =P_cosf — P, sinf L — ko
we get 1 40 40
—~ +
3, H0p, - 1D,
0
(9, — M D_)?]
where
ka/2)? +myi,

y=20 y=T7R

« Since My >0, M_<0, two zero modes are quasi-localized in different
branes

« Brane localized interaction is allowed by g m(z,y)

E, F™| _ox
gauge symmetry since A(x,0)=A(x, 7R)=0 T ly=0.xR




Two axion model

« /ero mode profiles:

eM-i—y

7-‘-(:1:7y) ~ 6(]{:1—]{32/2+M+)7TR

qﬁf) + e_|M_|yq5(_0)
¢(o> (0)
» Possible forms of the potentials from - i

boundaries and the bulk for the Wilson line

Ag cos (now(:c, O)) + A2 cos (nﬁﬂ(x’ﬂR))

qu qu
Ne(m(x,0) — W(x,WR))) N

qu

/WRC[yC’5 /' (n07 N, na) S Z
0

+ AL i cos (

Each As are exponentially sensitive to the size of gauge couplings of
the boundary gauge group, the masses of the charged fields in the bulk.

Difficult to get a frans-Planckian period. Can have the hierarchically
different couplings for the axions (in a mass eigenbasis)



Outlook

The continuum clockwork is the natural way to explain the highly
ordered (engineered) inferactions in the 4D discrete clockwork
system. However considering it in the extra-dimensional set-up will
give the extra-constraints on the couplings.

| have generalized the clockwork in the generic warped background
with brane/bulk masses by imposing a certain dilatonic shift symmetry
in a linear dilaton model. Imposing the symmetry will specify the form
of the interactions which could be more consistent with the UV theory.
This approach is easily generalized to the higher spins.

The system of 5D goldstone and the 5™ component of the gauge field
shows a different behavior compared to the massless 5D real scalar
model regarding the quasi-localization. The hierarchically different
couplings between the zero modes and the operators localized in
different branes are naturally possible. But the physical meaning of
such quasi-localization is not clearly undersfood yet.



