
Natural Seesaw in Warped/ Composite Higgs framework and its LHC Signals Kaustubh Agashe (University of Maryland)

[Based on KA, Hong, Vecchi (1512.06742): theory; KA, Du, Hong (1612.04810 and 1703.07763): LHC signals]

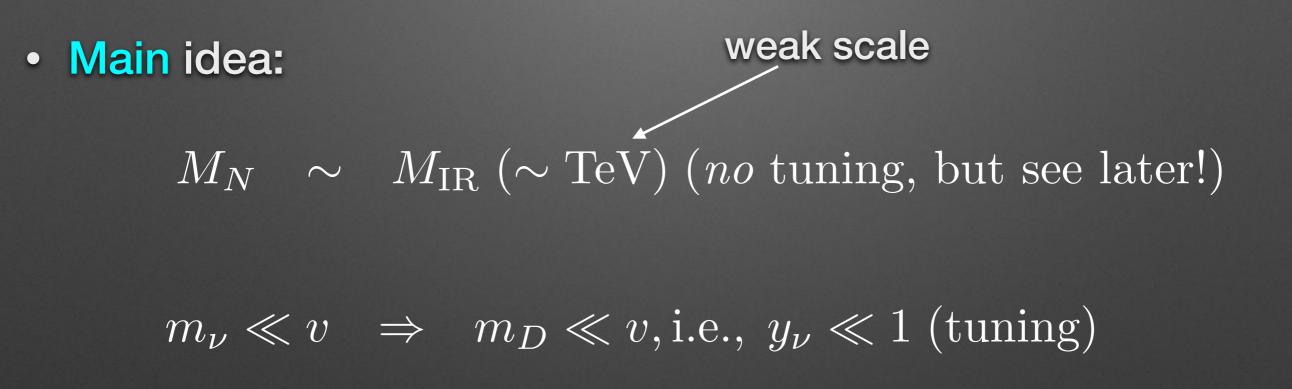
Review of Seesaw for (Majorana) SM neutrino mass $\mathcal{L} \ni \left(\overline{\nu_L} \overline{(N_R)^c}\right) \begin{pmatrix} 0 & m_D \\ m_D & M_N \end{pmatrix} \begin{pmatrix} \left(\nu_L\right)^c \\ N_R \end{pmatrix}$

Original (high-scale) seesaw

• Main idea:

 $m_D \sim v \text{ or } m_{\tau}, \text{ i.e., } y_{\nu} \sim 1 \text{ or } y_{\tau} \text{ (no tuning)}$ $M_N \sim M_{\text{UV}} \text{ (no tuning, but see next!)}$ $\int \int GUT \text{ or}$ Planck scale

Too high a scale seesaw!


• observed:

 $\overline{m_{\nu}} \sim 0.1 \text{ eV} \implies \overline{M_{\text{UV}}} \sim 10^{10-14} \text{ GeV} \ll \overline{M_{\text{Pl}}} \sim 10^{18} \text{ GeV}$

(GUT/Planck scale gives too small m_{ν})

- new UV scale: associated with breaking of new symmetry, e.g., (B - L)...but tuning (hierarchy)?
- difficult to test at colliders

TeV-scale seesaw

TeV-scale seesaw: LHC signals with left-right (LR) symmetry [For a review, see Mohapatra (2016)]

- extend EW gauge symmetry to $SU(2)_L \times SU(2)_R \times U(1)_{B-L}$
- spontaneous breaking ~ TeV (also N_R mass): $SU(2)_R \times U(1)_{B-L} \rightarrow U(1)_Y$
- smoking-gun: same-sign dileptons (due to Majorana N_R) from W_R^{\pm} production/decay

 u_R N_R e_R $\overline{d_R}$ W_R^{\pm} e_R

doublet of $SU(2)_R$, with e_R

• Z' [extra U(1)] heavier than W_R^{\pm} , smaller signal

TeV-scale seesaw: summary

- LHC signals
- tuning of neutrino Yukawa
- extra model-building (coincidence?) to get $M_N \sim$ weak scale

Natural realization of seesaw in warped extra dimensional/composite Higgs framework (and LHC signals)

Outline

- (attempt at) 5D (warped) implementation of 4D high-scale seesaw
- what's underlying physical/dynamical picture (earlier analysis not in singlet mass basis)?

- LHC signals of TeV-mass singlet neutrinos:
 - (I) similar to 4D LR models, but still different
 - (II) from channels absent in 4D LR models

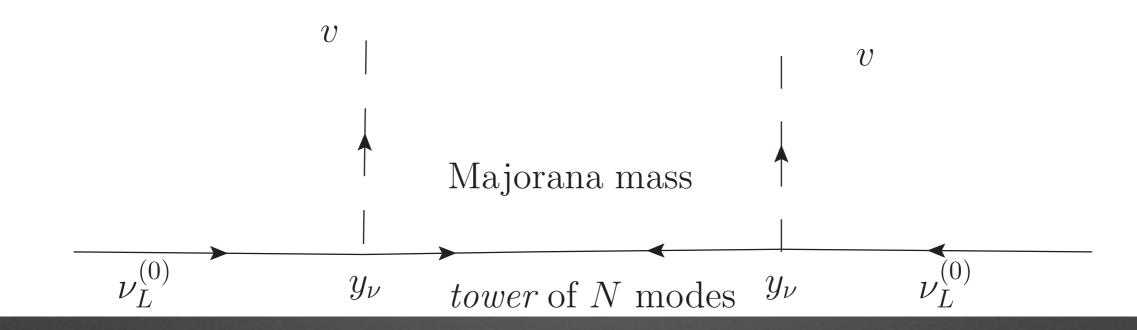
Snapshot of Warped Extra Dimensional Seesaw

(Try) 5D version of 4D high-scale type I seesaw

 add singlet in bulk, with (super-large) Majorana mass term (only) on UV/ Planck brane and coupled to Higgs and lepton doublet [Huber, Shafi (2003); Csaki et al (2003 and 2008); Perez, Randall (2008); Carena et al. (2009)]:

lepton-number preserved

• hint of surprise: extra (vs. 4D) singlet d.o.f./chirality $(N_L)!$


Maj

(see later for

better "story")

Summary of past work

SM neutrino mass (m_p) from (usual) seesaw-type diagram:

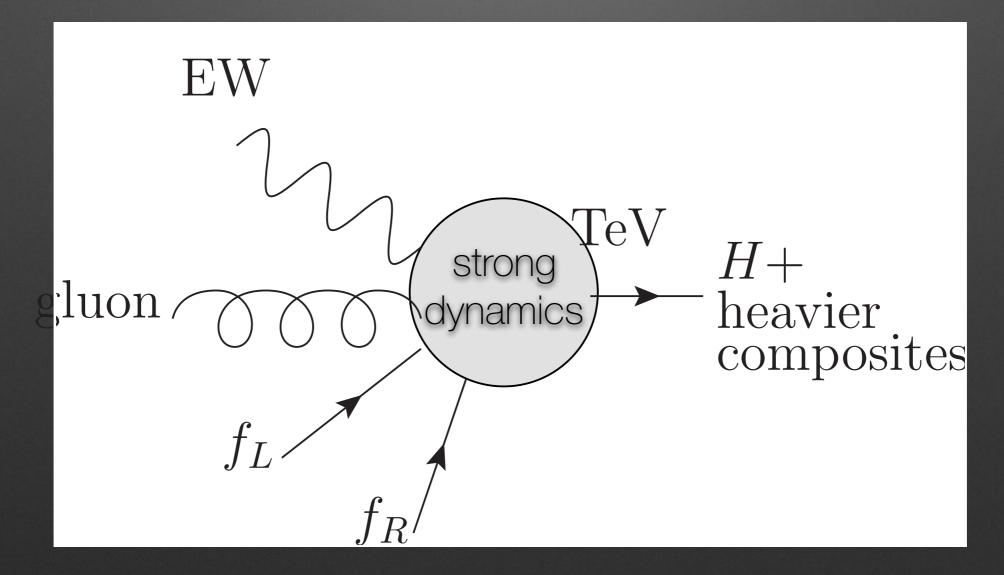
 formula obtained earlier (mostly) using basis ("KK") for singlet tower which is not mass eigenstates [valid approach for observable defined at energies << (lightest) singlet mass ~TeV]

(impression of) high-scale seesaw

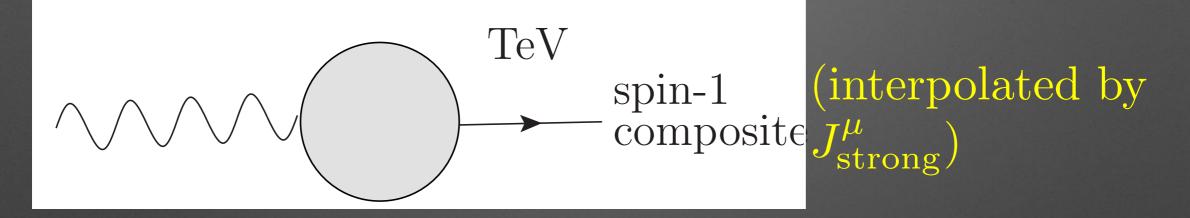
 ...but physical/dynamical picture obscured: more to it than meets the eye?!

...On to Mass basis for Singlet Modes

- for on-shell production (colliders or early universe, e.g., leptogenesis)
- stick to 5D [KA, Hong, Vecchi (2015)]: tedious/not insightful...or...
- in this talk: simpler/intuitive picture using AdS/CFT duality [KA, Hong, Vecchi (2015)]


Detour on (usual) 4D strong dynamics (CFT) picture

...without SM neutrino mass


Basic picture

[For a review, see Panico, Wulzer (2015)]

- Higgs is (purely) composite of (new) strong dynamics
- rest of SM is admixture of elementary/external and composite, due to linear coupling (acquire mass by coupling to Higgs via composite component)

Elementary-Composite spin-1 (7 - 7) mixing

- (SM) subgroup of global symmetry of strong dynamics externally gauged: $gA_{\mu}^{\rm elem}J_{\rm strong}^{\mu}$
- a la QCD (2 flavors): $U(1)_{\rm EM} \subset SU(2)_L \times SU(2)_R \times U(1)_B$
- W/Z mass via composite admixture

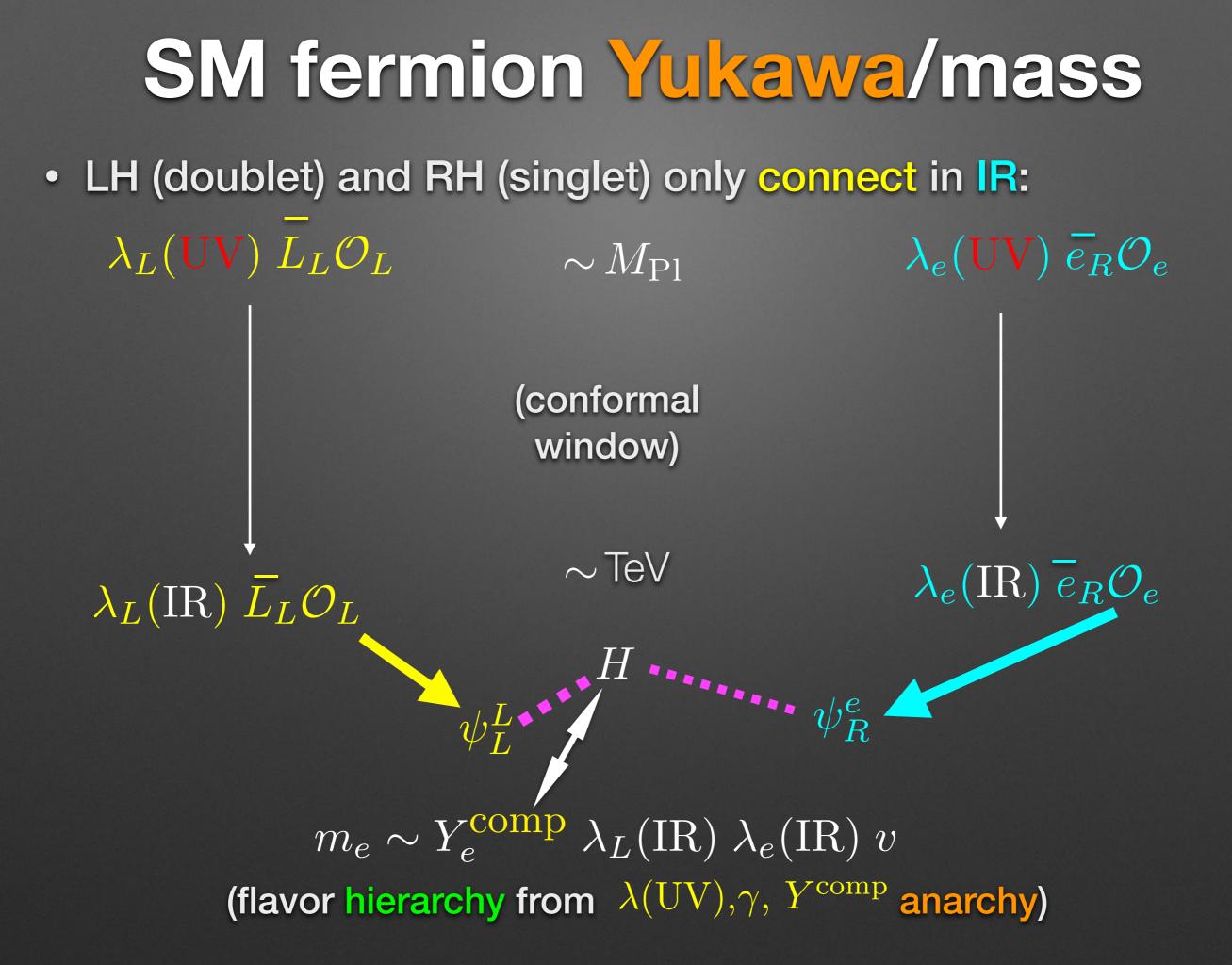
Elementary-composite fermion mixing: basic idea

• in "analogy" with spin-1: $\lambda f_{\rm elem} \mathcal{O}_{\rm strong}$

like electron in QED + QCD f_L (Vector-like) (chiral) (Vector-like) f'_R (or posites, like proton in QCD f'_R (chiral) (chiral) (chiral)

• Two (separate) linear couplings for each SM fermion [SU(2)_L doublet and singlet]:

 $\lambda_L \overline{L}_L \mathcal{O}_L \text{ and } \lambda_e \overline{e}_R \mathcal{O}_e$

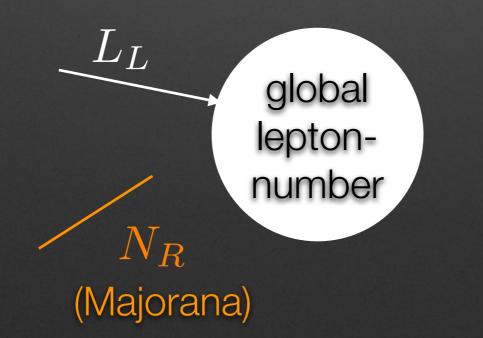

Elementary-composite fermion mixing: from UV to IR

RGE with anomalous dimension

large/non-perturbative wavefunction renormalization for preons

with $[\lambda] = 0$; $[\mathcal{O}] = 5/2 + \gamma$, $\lambda(\mathrm{IR}) \sim \lambda(\mathrm{UV}) \left(\frac{\mathrm{TeV}}{\mathrm{M_{Pl}}}\right)^{\gamma} (\text{for } \gamma > 0)$

- SM fermion has $\propto \lambda(IR)$ admixture of composite (ψ) (λ 's in IR hierarchical, even if not in UV + γ 's similar)
- Dirac mass for composites \sim TeV (dual to L, R chiralities in 5D)

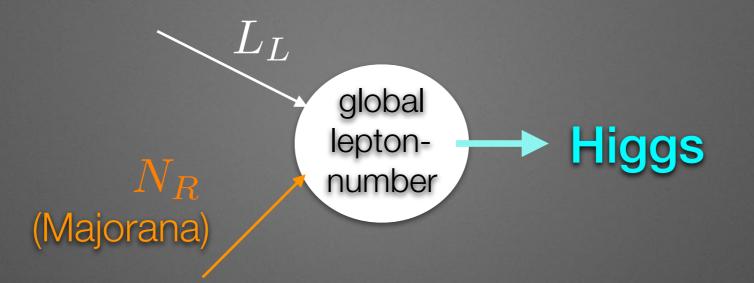


...end detour on 4D strong dynamics (CFT)... ...back to SM neutrino mass using this picture (follow one's nose)

Status of lepton-number

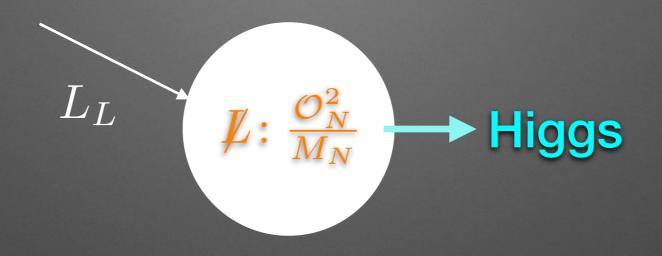
- preserved by strong dynamics
- broken in elementary sector at ~UV cut-off itself reminiscent of high-scale seesaw
- add singlet (aka RH neutrino), with Majorana mass: $\mathcal{L}_{strong} + \lambda_L \overline{L}_L \mathcal{O}_L + M_N^{bare} N_R^2 - new$

(dual to lepton-number broken only on UV/Planck brane)


no EWSB at UV cut-off

- link 2 breakings/ingredients for SM neutrino (Majorana) mass: EWSB (IR) and lepton-number violation (UV)
- fine-print: couple to Higgs operator in UV (highly irrelevant: neglect)

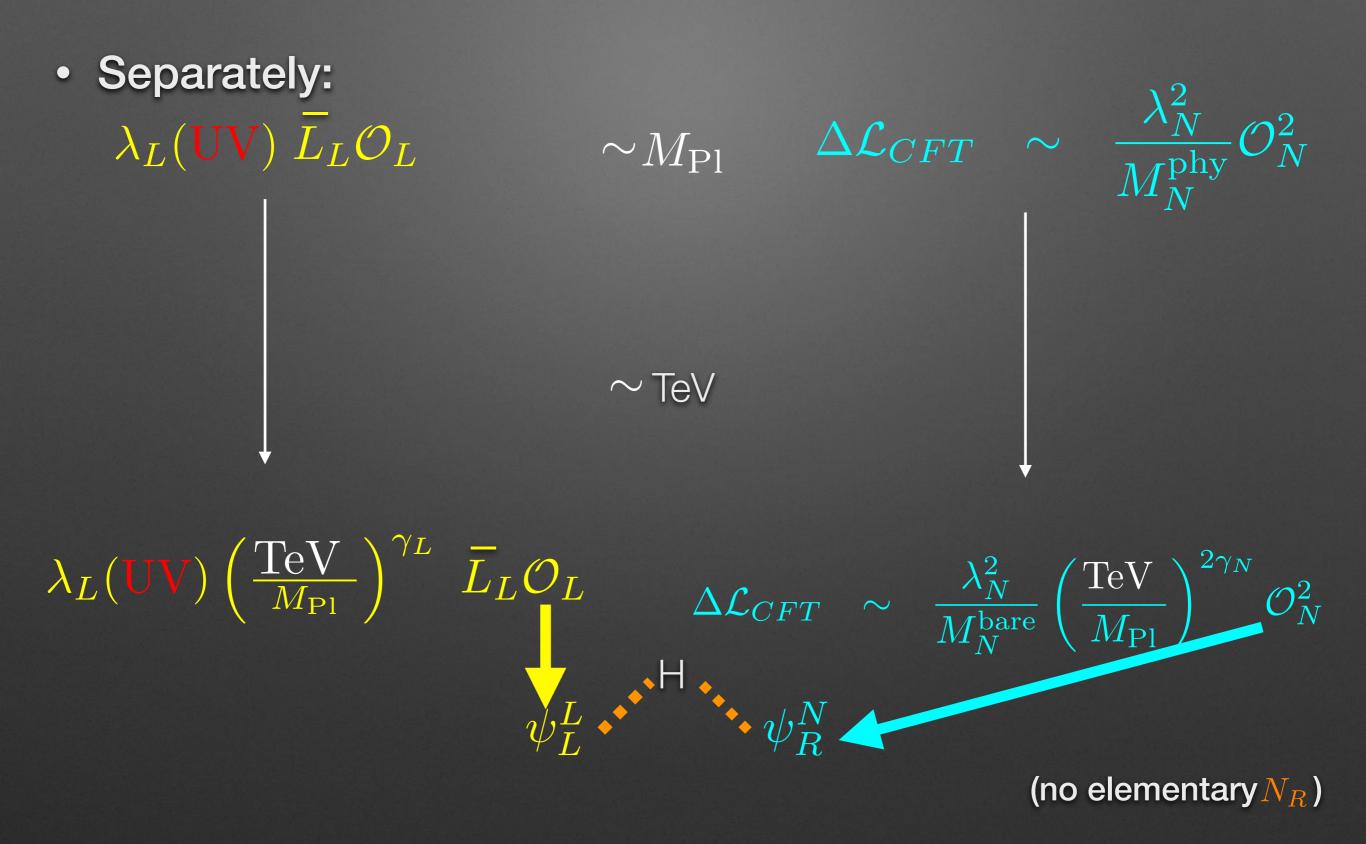
Follow charged fermion...


- couple N to SM singlet fermionic operator $\mathcal{L}_{strong} + \lambda_L \overline{L}_L \mathcal{O}_L + M_N^{bare} N_R^2 + \lambda_N \overline{N}_R \mathcal{O}_N$
- fine-print: renormaliation of N_R mass term:

for
$$|O_N| < 5/2 \ (\gamma_N < 0) \leftrightarrow c_N < 1/2,$$

$$M_N^{\rm phy} \sim M_N^{\rm bare} \left(\frac{M_N^{\rm bare}}{M_{\rm Pl}}\right)^{\frac{1}{2\left[\mathcal{O}_N\right]-4}-1}$$

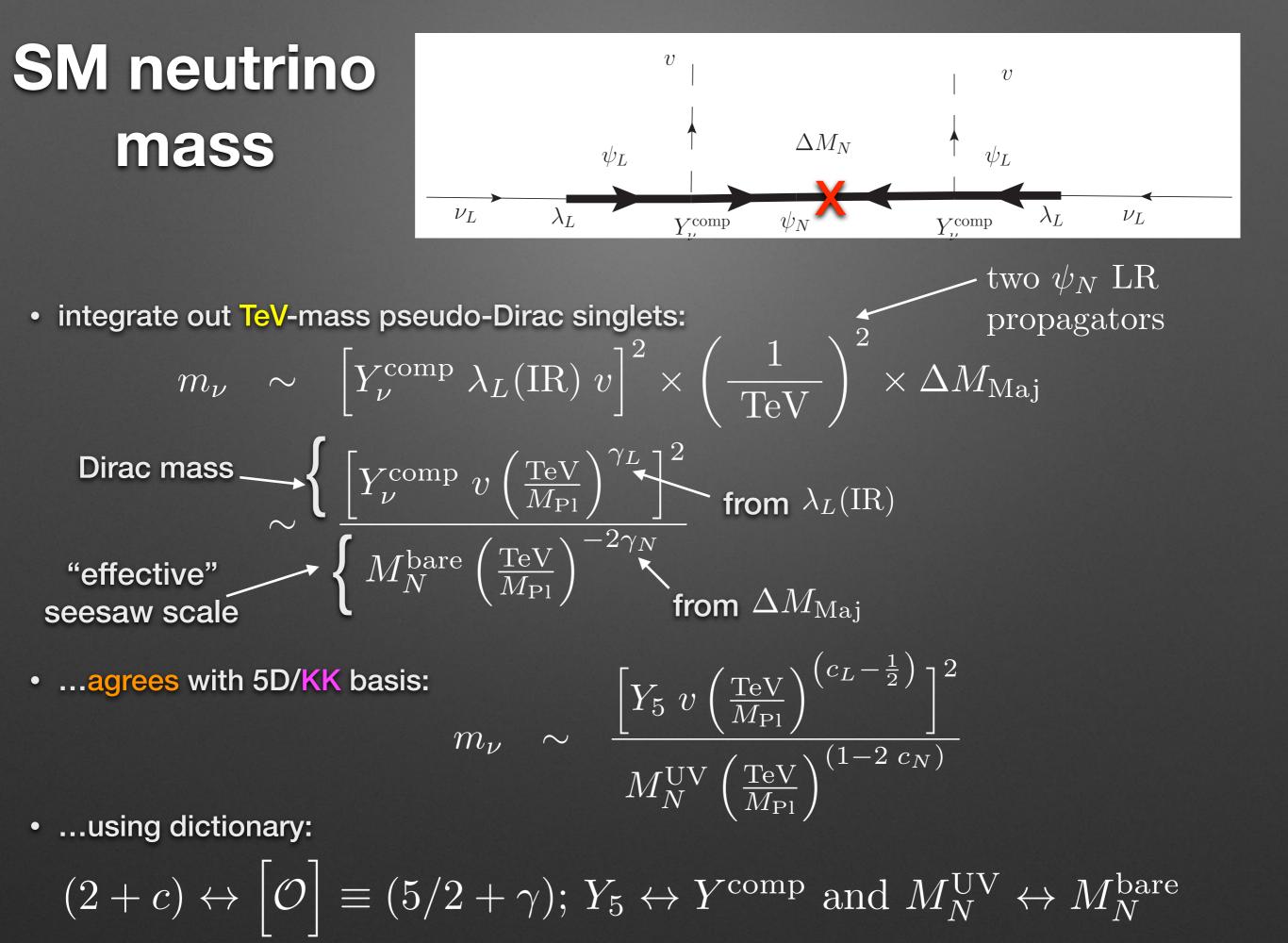
...but crucial difference


 integrate out N_R (in UV) to inject lepton-number breaking into strong dynamics:

$$\begin{aligned} \Delta \mathcal{L}_{CFT} &\sim \quad \lambda_N \overline{N}_R \mathcal{O}_N + \frac{1}{2} M_N^{\text{phy}} N_R^2 \\ &\rightarrow \quad \frac{\lambda_N^2}{M_N^{\text{phy}}} \mathcal{O}_N^2, \text{ renormalized at } M_N^{\text{phy}} \end{aligned}$$

• ...no connection between L_L and \mathcal{O}_N yet (UV): need EWSB...

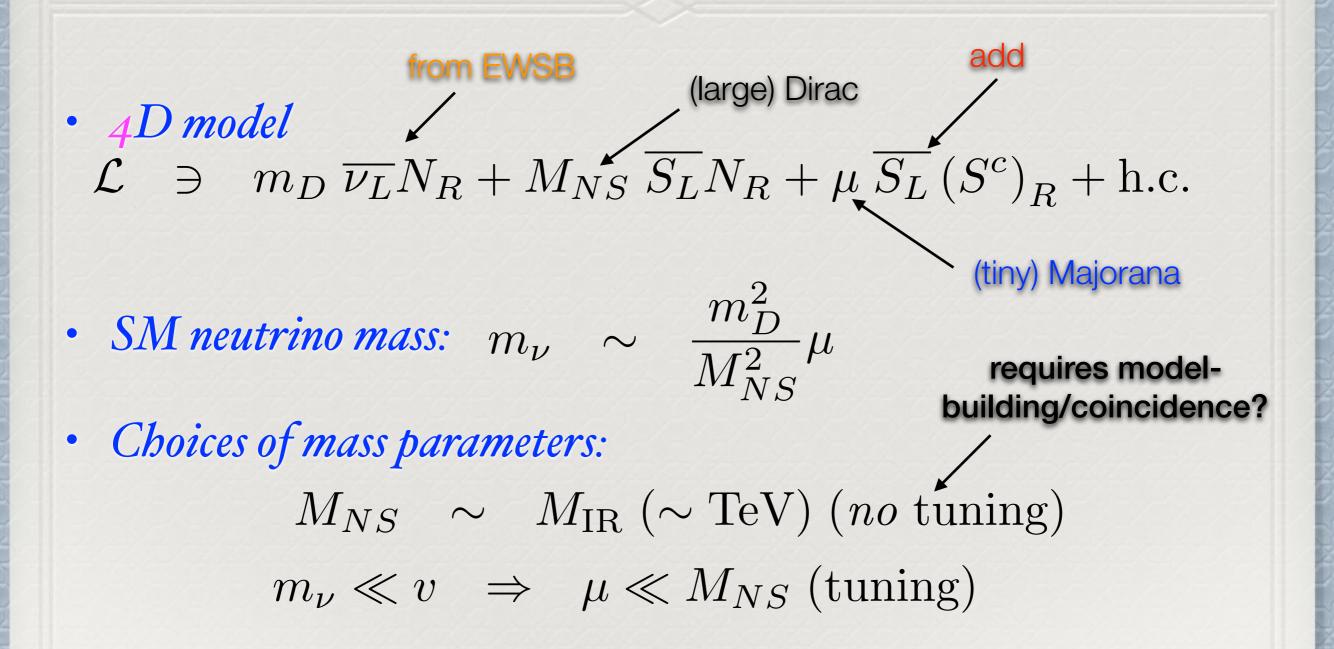
RGE to IR



Pseudo-Dirac TeV-mass singlets

• tiny Majorana mass term for ψ_N (due to high-scale seesaw)

$$\Delta M_{\rm Maj} \text{ from } \mathcal{O}_N^2 \sim \frac{\text{TeV}^2}{M_N^{\rm bare}} \left(\frac{\text{TeV}}{M_{\rm Pl}}\right)^{2\gamma_N}$$


- Majorana mass term for LH chirality of ψ_N (coupled to N_R)
- Yukawa coupling of RH ψ_N to LH doublet lepton (like for case of charged fermion)

Warped/Composite seesaw is physically

cf. Inverse seesaw

[Mohapatra (1986); Mohapatra, Valle (1986)]

Warped/Composite Higgs seesaw: (natural) hybrid of high-scale and inverse

- tiny Majorana mass for singlet due to high-scale seesaw
- LH chirality "built-in" (Dirac composite singlets)
- TeV-mass natural (Higgs compositeness)

Further using communication of leptonnumber violation from UV to IR (I)

messenger: \mathcal{O}_N^2 (from integrating out N_R)

- RGE ($M_{\rm Pl}$ to TeV!) + large anomalous dimensions (if strong dynamics is quasi-conformal) significantly modulate leptonnumber violation (coefficient of \mathcal{O}_N^2) at TeV (effective) seesaw scale: TeV²/ $\Delta M_{\rm Maj} \sim M_N^{\rm bare} \left(\frac{\text{TeV}}{M_{\rm Pl}}\right)^{-2 \gamma_N}$
- naturally smaller than $M_{\rm Pl}$ (\leftrightarrow would-be zero-mode profile at UV/Planck brane): $\sim 10^{12}$ GeV, with $M_N^{\rm bare} \sim M_{\rm Pl}$ and $\gamma_N \sim -0.2$
- no special physics at effective seesaw scale (cf. in usual case, invent new mechanism to get right seesaw scale)
- combined with $m_D^{\text{eff}} \sim Y_{\nu}^{\text{comp}} v \left(\frac{\text{TeV}}{M_{\text{Pl}}}\right)^{\gamma_L} \sim O(10) \text{ GeV}$ for $Y_{\nu}^{\text{eff}} \sim \text{a few and } \gamma_L \sim +0.1 \text{ (from charged lepton mass)}$ $\Rightarrow m_{\nu} \sim O(0.1) \text{ eV}$

Further using communicator (II)

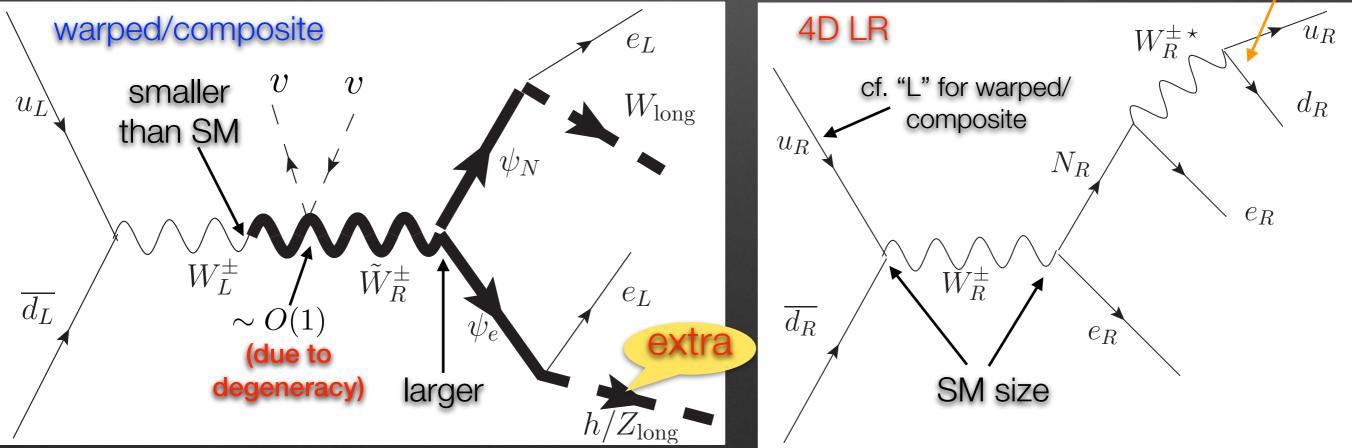
- Must have new states in IR (from \mathcal{O}_N): TeV-mass singlet neutrinos
- LHC signals for "source" of SM neutrino mass!
 5D model: TeV-mass singlet neutrinos "always" present (even with high-scale seesaw <u>impression</u> from KK basis)
- ...but (physically) "switch" from "vestiges" to central players!

LHC Signals of SM Singlet Neutrinos?!

[KA, Du, Hong (2016 and 2017)]

Custodial symmetry for EW precision tests (strong dynamics picture)

- Global symmetry: SU(2)_L × SU(2)_R × U(1)_{B-L}
 TeV mass Spin-1 composites: W
 ³_L, ±; W
 ³_R, ± and (B L)
 dynamically broken down (in IR) to SU(2)_{cust} × U(1)_{B-L}
- Only $SU(2)_L \times U(1)_Y$ subgroup gauged externally
- Only elementary sector (N_R) breaks lepton-number


• Vector-like/Dirac composites: $\begin{pmatrix} \psi_N \\ \psi_e \end{pmatrix} \sim (1,2)_{-1} \cdots$ (dual to TeV-[coupled to spin-1: $W_R^{3\,\pm}$ and (B-L)] $\begin{pmatrix} \psi_N \\ \psi_e \end{pmatrix} \sim (1,2)_{-1} \cdots$ mass modes of N...)

...4D LR symmetry model-like signals (?)

...not quite!

Summary: di and tri-lepton + boson(s) from \tilde{W}_R^{\pm} • Extra boson(s) helps to reduce SM background

- (overall) production rate of \tilde{W}_R^{\pm} smaller in warped/composite model (vs. 4D LR), BR to singlet neutrino larger
- 3-5 σ with 300/fb for 2 TeV \tilde{W}_R^{\pm} and 750 GeV ψ_N
- post-discovery: invariant mass distribution of dileptons different

Summary of (composite) neutral spin-1 (coupled to singlet neutrino)

Special case: W_{P}^{2} and (B - L) degenerate

- re-organize into Y (couples to quarks via mixing with elementary, but not to singlet neutrino): vice versa for Z'
- use EWSB (composite mixing enhanced by same degeneracy) to couple (for production) Z' to quarks (decay into singlet neutrino): same mass/similar cross-section as \tilde{W}_{R}^{\pm} (cf. Z' heavier in 4D LR)

Generically: \tilde{W}_{R}^{3} and (B - L) non-degenerate...

- cannot use \tilde{Y} and Z': \tilde{W}_R^3 and (B L) (separately) mass eigenstates (no analog in 4D LR), both couple to quarks via mixing with elementary hypercharge (no EWSB needed)
- $(B-L) \leq 2 \text{ TeV}$ striking (that's what's going on at weak scale/LHC?!): no charged counterpart (only spin-1 particle accessible, cf. 4D LR \tilde{W}_R^{\pm} before Z'); discovery via decay into singlet neutrino [no diboson (cf. typical EW spin-1); di-top suppressed (rest of SM fermions negligible)]

Generic features of LHC signals from production of charged or neutral (a few TeV) spin-1, decay into pair of heavy leptons • final state: di-boson (W/Z/h) + di-charged/neutral "lepton" leptons or jets di-lepton/(lepton + MET)/ (but no di-boson peak (only) MET existing searches e_L (inefficient) $W_{\rm long}$ q ψ_{N} (boson + lepton) reconstructs ulletheavy lepton \bar{q} Two heavy leptons form heavy spin-1 bosons can be boosted (if heavy lepton $\geq 500~{
m GeV}$)

bosons can be boosted (if heavy lepton $\gtrsim 500 \text{ GeV}$) W/Z/h-jet S small _____ use all of above features to beat B

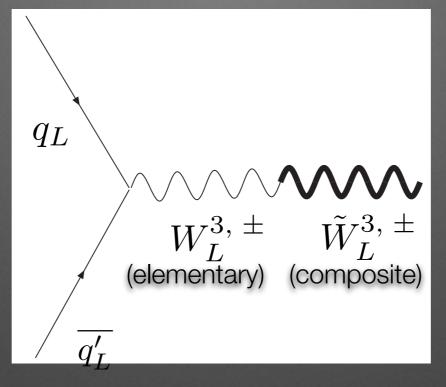
Future

Leptogenesis (at ~TeV temperatures from decay of pseudo-Dirac singlet neutrinos?!)
reach of 100 TeV collider
Flavor violation from TeV-mass composite leptons

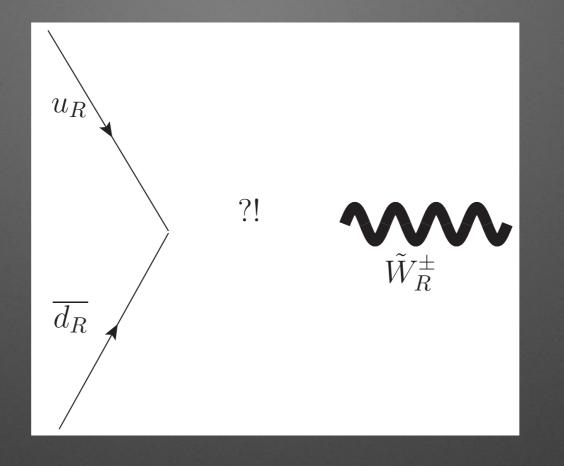
Conclusions


Theory of SM neutrino mass in warped/composite Higgs framework

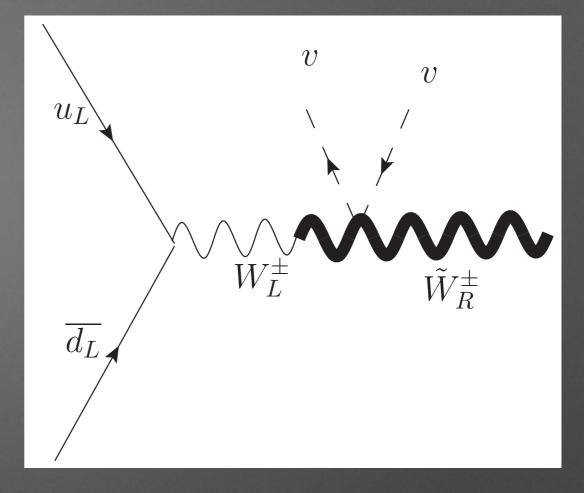
- implementation of high-scale seesaw morphs into a hybrid with inverse: SM neutrino mass from exchange of TeV-mass pseudo-Dirac SM singlet neutrinos, with high-scale seesaw giving tiny Majorana mass term
- observed size of SM neutrino mass/effective seesaw scale obtained naturally, without any hierarchies in fundamental parameters


LHC Signals of TeV-mass singlet neutrinos

- Multi leptons + bosons
- similar to 4D LR models, although can be differentiated
- more importantly, acquire real motivation now

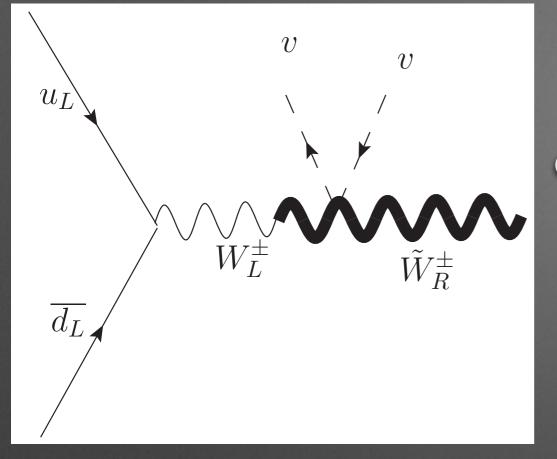


Coupling to (mostly elementary) light quarks: composite partner of SM gauge bosons


- Use spin-1 elementary-composite mixing:
 a la e⁺e⁻ coupling to ρ⁰ in QED+QCD
- ...but singlet neutrino does not couple to W_L , only to \hat{W}_R^\pm and Z'

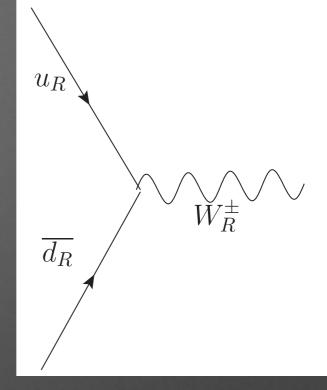
Coupling of \tilde{W}_{R}^{\pm} to quarks (no/superheavy elementary counterpart)?

• Like coupling of $e \nu$ to ρ^{\pm} in EW +QCD via exchange of super-heavy W^{\pm}


Enter EWSB

- mixes \tilde{W}_L and \tilde{W}_R
- ...but effect suppressed due to Higgs VEV vs. compositeness scale?! mixing angle $\sim \frac{(g_W^{\text{comp}} v)^2}{(M_{\tilde{W}_L}^2 - M_{\tilde{W}_R}^2)}$ $\ll 1$

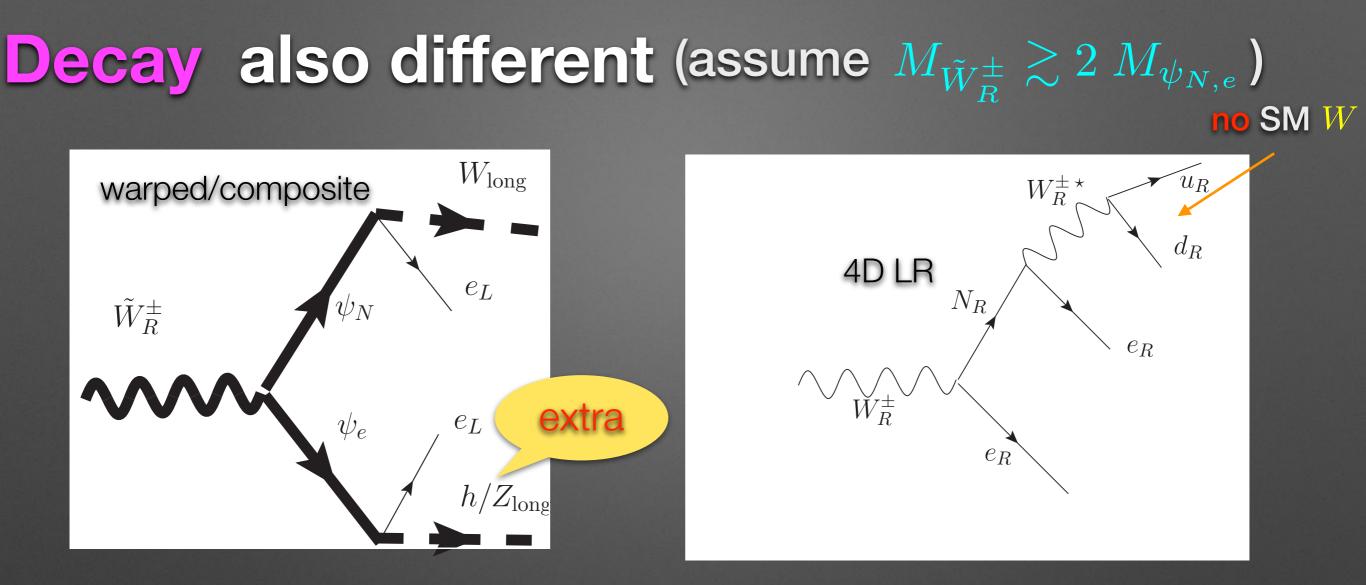
if $M_{\tilde{W}_{L,R}} \sim \text{a few TeV}$ and $\sim O(1)$ different


...followed by (quasi-)degeneracy

cf. direct coupling

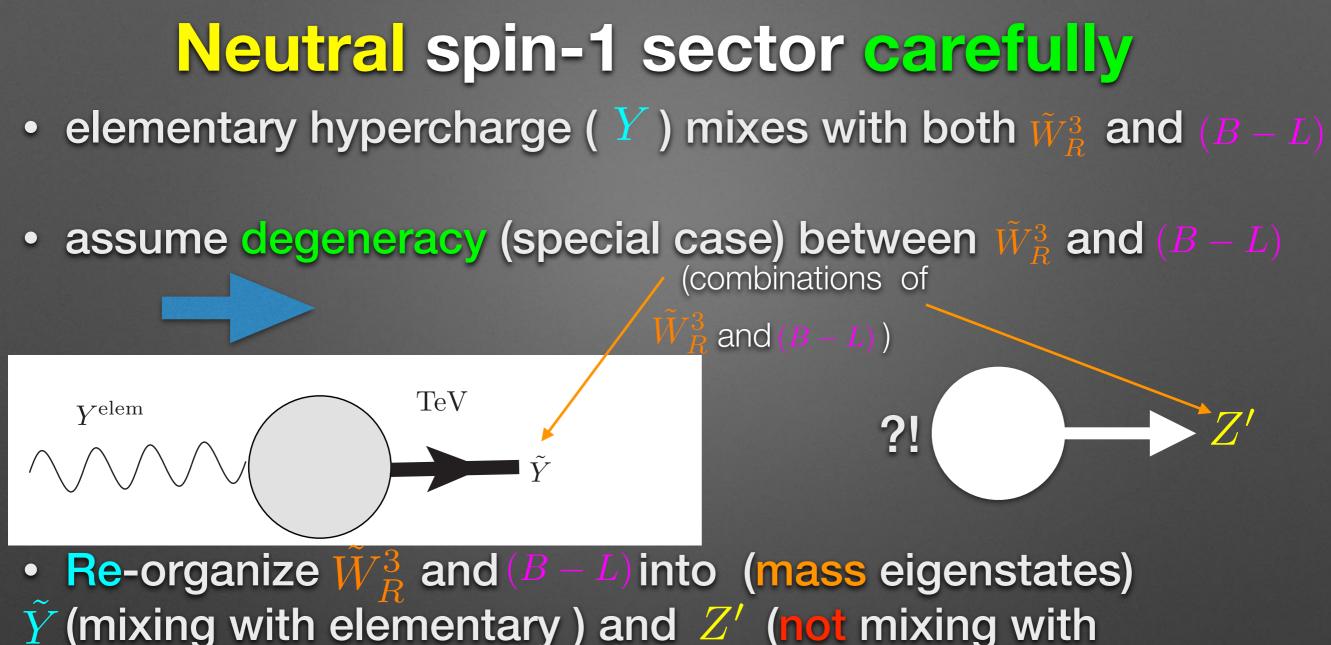
in 4D LR

(compare also chiralities of quarks!)


 $-M_{\tilde{W}_{R}}^{2}$

• $L \leftrightarrow R$ symmetry: (purely) composite mass identical, $\frac{(g_W^{\rm comp} v)^2}{(M_{\tilde{W}_L}^2 - r)^2}$ split (only) by mixing with elementary

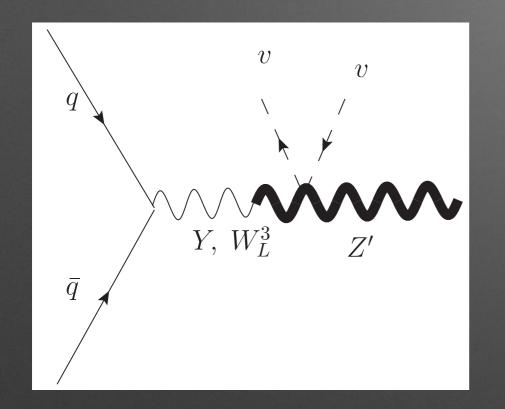
mixing angle


[KA, Davoudiasl, Gopalakrishna, Han, Huang, Perez, Si, Soni (2007); KA, Gopalakrishna, Han, Huang, Si, Soni (2008)]

if
$$M_{\tilde{W}_{L,R}} \sim a$$
 few TeV and $\Delta M_{\tilde{W}}^2 \sim 0$

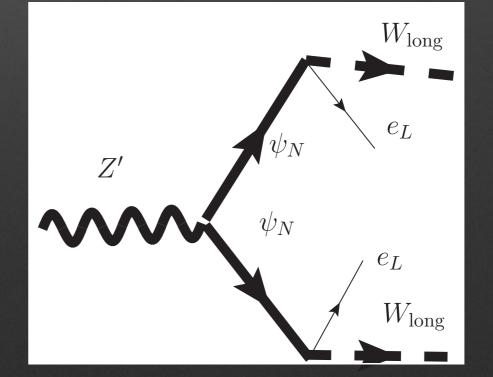
- via Yukawa coupling (involved also in SM neutrino mass generation)
- Opposite-sign dileptons in warped/composite model vs. same-sign for Majorana in 4D LR model
- Extra boson(s) vs. 4D LR models (2 jets do not form SM W)

Neutral spin-1 sector...

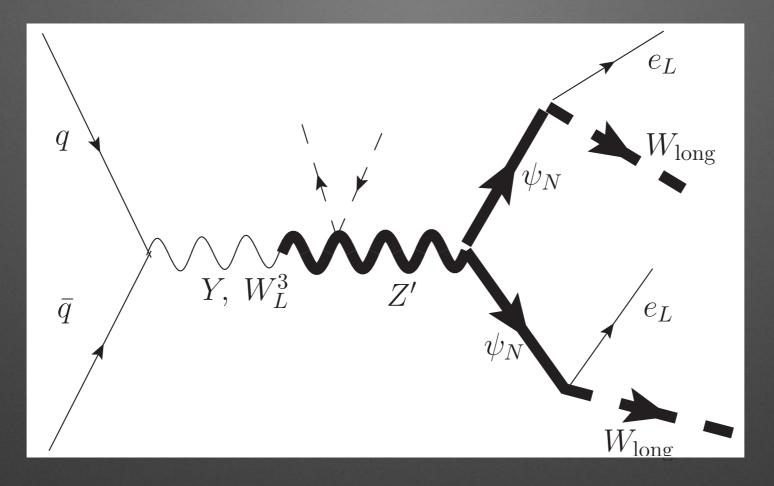


elementary hypercharge)

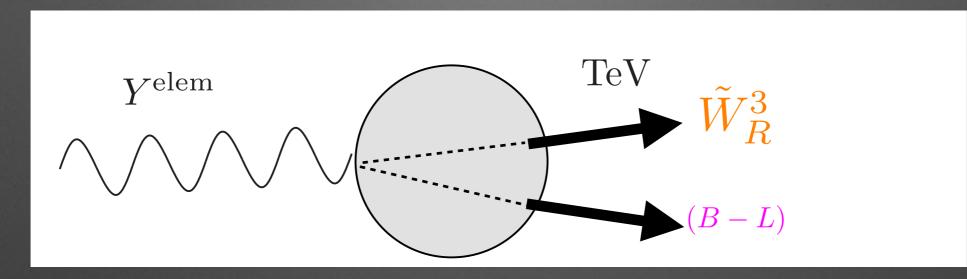
• Singlet neutrino couples only to Z'...


Coupling of quarks to Z' similarly to \tilde{W}_R^{\pm} (no elementary counterpart)

production



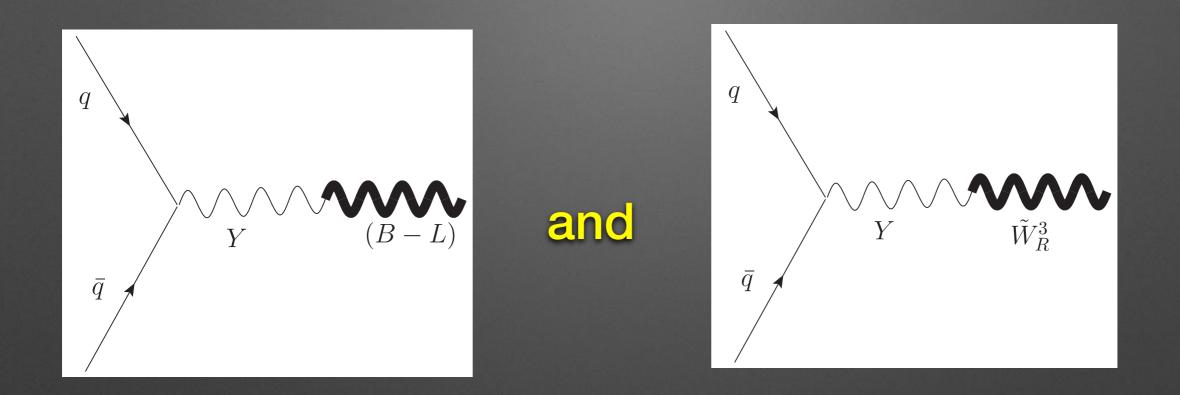
• use EWSB: mixing angle enhanced by (same) degeneracy [between \tilde{W}_R^3 and (B-L)]!


...and Z'not far behind

• same mass as \tilde{W}_R^{\pm} in warped/composite model [due to $SU(2)_R$ global symmetry] vs. Z' heavier in 4D LR

Neutral spin-1 sector: nondegenerate case

• also lose neutral channel (Z'), like W_R^{\pm} ?!



...not really!

• \tilde{W}_R^3 and (B - L) are separately (non-degenerate) mass eigenstates (\tilde{Y} and Z' not valid!)

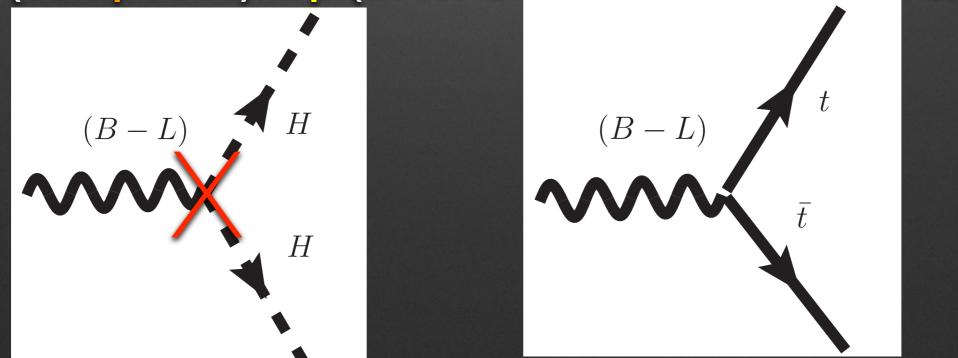
• both \tilde{W}_R^3 and (B-L) mix with elementary Y

Coupling of singlet neutrino to quarks (via neutral spin-1) without EWSB

- SM singlet neutrino couples to both \tilde{W}_R^3 and (B-L)
- no analog in 4D LR model (only Z')

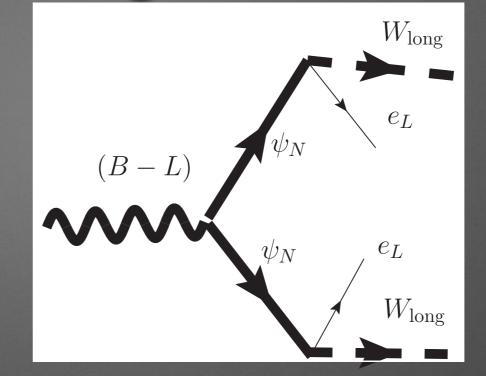
[Also in Low, Tesi, Wang (2015)]

(B-L) striking...

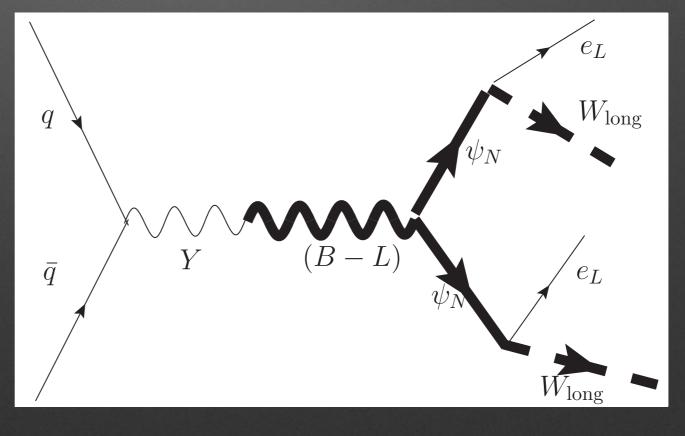

...maybe what's going on at weak scale?!

Only spin-1 signal: no charged counterpart

- Light (B L) (≤ 2 TeV): allowed by LHC direct searches (hypercharge coupling to light quarks via elementarycomposite mixing) and EW precision tests (does not couple to EWSB)
- Others heavier (> 4 TeV): production at LHC negligible
- 4D LR: see W_R^{\pm} before Z'

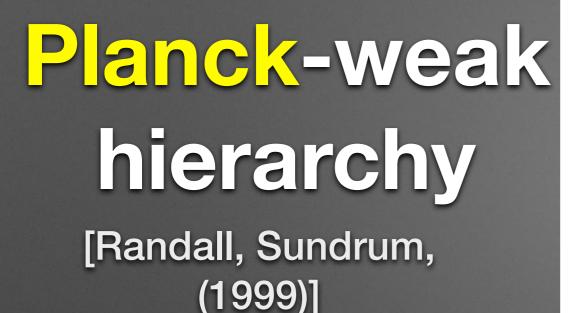

No (direct) decay di-boson, di-top BR suppressed (other SM fermions negligible)

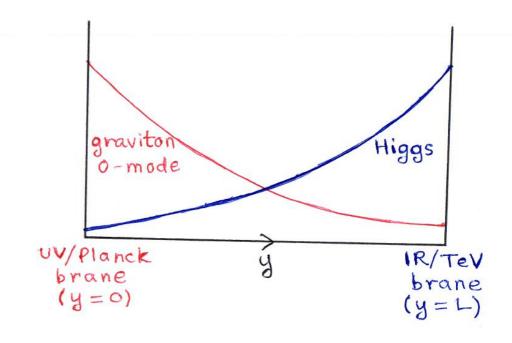
- (B L) does not couple of Higgs (including W/Z_{long})
- 4D LR: both W_R^{\pm} and Z' decay into dibosons
- singlet neutrinos have larger charge and multiplicity than (composite) top (other SM fermions elementary)



Discover via singlet neutrino

• decays like Z':



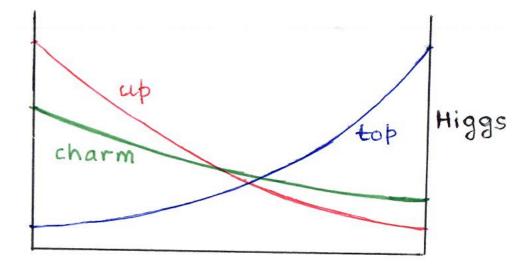

overall process:

• 3-5 σ with 3000/fb for 2 TeV composite (B-L) and 750 GeV ψ_N

Basics of Warped Extra Dimension

• master formula: $M_{4D}^{eff}(y) \sim e^{-ky} M_{5D}^{fund}$

• RS1:

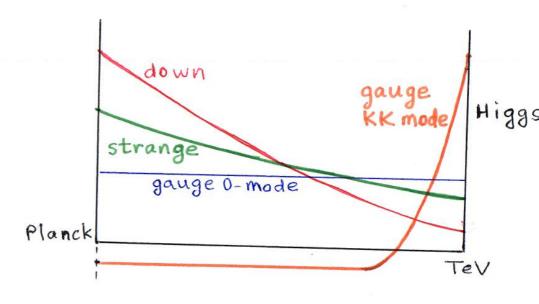

4D gravity (zero-mode graviton): $y \sim 0 \Rightarrow M_{4D}^{\text{eff}} \sim M_{5D}^{\text{fund}}$ $\Rightarrow \text{choose } M_{5D}^{\text{fund}} \sim M_{\text{Pl}}$

warp factor

Weak scale/Higgs mass: $y \sim L \Rightarrow M_{4D}^{\text{eff}} \sim e^{-kL} M_{5D}^{\text{fund}}$ $\Rightarrow \text{ choose } kL \sim 30$ (*mild* hierarchy, with $k \sim M_{5D}^{\text{fund}}$)

4D Flavor hierarchy from 5D anarchy

[Grossman, Neubert (1999); Gherghetta, Pomarol (2000)]



SM particles are zero-modes of 5D fields

- Coupling of modes \propto overlap of profiles (in general) profile of zero-mode fermion $\propto e^{-cky}$ (ck is 5D mass parameter)
- Small variation in c suffices (5D Yukawa non-hierarchical): c > 1/2 for up, charm vs. c < 1/2 for top

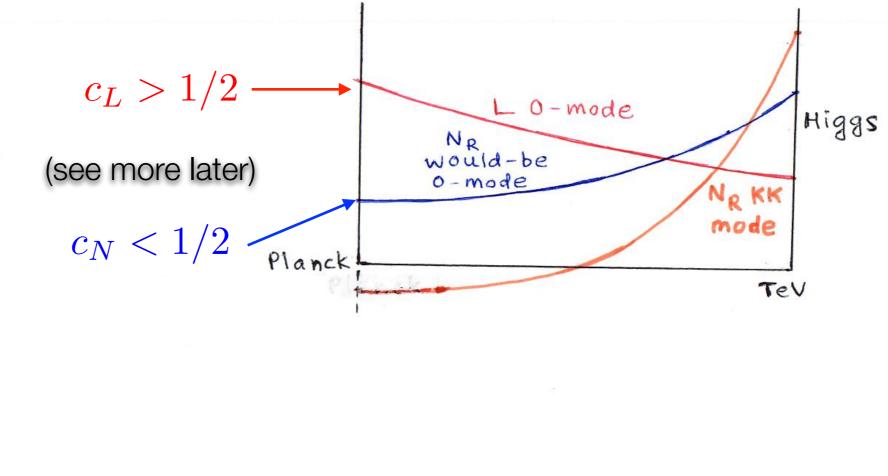
Flavor/CP violation tests

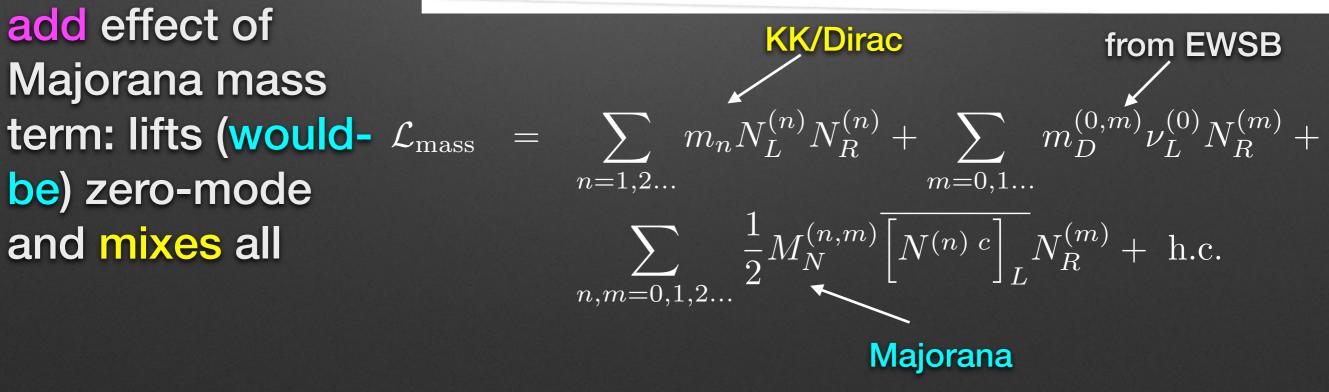
[Gherghetta, Pomarol (2000); Huber, Shafi (2000); Huber (2003); KA, Perez, Soni (2004)]

- bound (much) weaker than generic $\sim O(10^5)$ TeV
- still $\sim O(10)$ TeV [Csaki, Falkowski, Weiler (2008); Buras et al. (2008); Bauer et al.]
- ameliorated by flavor symmetries: a few TeV allowed...

EW precision tests

• Vanilla model: \sim 5-10 TeV (from $\Delta
ho$ and $Zb\overline{b}$)


 custodial symmetries [KA, Delgado, May, Sundrum (2003); KA, Contino, Da Rold, Pomarol (2006)] relax it to ~ 3 TeV [Carena et al, (2006); Delaunay et al. (2010)]


(assume a few TeV KK scale from here on)

Neutrino mass

KK basis: definition

- KK decomposition without Majorana mass term (familiar/ convenient)
- add effect of Majorana mass and mixes all

 $\sim M_N^{\rm UV} \times (\text{profile of } n^{\rm th} \text{ mode}) |_{\rm UV} \times (\text{profile of } m^{\rm th} \text{ mode}) |_{\rm UV}$ $M_N^{(n,m)}$

KK basis: SM neutrino mass (general)

Even if not mass basis, can still use EOM (since heavy: \geq TeV)

 $m_{\nu} \equiv \frac{m_D^{\text{eff 2}}}{M^{\text{eff}}}$

EOM for $N_L^{(n \neq 0)} \Rightarrow N_R^{(n \neq 0)} = 0$ EOM for $N_R^{(0)} \Rightarrow N_R^{(0)} = \nu_L^{(0)} \frac{m_D^{(0,0)}}{M^{(0,0)}}$ (like usual seesaw)

Plug back into Lagrangian:

$$\mathcal{L} \quad \ni \quad -\frac{1}{2} \frac{\left[m_D^{(0,0)}\right]^2}{M_N^{(0,0)}} \overline{\nu_L^{(0)}} \left[\nu^{(0)} c\right]_R$$

general form:

KK basis: SM neutrino mass (specific)

 Modulation of Dirac and Majorana mass terms by profiles:
 Modulation of Dirac and Majorana mass terms by doublet profile at IR
 In the for charged lepton mass

 $m_D^{\text{eff}} \left[= m_D^{(0,0)} \right] \sim Y_5 v \left(\frac{\text{TeV}}{M_{\text{Pl}}} \right)^{c_L - \frac{1}{2}} \quad \text{for } c_L > \frac{1}{2} \text{ and } c_N < \frac{1}{2}$

$$M_N^{\text{eff}} \left[= M_N^{(0,0)} \right] \sim M_N^{\text{UV}} \times \left(\frac{\text{TeV}}{M_{\text{Pl}}} \right)^{1-2 c_N} \quad \text{for } c_N < \frac{1}{2}$$

singlet profile at UV

• Observed $[m_{\nu} \sim O(0.1) \text{ eV}]$ naturally for $c_N \sim 0.3$; $c_L \sim 0.6$ and $M_N^{\text{UV}} \sim M_{\text{Pl}}$ $[m_D^{\text{eff}} \sim O(10) \text{ GeV}$ and $M_N^{\text{eff}} \sim O(10^{12}) \text{ GeV}]$

KK basis: high-scale seesaw?

- only singlet (would-be) zero mode with super-large (Majorana) mass term contributes
 "looks like" high-scale seesaw?
 physics of neutrino mass generation out of reach?
- ...but, not mass basis: (would-be) zero-mode mixes with KK...
- physical/dynamical picture obscured: more to it than meets the eye?

...On to Mass basis for Singlet Modes

- for on-shell production (colliders or early universe, e.g., leptogenesis)
- can try diagonalization from KK basis, but ~ dimensional matrix (see back-up for toy model)
- or include Majorana mass term from get-go (as part of boundary condition) [KA, Hong, Vecchi (2015)]: tedious/not insightful
- simpler/intuitive picture using AdS/CFT duality [KA, Hong, Vecchi (2015)]

Diagonalization of KK basis

Basic set-up

Singlet (only) zero and KK modes

$$\mathcal{L} \ni M_{N}^{(0,0)} \left[N^{(0)} c \right]_{L} N_{R}^{(0)} + M_{N}^{(0,1)} \left[N^{(0)} c \right]_{L} N_{R}^{(1)} + M_{N}^{(1,1)} \left[N^{(1)} c \right]_{L} N_{R}^{(1)} + m_{1} \overline{N_{L}^{(1)}} N_{R}^{(1)} + h.c. \text{ (as appropriate)} \right]$$

Majorana

• matrix form:

KK/Dirac

$$\left(\begin{array}{c} \overline{\left[N^{(0)} c\right]_{L}} & \overline{\left[N^{(1)} c\right]_{L}} & \overline{\left[N^{(1)} c\right]_{L}} & \overline{N^{(1)}_{L}} \end{array}\right) \left(\begin{array}{c} M^{(0,0)}_{N} & M^{(0,1)}_{N} & 0 \\ M^{(0,1)}_{N} & M^{(1,1)}_{N} & m_{1} \\ 0 & m_{1} & 0 \end{array}\right) \left(\begin{array}{c} N^{(0)}_{R} \\ N^{(1)}_{R} \\ \left[N^{(1)} c\right]_{R} \end{array}\right)$$

Relations between Majorana mass terms for zero and KK modes

 due to Majorana mass term for 5D field only on Planck/UV brane:

 $M_N^{(n,m)} \sim M_N^{\rm UV} \times (\text{profile of } n^{\rm th} \text{ mode}) \big|_{\rm UV} \times (\text{profile of } m^{\rm th} \text{ mode}) \big|_{\rm UV}$

$$M_N^{(n,m)} M_N^{(p,q)} = M_N^{(n,q)} M_N^{(p,m)}$$

e.g.,
$$M_N^{(0,0)} M_N^{(1,1)} = \left[M_N^{(0,1)} \right]^2$$

Diagonalizing Majorana part

- One zero eigenvalue (`light") and the other is trace (heavy)
 - $N_{R}^{\text{heavy}} = \cos \theta^{(0,1)} N_{R}^{(0)} + \sin \theta^{(0,1)} N_{R}^{(1)}, \text{ eigenvalue} = \left[M_{N}^{(0,0)} + M_{N}^{(1,1)} \right]$ $N_{R}^{\text{light}} = \cos \theta^{(0,1)} N_{R}^{(1)} \sin \theta^{(0,1)} N_{R}^{(0)}; \text{ eigenvalue} = 0$

where
$$\sin \theta^{(0,1)} = \sqrt{\frac{M_N^{(1,1)}}{M_N^{(0,0)} + M_N^{(1,1)}}}$$

 Re-write full Lagrangian in terms of Majorana mass eigenstates:

 $\mathcal{L} \ni \left[M_N^{(0,0)} + M_N^{(1,1)} \right] \overline{\left(N^{\text{heavy c}} \right)_L} N_R^{\text{heavy}} + m_1 \sin \theta^{(0,1)} \overline{N_L^{(1)}} N_R^{\text{heavy}} + m_1 \cos \theta^{(0,1)} \overline{N_L^{(1)}} N_R^{\text{light}} \right]$

KK mass term mixes heavy and light

EWSB mass terms: general form

• KK basis:

$$\mathcal{L}_{\text{EWSBmass}} = \overline{\nu_L^{(0)}} \left[m_D^{(0,0)} N_R^{(0)} + m_D^{(0,1)} N_R^{(1)} \right]$$

• Majorana-diagonal basis:

$$\mathcal{L}_{\text{EWSBmass}} = \nu_L^{(0)} \left[\left(\cos \theta^{(0,1)} m_D^{(0,0)} + \sin \theta^{(0,1)} m_D^{(0,1)} \right) N_R^{\text{heavy}} + \left(\cos \theta^{(0,1)} m_D^{(0,1)} - \sin \theta^{(0,1)} m_D^{(0,0)} \right) N_R^{\text{light}} \right]$$

EWSB mass terms: N_{R}^{heavy} decouples

Dirac mass terms from profiles on IR brane:

 $\frac{m_D^{(0,1)}}{m_D^{(0,0)}} \sim \frac{(\text{profile of 1st KK mode})|_{\text{IR}}}{(\text{profile of zero mode})|_{\text{IR}}}$

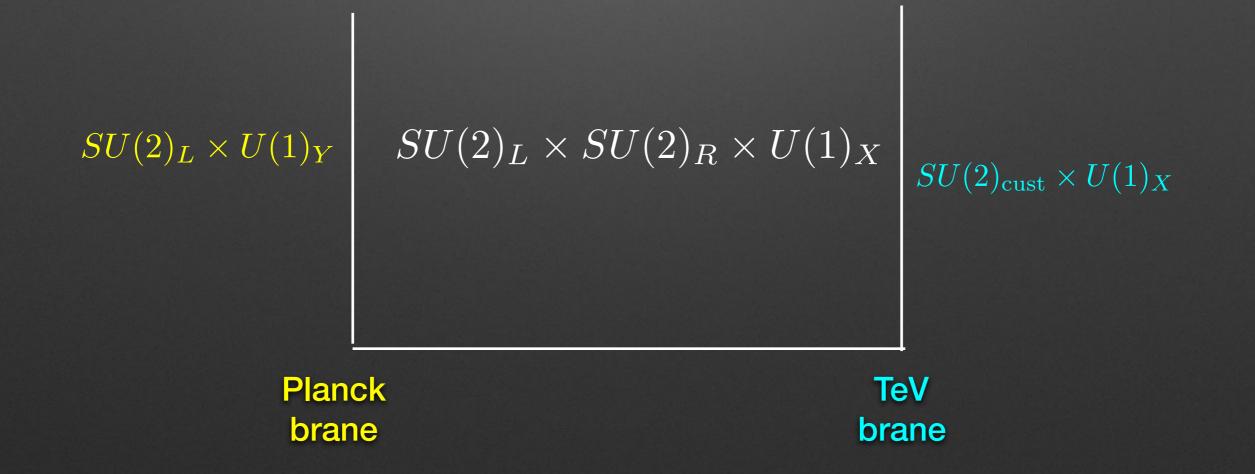
$$\begin{cases} \frac{1}{\sqrt{c_N - \frac{1}{2}}} \left(\frac{\text{TeV}}{M_{\text{Pl}}}\right)^{\frac{1}{2} - c_N}, \text{ for } c_N > 1/2\\ \frac{1}{\sqrt{\frac{1}{2} - c_N}}, \text{ for } c_N < 1/2 \end{cases}$$

Profiles on UV brane (gives singlet mixing angle):

$$\sqrt{\frac{M_N^{(1,1)}}{M_N^{(0,0)}}} \sim \begin{cases} \sqrt{c_N - \frac{1}{2}} \left(\frac{\text{TeV}}{M_{\text{Pl}}}\right)^{c_N - \frac{1}{2}}, \text{ for } c_N > 1/2\\ \sqrt{\frac{1}{2} - c_N}, \text{ for } c_N < 1/2 \end{cases}$$

Relation between above two ratios ullet $m_D^{(0,0)} \sim negative \text{ of } \sin\theta^{(0,1)} m_D^{(0,1)}$

Integrating out N_R^{heavy} (still coupled via KK mass term to N_R^{heavy} !)


• pseudo-Dirac TeV-mass singlet + Dirac mass term with doublet Majorana Majorana Majorana MajoranaMajorana

$$\mathcal{L} \ni m_1 \cos \theta^{(0,1)} N_L^{(1)} N_R^{\text{light}} + \frac{m_1 \sin \theta^{(1,1)}}{\left[M_N^{(0,0)} + M_N^{(1,1)}\right]} N_L^{(1)} \left[N^{(1)} c\right]_R + \frac{\nu_L^{(0)}}{\nu_L^{(0)}} N_R^{\text{light}} \left(\cos \theta^{(0,1)} m_D^{(0,1)} - \sin \theta^{(0,1)} m_D^{(0,0)}\right)$$

• ...in agreement with CFT picture: $N_R^{heavy} \sim dual$ to elementary N_R

Custodial symmetry in 5D

- EW bulk gauge symmetry extended: $SU(2)_L \times SU(2)_R \times U(1)_X$ (QCD also in bulk: neglect for leptonic sector here)
- On UV/Planck brane (by boundary condition): $SU(2)_R \times U(1)_X \rightarrow U(1)_Y$
- On IR/TeV brane (by Higgs VEV): $SU(2)_L \times SU(2)_R \rightarrow SU(2)_{cust}$, with $U(1)_X$ unbroken

Simplest possibility: 2 X = (B - L)

• as in 4D LR symmetry models [$Y = T_{3R} + (B - L)/2$]:

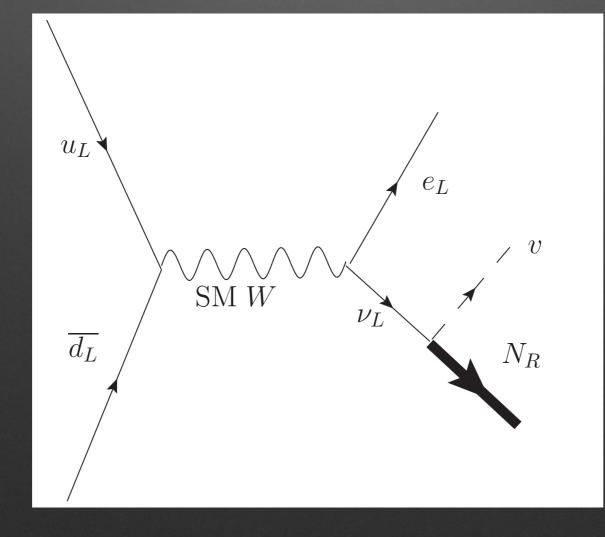
SM L_L is zero-mode of 5D $L \sim (2, 1)_{-1}$ SM e_R is zero-mode of 5D $e \in (1, 2)_{-1} \Rightarrow$ $SU(2)_R$ partner of $e \sim N$ of 5D seesaw model ("built-in"): SM gauge singlet \bigstar Majorana mass term only on UV/Planck brane Yukawa with L_L

 $SU(2)_L \times U(1)_Y$

zero-modes
$$\begin{pmatrix} \nu_L \\ \bullet e_L \end{pmatrix} + R$$

zero-mode $\begin{pmatrix} N_R \\ \bullet e_R \end{pmatrix} + L$

 $SU(2)_{\text{cust}} \times U(1)_{B-L}$

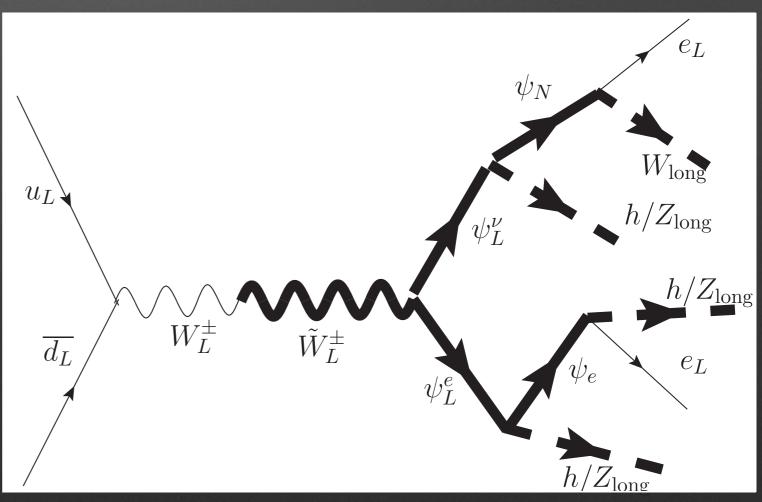

• N_R modes produced via extra gauge bosons, W_R^{\pm} and Z'(?)

 $\overline{SU(2)_L \times SU(2)_R \times U(1)_B}$

What if SM singlet neutrino also singlet of $SU(2)_R \times U(1)_X$? ...no \tilde{W}_R^{\pm} or (B-L) of before

- EWSB-induced mixing (same coupling as for SM neutrino mass) between doublet and singlet neutrinos
- SM Wexchange
- ...negligible for singlet neutrino mass $\gtrsim 500~{
 m GeV}$

[For example, Das, Okada (2015)] New in warped/composite model: singlet neutrinos from other spin 1/2 composites


Couplings at both ends are guaranteed

• (mandatory) composite $SU(2)_L$ doublet lepton (assumed heavy so far):

 $M_{\tilde{W}_L} \gtrsim 2 M_{\psi_L} \gtrsim 2 M_{\psi_{N,e}}$

- production: elementary-composite mixing only
- decay: same Yukawa as for SM neutrino mass
- $3-5 \sigma$ with 3000/fb for 2.5 TeV composite W_L , 1 TeV ψ_L & 500 GeV ψ_N

no analog in 4D LR model

