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Motivation

Im ¢

» New pseudoscalar particles appear in many extensions of the
SM and are well motivated theoretically: strong CP problem,
mediators to a hidden sector, pNGB of a spontaneously broken
global symmetry, ...

»  Assume the existence of a new pseudoscalar resonance g,
which is a SM gauge singlet and whose mass is kept much
lighter than the electroweak scale by a shift symmetry a—a-+c

» Such particles could explain various low-energy anomalies,
such as the muon (g-2), or the recently observed excess in

Beryllium decays

[Chang, Chang, Chou, Keung 2000; Marciano, Masiero, Paradisi, Passera 2016]
[Feng et al. 2016; Ellwanger, Moretti 2016]
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Eifective Lagrangian

* The couplings of an axion-like particle (ALP) a to the SM start
at dimension 5 and are described by the effective Lagrangian
(with A a new-physics scale): [Geotoi Kaplin Bandoliiis]
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* The only other dimension-5 operator:

(0*a)
A

(¢"4D, ¢ +hoc.)

can be reduced to the fermion operators above by the equations
of motion, hence no tree-level couplings to the Higgs arise!
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Eifective Lagrangian

* The couplings of an axion-like particle (ALP) a to the SM start
at dimension 5 and are described by the effective Lagrangian
(with A a new-physics scale): [Geotoi Kaplin Bandoliiis]
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* At dimension-6 order and higher additional interactions arise;
those relevant to our discussion are:

D26_% I t % 0 I I
G — 12 (0,a)(0"a) ¢'p + A5 (0"a) (¢"iD, ¢ +h.c.) o +. ..

» We are interested in probing scales A~1-100 TeV at the LHC
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Eifective Lagrangian

+ After electroweak symmetry breaking, the effective Lagrangian
contains couplings to photons and Z-bosons given by:

a 2¢2 a

oot g Eoo la i
with:
@ Cyn 05 O 7 Ci, Cww — S%U CBB

* In the mass basis, the couplings to fermions contain both flavor
diagonal and flavor off-diagonal contributions, but the latter must
be strongly suppressed; the diagonal couplings can be written as:
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it
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ALP decay into photons

* Including the complete set of one-loop corrections, we
obtain from the effective Lagrangian:
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ALP decay into lepton pairs

* Including the complete set of one-loop corrections, we
obtain from the effective Lagrangian:
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Constraints on Gy, and ce.!

model dependent!
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[Armengaud et al. 2013; Jaeckel, Spannovsky 2015; many others ...]

* ALPs with masses below ~1 MeV are incompatible
with couplings C;/A ~ (0.01 — 1) TeV~*
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Pattern of decay rates

* Assuming that the relevant Wilson coefficients are equal

to 1, one finds the fol

owing pattern of decay rates:
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(g-2), anomaly

« Persistent deviation of the anomalous magnetic moment
of the muon, e, = (g —2),/2, from its SM value provides
one of the most compelling hints for new physics:

v = (288 =0 49) e

T T

“ In our model we find two one-loop contributions of

potentially different sign (with z = m?/m?):

9 2
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[see also: Marciano, Masiero,
N ) ¥ Paradisi, Passera 2016]
% M M \ M
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(g-2), anomaly

* Assuming the ALP-induced contributions are the
dominant new-physics effect, the anomaly can be

explained for natural values of Wilson coetficients:
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Higgs decays into ALPs

* The effective Lagrangian allows for the decays h—Za and

h—aa at rates likely to be accessible in the high-luminosity
run of the LHC (already with 300 fb!)

* The subsequent ALP decays can readily be reconstructed,
largely irrespective of how the ALP decays

* Higgs physics thus provides a powerful observatory for
ALPs in the mass range between 1 MeV and 60 GeV,
which is otherwise not easily accessible to experimental

searches
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Operator analysis of the decay h— Za

R/
0.0

The effective Lagrangian does not contain any D=5
operator giving a tree-level contribution to this decay

Including one-loop corrections, we find:
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Operator analysis of the decay h— Za

* The resulting rates can naturally be of the same order as
the h—Zy rate in the SM, which makes them a realistic
target for discovery at the high-luminosity LHC run:

2.()_5

Con A [V

c,/A [TeV™]

M. Neubert: LHC as an axion factory 13



Operator analysis of the decay h— Za

* The argument for the absence of a tree-level D=5
operator can be avoided in BSM models containing new

heavy particles receiving their mass from EWSB!
[see e.g.: Pierce, Thaler, Wang 2006]

* In such models the unique, non-polynomial D=5

operator:
: 5 O 2
cron—pel % (6#a) (¢'iD, ¢ + h.c.) In T

[Bauer, MN, Thamm 2016]

can arise, which contributes to the rate at tree level
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Operator analysis of the decay h— Za

+ One then obtains:
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with non-zero €}, allowing for much enhanced rates!

¥

* For example, a 10% branching

ratio (huge!) is obtained for
CH | ~ 0.34 (A/TeV)
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Operator analysis of the decay h— Za

* Depending on the decay modes of the ALP, several interesting
final-state signatures can arise:

* h—>Za—Zyy, where the two photons are either resolved (for
m,> ~100 MeV) or appear as a single photon in the
calorimeter

¢ h—>Za-ZI'l with I=¢, u, 7
* h—Za—Z+2jets, including heavy-quark jets

* ho/Za—/Z+invisible

* All of these decay modes (perhaps even the invisible ones) can
be reconstructed in Run-2 at the LHC!
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Operator analysis of the decay h—aa

* The Higgs portal interaction and other loop-mediated
processes allow for ALP pair production in Higgs decay
starting at D=6 order; we find:
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* A 10% branching ratio is obtained for |Cf| ~ 0.62 (A/TeV)?
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Decay-length effect

* Light ALPs with weak couplings can have macroscopic
decay length, and hence only a fraction of them decays
inside the detector

« If the ALP is detected in the decay mode a—XX its
average transverse decay length can be written as:

P st B BIC AL
, Br(a — XX)
L~(0) = sinf+/~2 — 1 -
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Decay-length effect

* Fraction of events with ALPs decaying in the detector:
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* We can then define effective branching ratios:
Brlh —~Zo i X 6] —Bilh > Za)

x Br(a = XX) f4ecBr(Z — £707)
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* For Ly, >> Lget, these become independent of Br(a — X X)
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Phenomenological constraints

* Assuming the ALP decays into photons with a significant
BR, current LHC data imply interesting bounds:
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Phenomenological constraints

* Assuming the ALP decays into leptons with a significant
BR, current LHC data imply interesting bounds:
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Probing the ALP-photon coupling

* Higgs analyses at the LHC (Run-2, 300 fb-!) will be able
to explore a large region of uncovered parameter space:
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Probing the ALP-photon coupling

* Higgs analyses at the LHC (Run-2, 300 fb-!) will be able
to explore a large region of uncovered parameter space:
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# The ALP-photon coupling can be

probed even if the ALP decays
predominantly to other particles!

+ Region preferred by (g-2), almost

completely covered!
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Probing the ALP-photon coupling

* Higgs analyses at the LHC (Run-2, 300 fb-!) will be able
to explore a large region of uncovered parameter space:
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Probing the ALP-photon coupling

« Existing Higgs analyses at the LHC already probe a
significant region of parameter space:

# The ALP-photon coupling can be
probed even if the ALP decays
predominantly to other particles!
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A [TeV]

Probing the ALP-photon coupling

* Higgs analyses at the LHC (Run-2, 300 fb-!) will be able
to explore new-physics scales reaching 100 TeV:
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+ Same as before, but with all Wilson

coefficients set to 1 and varying
new-physics scale A

+ Scales up to 100 TeV can be probed

in Higgs decays!
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Probing the ALP-electron coupling

* Higgs analyses at the LHC (Run-2, 300 fb-!) will be able
to explore a large region of uncovered parameter space:
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Probing the ALP-electron coupling

* Higgs analyses at the LHC (Run-2, 300 fb-!) will be able
to explore a large region of uncovered parameter space:
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Conclusions

* Rare decays of the Higgs boson provide multiple new
ways to probe for the existence of ALPs in the mass
range between 1 MeV and 60 GeV and with couplings
suppressed by scales A~1-100 TeV

* In some regions of parameter space, the ALP signal
would enhance the measured rates for h—»yy and h—Zy
(a target for the high-luminosity LHC run)

* In other regions, new searches for final states such as
h—>dy holb liyy e el [l oFli>eewZ2jets need 1o be
devised
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Electroweak precision tests

* Since we consider light new particles, loop corrections
to electroweak precision observables can, in general, not
be described in terms ot oblique corrections

« Still, in our model the one-loop corrections to different
definitions of the weak mixing angle and of the @
parameter can be recast in terms of S, T, U:
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Electroweak precision tests

* The resulting constraints on the Wilson coefficients
derived from the global electroweak fit are rather weak:
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Electroweak precision tests

“ Projections for a tfuture FCC-ee lepton collider:

| from a measurement of a(my)
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