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The illusion of order
We see signs of order in the structure of the Standard Model & beyond 

Patterns, small couplings, apparent violations of naturalness, etc. 

Much of BSM physics amounts to explaining the origin of this order.
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Order from geometry
We frequently impose order with geometry 
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Figure 1: The location of the Higgs and 2nd and 3rd generation matter multiplets. The
only alternative is for F 2 to be located at O′ instead of O.

obtaining the SU(5) relation mb = mτ at the unification scale, T3 must be on O rather
than O′, so that the placement of the two Ti fields is unique. The up quark Yukawa
coupling matrix for the two heavy generations, in the “locality basis”, is

U ≃
(

δ3 δ2

δ2 ε

)

. (7)

In this expression δ corresponds to an SU(5)-violating parameter of the same magnitude
as the SU(5)-invariant parameter ε. We emphasize that here and below we display only
the hierarchical nature of the Yukawa matrices, ignoring the order unity Yukawa cou-
plings of the 5d theory. We conclude that mc/mt is necessarily of order ε2, and that Vcb

necessarily contains a piece of order ε from diagonalization of the up quark sector.

One interesting feature of Eq.(7) is that because of the SU(5) violation U is not
symmetric as it would be in a 4d SU(5) theory. Also note that the top quark Yukawa
coupling has a magnitude proportional to ε. This is not problematic, but shows that the
higher dimensional Yukawa coupling is closer to strong coupling than in 4d theories.

The operators leading to down quark and charged lepton mass matrices have the
form TiF j , leading to the 4d Yukawa matrices Dij and Eji. These matrices will have a
hierarchy of order ε on the i index due to the locality of the Ti. Since we require mass
ratios mµ/mτ , ms/mb ≈ ε, this implies that there is no additional hierarchy between the
two generations resulting from the index j: F 2 and F 3 must be located on branes of the
same dimensionality. Indeed it is well-known that the large hierarchy in the up quark
sector suggests that, in SU(5) theories, the hierarchy is somehow associated with the Ti

rather than with the F j. In our scheme this difference has a simple geometrical origin:
the Ti reside on branes with a hierarchy of volumes, while the F j do not.

For locality to give the SU(5) mb/mτ mass relation, F 3 must be located on the SU(5)
brane O. If it is in the bulk, then b and τ arise from different SU(5) multiplets F 3 and
F

′

3, so that they have unrelated Yukawa couplings. Hence we are forced to conclude that
the b and t Yukawa couplings are both of order ε. Thus in this 5d scheme the large t/b
mass ratio must arise from a large value for tanβ, the ratio of electroweak VEVs, rather
than from volume factors. (At the end of this section we discuss models without precision
b− τ unification where the large mt/mb mass ratio is also explained by geometry.) Thus
our two generation theory is as shown in Figure 1; the only lack of uniqueness in the
choice of location for the second and third generations is whether F 2 resides at O or O′.

With F 2,3 both on O, we may relabel the combination which couples to T3 as F 3,
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Figure 2: Two of the possible structures of gauge and SUSY breaking in 6d generalized
from the S1/(Z2 ×Z ′

2) model in 5d. In both cases all 5d boundary branes possess N = 1
5d SUSY, while all 4d fixed-brane corners have only 4d N = 1 SUSY.

there was only one extended 5d space (the full bulk in this case) they necessarily had
to be located together. However in both 6d cases illustrated in Figure 2 there are now 4
fixed branes of spacetime dimensionality 5 on which we can place the matter and explain
hierarchies by volume factors. In some cases, such as the branes O1 and O2 of structure
A, or O1 and O′

1 of structure B, the full SU(5) symmetry is realized on both branes. In
such cases we are allowed to place, e.g., for structure B, T1 on O1, while T ′

1 is located
on O′

1. As we will discuss below this allows us to engineer some interesting “texture
zeros”. Alternatively we could utilize matter situated on the branes that do not preserve
SU(5), but only the SM subgroup. In this situation [16] it is only necessary that SM
multiplets are localized to the brane, and there is nothing that forces, say, both the U
and E components of what was formerly combined in a T to be placed on the same
brane, or, as we will see, U 1 to be present at all if we wish to have a massless up-quark.
(It is also amusing to note that such constructions in orbifold GUT theories allow exotic
states with leptoquark quantum numbers in a manner that is naturally consistent with
the stringent proton decay and flavor-changing constraints [26].)

One worry concerning these 6d models is that the cutoff M∗ might not be sufficiently
far above the scales 1/ℓ1,2 if the 6d gauge theory quickly becomes strongly coupled. If
this were the case then we would not be able to take the parameters ε1 = 1/

√
M∗ℓ1 and

ε2 = 1/
√

M∗ℓ2 sufficiently small to be useful in generating the observed flavor hierarchies.
However the usual naive dimensional analysis or RG running estimate of the cutoff scale
is very dependent on the flat nature of the extra dimensions (with the usual evenly spaced
Kaluza-Klein spectrum). As shown in Ref. [27] the form of the KK spectrum is highly
dependent on the curvature of the extra dimensional space (apart from the zero modes
which are unaffected since they arise for essentially topological reasons). For example,
replacing the g = 1 torus T 2 with a simple 2d compact hyperbolic manifold (CHM)
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Figure 1: Profile of Standard Model fermion wave functions (vertical
axis) in the extra dimensions (horizontal axis). The fermions freely
propagate in 3+1 dimensions (not shown) and are “stuck” at different
locations in the extra dimensions. The gauge and Higgs fields’ wave
functions occupy the whole width of the thick wall. Direct couplings
between the fermions are then suppressed by the exponentially small
overlap of their wave functions. If – as shown here – quarks and lep-
tons live on opposite ends of the wall profile protons become essentially
stable. The hierarchy of Yukawa couplings arises from order one (in
units of the fermion wave function width) distances between left and
right handed components of the fermions.

we will see that the long-distance 4-dimensional theory can naturally have

exponentially small Yukawa couplings, arising from the small overlap between

left- and right-handed fermion wave functions. Similarly, without imposing

any symmetries to protect against proton decay, the proton decay rate can be

exponentially suppressed to safety if the quarks and leptons are are localized

at different ends of the wall ∗. We emphasize that there is nothing fine-tuned

about this from the point of view of the low-energy 4-dimensional theory;

all the exponentially small couplings are technically natural. However, our

examples violate the usual intuition that small couplings in a low-energy

theory must be explained by symmetries in the high-energy theory. Instead,
∗Our approach to to the fermion mass hierarchy similar in spirit to the one in [7]. For

other approaches to suppressing Yukawa couplings and proton decay, see [6].
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Geometry and its discontents
…but we have yet to find evidence for any of it. 

CMS Exotica Physics Group Summary – ICHEP, 2016!
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Geometry and its discontents
4D equivalents appealing, but 

often either ad hoc or incalculable

Dimensional deconstruction 
[Arkani-Hamed, Cohen, Georgi ’01; Hill, 

Pokorski, Wang ’01]
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Nice exception: 
clockwork [Choi & Im, 
Kaplan & Rattazzi ’15] 

See talks by McCullough, 
Shin, & Kats
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Perhaps it’s entirely random

6



But maybe disorder ⇒ order
Anderson Localization

✏i 2 [�W/2,W/2]

Impurities Bound state energies
Tunneling

Simplify:

Nearest-neighbor hopping

Random impurities

H =

0
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ij

tij |iihj|+ h.c.
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Anderson Localization
S.E. for energy 

eigenstates

All eigenstates are localized in presence of disorder, ψ(r)∝exp[-r/Lloc]  
but localization lengths not identical

Analytic results for weak localization, σ ≪ 1  (for εi ∈ [-W/2,W/2], σ2 = W2/12)

E=2

E=-2

States fill a band of E ∈ [-2,2] 
(allowed energies of Bloch waves for εi = 0)

In bulk of band, localization 
length given by Thouless result  L�1

loc

=
W 2

96(1� E2/4)

Anomalous scaling near band edges E =±2 L�1
loc

=
61/3

p
⇡

2�(1/6)
�2/3 ⇡ 0.13W 2/3

States at band edges more sharply localized 
than generic eigenstates at weak disorder

 E =
X

i

 i|ii gives 
(t=-1)  i+1 +  i�1 = (E � ✏i) i
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A Scalar Toy Model

Potential leads to vevs

A toy model: N U(1) global symmetries, softly broken

In general all terms could vary randomly; for illustration we randomly vary the ε.

Can we Anderson localize in theory space?

Looks familiar…
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Tight Binding in Theory Space
Mass matrix is of the tight binding form

(Offset from hopping terms doesn’t alter story, guarantees positivity)

Wavefunctions of the mass eigenstates will be 
exponentially localized in theory space. 

Note: this breaks all symmetries, zero mode light but not protected.

Generalizes naturally to spin-1.

M2 =

0
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(De)Localization

N=100, t=10, εi ∈ [0,1] N=100, t=0.05, εi ∈ [0,1]

...

Note anomalous localization at “band edges”, i.e., top & bottom of spectrum @ weak disorder
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Order from disorder

N=100, t=0.5, εi ∈ [0,1]
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Exponential profile for 
lightest eigenstate with short 

localization length

Mid-band eigenstates have 
random couplings corresponding 

to less localization

Many applications…
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Fermion toy model

L = (L1, L2, . . . , LN )T R = (R1, . . . , RN )T

L = kinetic terms� L̄TMR+ h.c.

Take N LH Weyl fermions & N RH Weyl fermions

Tight-binding model for fermions; zero mode localizes

M =

0

BBBBBBB@

✏1 �t 0 . . . 0 0
�t ✏2 �t . . . 0 0
0 �t ✏3
...

...
. . .

0 0 ✏N�1 �t
0 0 �t ✏N

1

CCCCCCCA

Many possible applications: dark matter, neutrino masses,… 13



The hierarchy problem?
How does RS solve hierarchy problem? 

Curvature localizes the graviton zero mode.

→ Fields localized at different points in 5th 
dimension see different fundamental scales

M = e�kyM0M0

[Rothstein ’12]: Can achieve the same outcome in a 
flat fifth dimension by localizing graviton w/ disorder

In this case disorder = randomly 
spaced & tensioned branes

M0 M = e�y/L
locM0

What you’ve been asking yourself during this whole talk.
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The challenge: naive tight-binding 
model in theory space does not 

preserve diffeomorphism invariance 
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Conclusions
• Nature hasn’t obviously warmed up to our attempts to impose 

external order on the structure of the Standard Model & BSM.  

• Many of the features we seek from geometry or dynamics can 
be reproduced by disorder in theory space (or disorder in a 
flat extra dimension). 

• A novel source of exponential hierarchies in four dimensions 
without small or tuned parameters in the fundamental theory.  

• The statistical nature of spectrum & couplings leads to diverse 
experimental signatures; lots of “who ordered that?” 

• Much more to think about…

Thank you!
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