# Order from Disorder



Work in progress with D. Sutherland



#### The illusion of order

We see signs of order in the structure of the Standard Model & beyond Patterns, small couplings, apparent violations of naturalness, etc.



Much of BSM physics amounts to explaining the origin of this order.

# Order from geometry



### Geometry and its discontents

...but we have yet to find evidence for any of it.



### Geometry and its discontents

4D equivalents appealing, but often either ad hoc or incalculable

#### **Dimensional deconstruction**

[Arkani-Hamed, Cohen, Georgi '01; Hill, Pokorski, Wang '01]

E.g. bulk gauge field in 5D

$$\mathcal{L} = -\frac{1}{4} \sum_{i=0}^{N} F_{i\mu\nu}^{a} F_{i}^{\mu\nu a} + \sum_{i=1}^{N} D_{\mu} \Phi_{i}^{\dagger} D^{\mu} \Phi_{i}$$



Theory space

Flat 
$$v_{j+1} = v_j$$
 
$$g_{j+1} = g_j$$

$$AdS$$

$$v_{j+1} = e^{-ka}v_j$$

$$g_{j+1} = g_j$$

Linear dilaton

$$v_{j+1} = e^{-ka}v_j$$
$$g_{j+1} = e^{ka}g_j$$

Nice exception:
clockwork [Choi & Im,
Kaplan & Rattazzi '15]
See talks by McCullough,
Shin, & Kats



### But maybe disorder ⇒ order

#### **Anderson Localization**





#### Simplify:

$$t_{ij} = t \left( \delta_{i+1}^j + \delta_{i-1}^j \right)$$

Nearest-neighbor hopping

$$\epsilon_i \in [-W/2, W/2]$$

Random impurities

#### **Tight-binding model**

$$H = \begin{pmatrix} \epsilon_1 & -t & 0 & \dots & 0 & 0 \\ -t & \epsilon_2 & -t & \dots & 0 & 0 \\ 0 & -t & \epsilon_3 & & & & \\ \vdots & \vdots & & \ddots & & & \\ 0 & 0 & & & \epsilon_{N-1} & -t \\ 0 & 0 & & & -t & \epsilon_N \end{pmatrix}$$

#### Anderson Localization

S.E. for energy eigenstates 
$$\psi_E = \sum_i \psi_i |i\rangle \quad \text{gives} \quad \psi_{i+1} + \psi_{i-1} = (E - \epsilon_i) \psi_i$$

All eigenstates are **localized** in presence of disorder, ψ(r)∝exp[-r/L<sub>loc</sub>] but localization lengths not identical

Analytic results for weak localization,  $\sigma \ll 1$  (for  $\epsilon_i \in [-W/2, W/2]$ ,  $\sigma^2 = W^2/12$ )



E=2

States fill a band of  $E \in [-2,2]$  (allowed energies of Bloch waves for  $\varepsilon_i = 0$ )

In bulk of band, localization length given by Thouless result

$$L_{loc}^{-1} = \frac{W^2}{96(1 - E^2/4)}$$

Anomalous scaling near band edges  $E = \pm 2$ 

$$L_{loc}^{-1} = \frac{6^{1/3}\sqrt{\pi}}{2\Gamma(1/6)}\sigma^{2/3} \approx 0.13W^{2/3}$$

States at band edges more sharply localized than generic eigenstates at weak disorder

# A Scalar Toy Model

Can we Anderson localize in theory space?

A toy model: NU(1) global symmetries, softly broken



$$\mathcal{L} = \sum_{i} \left( \partial_{\mu} \Phi_{i}^{\dagger} \partial^{\mu} \Phi_{i} + t \Phi_{i}^{\dagger} \Phi_{i+1} + \frac{1}{4} \epsilon_{i} \Phi_{i}^{2} + \text{h.c.} + V(\Phi_{i}) \right)$$

In general all terms could vary randomly; for illustration we randomly vary the  $\varepsilon$ .

Potential leads to vevs

$$\Phi_i \to U_i \equiv f e^{i\pi_i/(\sqrt{2}f)}$$

$$\to \sum_{i} \left( (\partial_{\mu} \pi_{i})^{2} - \frac{1}{2} t (\pi_{i+1} - \pi_{i})^{2} - \frac{1}{2} \epsilon_{i} \pi_{i}^{2} + \dots \right)$$

Looks familiar...

### Tight Binding in Theory Space

Mass matrix is of the tight binding form

(Offset from hopping terms doesn't alter story, guarantees positivity)

$$M^{2} = \begin{pmatrix} t + \epsilon_{1} & -t & 0 & \dots & 0 & 0 \\ -t & 2t + \epsilon_{2} & -t & \dots & 0 & 0 \\ 0 & -t & 2t + \epsilon_{3} & & & & \\ \vdots & \vdots & & \ddots & & & \\ 0 & 0 & & & 2t + \epsilon_{N-1} & -t \\ 0 & 0 & & & -t & t + \epsilon_{N} \end{pmatrix}$$

Wavefunctions of the mass eigenstates will be exponentially localized in theory space.

Note: this breaks all symmetries, zero mode light but not protected.

Generalizes naturally to spin-1.

## (De)Localization





 $N=100, t=10, \epsilon_i \in [0,1]$ 

 $N=100, t=0.05, \epsilon_i \in [0,1]$ 

#### Order from disorder



 $N=100, t=0.5, \epsilon_i \in [0,1]$ 

Exponential profile for lightest eigenstate with short localization length



Mid-band eigenstates have random couplings corresponding to less localization

Many applications...

# Fermion toy model

Take NLH Weyl fermions & NRH Weyl fermions

$$L = (L_1, L_2, \dots, L_N)^T$$
  $R = (R_1, \dots, R_N)^T$   
 $\mathcal{L} = \text{kinetic terms} - \bar{L}^T M R + \text{h.c.}$ 

$$M = \begin{pmatrix} \epsilon_1 & -t & 0 & \dots & 0 & 0 \\ -t & \epsilon_2 & -t & \dots & 0 & 0 \\ 0 & -t & \epsilon_3 & & & & \\ \vdots & \vdots & & \ddots & & & \\ 0 & 0 & & & \epsilon_{N-1} & -t \\ 0 & 0 & & & -t & \epsilon_N \end{pmatrix}$$

Tight-binding model for fermions; zero mode localizes

Many possible applications: dark matter, neutrino masses,...

# The hierarchy problem?

What you've been asking yourself during this whole talk.

How does RS solve hierarchy problem? Curvature localizes the graviton zero mode.

→ Fields localized at different points in 5th dimension see different fundamental scales



[Rothstein '12]: Can achieve the same outcome in a flat fifth dimension by localizing graviton w/ disorder

$$S = -\int d^5x \sqrt{G}(M_{\star}^3 \mathcal{R}) + \sum_{\langle ij \rangle} M_{\star}^4 V(|X_i - X_j|) - \sum_i \int d^4x \sqrt{g} f_i$$

In this case disorder = randomly spaced & tensioned branes

The challenge: naive tight-binding model in theory space does not preserve diffeomorphism invariance



 $M_0$ 

$$M = e^{-y/L_{loc}} M_0$$

### Conclusions

- Nature hasn't obviously warmed up to our attempts to impose external order on the structure of the Standard Model & BSM.
- Many of the features we seek from geometry or dynamics can be reproduced by disorder in theory space (or disorder in a flat extra dimension).
- A novel source of exponential hierarchies in four dimensions without small or tuned parameters in the fundamental theory.
- The statistical nature of spectrum & couplings leads to diverse experimental signatures; lots of "who ordered that?"
- Much more to think about...

#### Thank you!