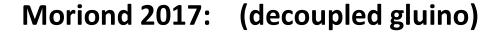
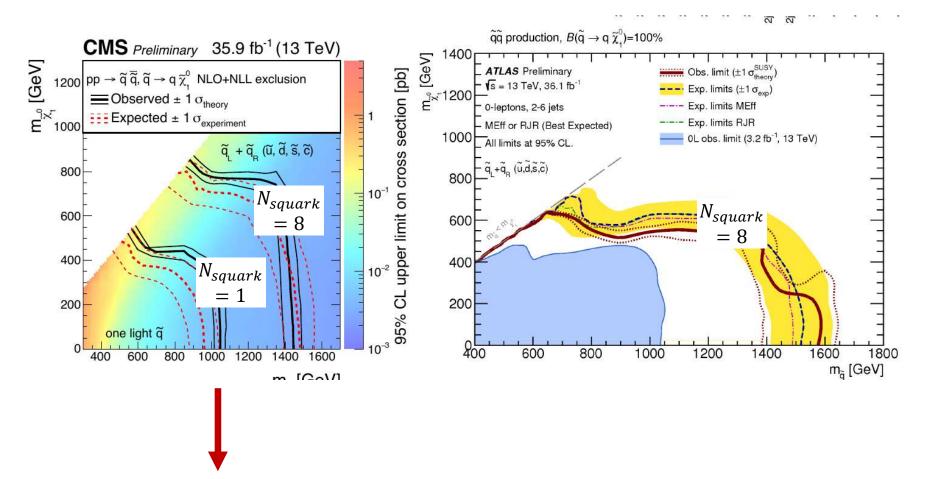

Tagging new physics with charm

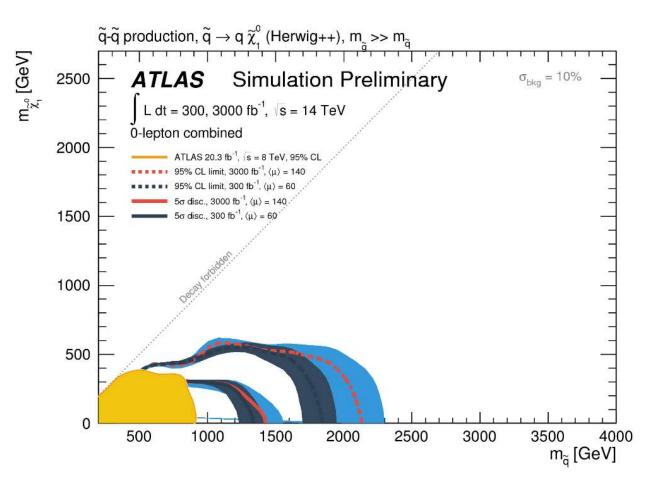

with Gabriel Lee, Sho Iwamoto, Yaniv Weiss


1703.05748

squark searches @ LHC, (HL)LHC

CMS excluded region: $13 \text{ TeV}, 35.9 \text{ fb}^{-1}$:

for
$$m_{\widetilde{g}} = \infty$$
 and $m_{\text{LSP}} = 0$,
• $N_{\widetilde{q}} = 1$: $m_{\widetilde{q}} < 1.05 \text{ TeV}$
• $N_{\widetilde{q}} = 8$: < 1.55 TeV
• $N_{\widetilde{q}} = 2$: $\lesssim 1.2 \text{ TeV}$
• $N_{\widetilde{q}} = 4$: $\lesssim 1.35 \text{ TeV}$


CMS excluded region:

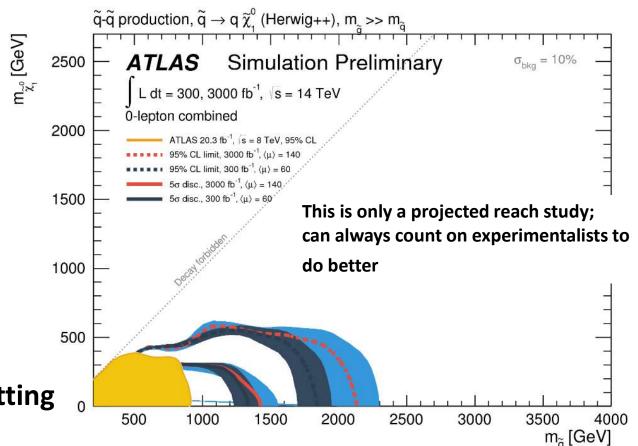
13 TeV, 35.9 fb⁻¹:

• $N_{\tilde{q}} = 8$: < 1.55 TeV

ATLAS projected reach:

14 TeV, 3000 fb⁻¹ : 5 σ disc. $m_{\tilde{q}} \lesssim 1.4$ TeV 2 σ excl. $m_{\tilde{q}} \lesssim 2.2$ TeV

CMS excluded region:


13 TeV, 35.9 fb⁻¹:

• $N_{\tilde{q}} = 8$: < 1.55 TeV

ATLAS projected reach:

14 TeV, 3000 fb⁻¹ : 5σ disc. $m_{\tilde{q}} \lesssim 1.4$ TeV 2σ excl. $m_{\tilde{q}} \lesssim 2.2$ TeV

discovery prospects getting super slim

charm tagging:

- can we use charm tagging to improve discovery prospects?
 - most challenging: heavy gluino smallest production cross-section
 - not necessarily supersymmetry: any ``quark-partners" with decays to jets+MET
- beyond discovery: if 2j+MET excess: what is it?
 - is it supersymmetry?
 - if supersymmetry: how many squarks are we seeing?
 - gluino mass (future colliders)?

experimentally: charm tagging is more difficult than b tagging

theoretically: charm tagging, bottom tagging give different sorts of information

the 3rd generation is special: stop, sbottom may have different mass from other squarks (more generally for top, bottom partners)

but squark masses may be 1st-2nd generation flavor blind (at least approximately)

charm tagging probes this 1-2 structure

a few words on charm tagging:

CMS

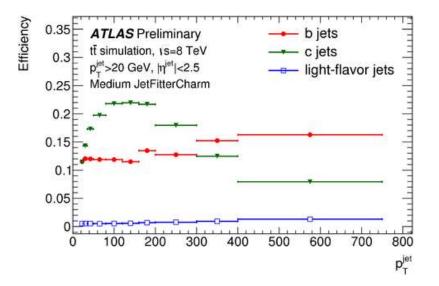
Identification of c-quark jets at the CMS experiment PAS BTV-16-001

- MVA-based discriminator
 - displaced tracks
 - secondary vertices
 - soft leptons
- calibration on W+c, top quark pairs (13 TeV, first year of Run II, 2.6 fb^(-1))

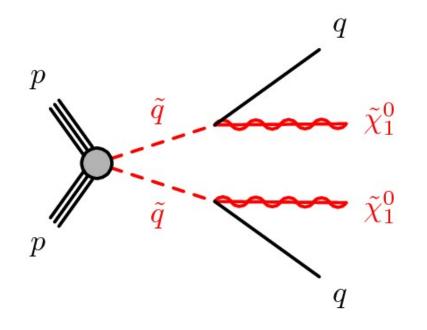
WP	ϵ^{c}	ϵ^b	ϵ^{light}	CvsL	CvsB
c-tagger L	0.9	0.45	0.99	> -0.67	>-0.23
c-tagger M	0.39	0.26	0.19	> 0.05	> -0.16
c-tagger T	0.2	0.24	0.02	> 0.45	> -0.35

ATLAS

Performance and Calibration of the JetFitterCharm Algorithm for c-Jet Identification


• impact parameter

ATL-PHYS-PUB-2015-001

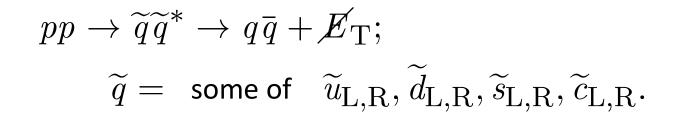

- secondary-vertex (reconstruct b to c decay vtx: especially useful for b vs c)
- calibration multi-jet events with reconstructed D mesons, t-tbar pairs

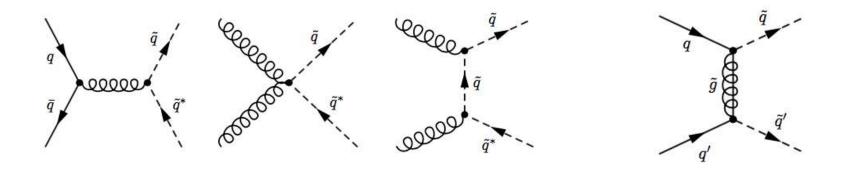
working point: 19% 13% 0.5%

more work currently ATLAS: IBL + machine learning

back to: squark production

simplified model with 1st+2nd generation squarks, gluino, bino LSP


assume:

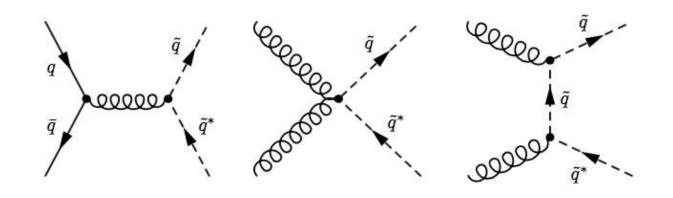

- squarks of the same gauge quantum numbers are degenerate; but some hierarchies may exist between up/down, L/R
- only the **lightest** (degenerate) squarks can be produced at the LHC (requires only mild hierarchies)
- the gluino is very heavy: cannot be produced at LHC

3 benchmark scenarios:

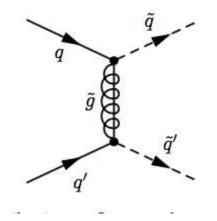
•
$$N_{\widetilde{q}} = 2$$
 : \widetilde{u}_{R} , \widetilde{C}_{R}
• $N_{\widetilde{q}} = 4$: \widetilde{u}_{R} , \widetilde{c}_{R} , \widetilde{d}_{R} , \widetilde{s}_{R}
• $N_{\widetilde{q}} = 8$: all the 8 squarks

can be produced at the LHC

standard searches:

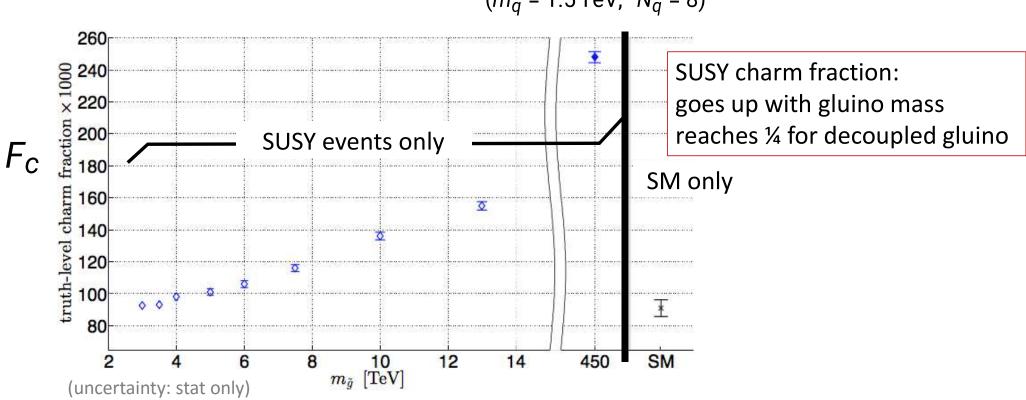

number of events passing 2j+MET selection:

$$\sigma = \sigma(m_{\widetilde{q}}, m_{\widetilde{g}}, N_{\widetilde{q}})$$

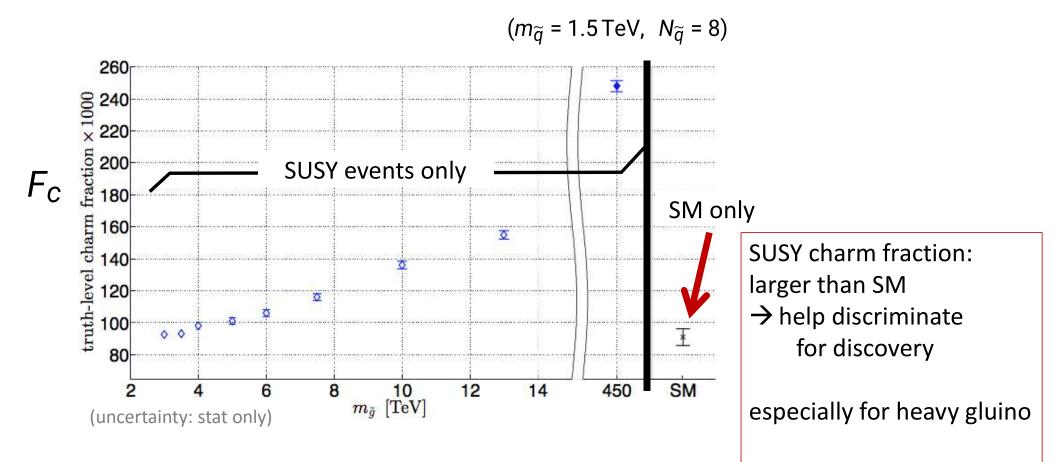

+ kinematic info, eg:
$$m_{T2} \leq m_{T2}^{\text{endpoint}}(m_{\widetilde{q}}, m_{\text{LSP}})$$

$$\left(\approx \frac{m_{\widetilde{q}}^2 - m_{\text{LSP}}^2}{m_{\widetilde{q}}} \right)$$

charm tagging: a handle on flavor (in 1st-2nd generation):


flavor dependent: dominated by valence (s)quarks and \rightarrow large (decouples slowly with gluino mass)

charm content of sample: sensitive to gluino mass large for heavy gluino


CHARM FRACTION:

$$F_c := \frac{N(\text{c-tagged jet})}{N(\text{jet})}$$

with an ideal tagger (100% efficiency, no mistags):

 $(m_{\widetilde{q}}$ = 1.5 TeV, $N_{\widetilde{q}}$ = 8)

analysis details:

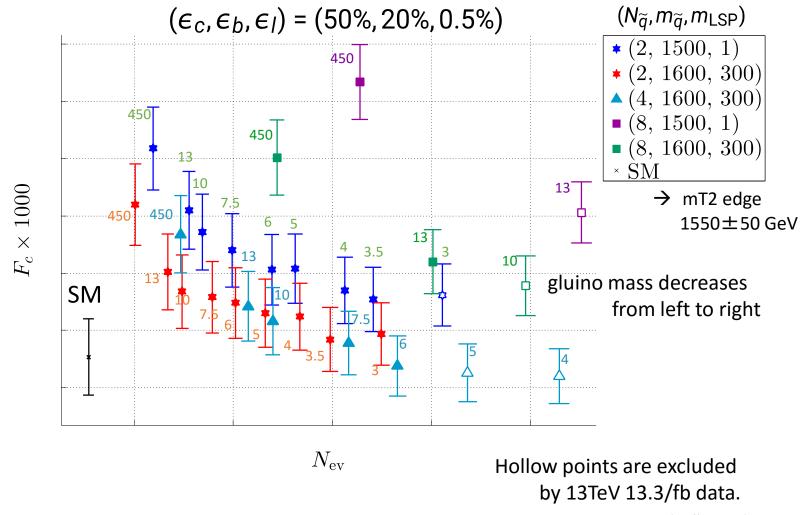
simulate squark pair production + decay following ATLAS 2jet+MET analyses:

- (HL)LHC: ATLAS HL-LHC (PHYS-PUB-2014-010; Meff-2j-3100)
- current exclusions: ATL-CONF-2016-078 (Meff-2j-2000)

		Meff-2j-2000	Meff-2j-3100
Number of jets, electrons,	$\geq 2,=0,=0$		
$\not\!\!{E}_{ m T}$ [GeV]	>	250	<mark>16</mark> 0
$p_{\mathrm{T}}(j_1), p_{\mathrm{T}}(j_2) \; [\mathrm{GeV}]$	>	250, 250	160, 60
$ \eta(j_1,j_2) $	<	1.2	
$\Delta \phi(j_{1,2,(3)}, \not\!\!\! E_{\mathrm{T}})_{\min}$	>	0.8	0.4
$\Delta \phi(j_{i>3}, { ot\!\!{E}_{ m T}})_{ m min}$	>	0.4	0.2
${\not\! E}_{ m T}/\sqrt{H_{ m T}}~[{ m GeV}^{1/2}]$	>	20	15
$m_{ m eff}(m incl.)~[m GeV]$	>	2000	3100

- SUSY and SM by MG5+Pythia6/taoula+Delphes3.3.0
- SUSY: prospino NLO
- SM: rescaling wrt ATLAS simulation

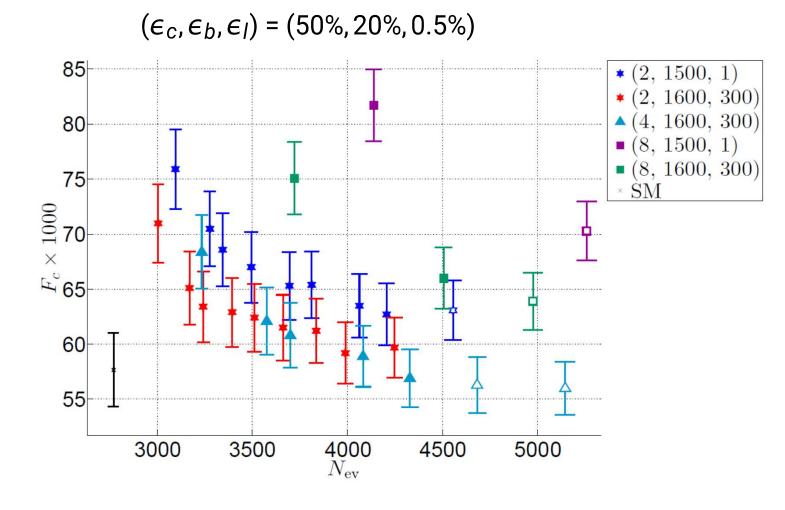
SM background:


```
3100Meff: Z (invisible) + jets
[2100Meff: also W (hadronic tau, or lost lepton) + jets]
```

in principle: Z (invisible) + jets and its charm content can be measured via Z (I+I-) + jets

gedunken charm-tagging:

take 2 hardest jets in each event:


- for each jet: go to truth-level Pythia output and check whether jet contains b, c → label jet as b, c, light accordingly
- multiply numbers by efficiency/mistag rate

ATL-CONF-2016-078 (Meff-2j-2000)

uncertainty: stat only, *y*-axis only

DISCOVERY

uncertainty: stat only, **y-axis only**

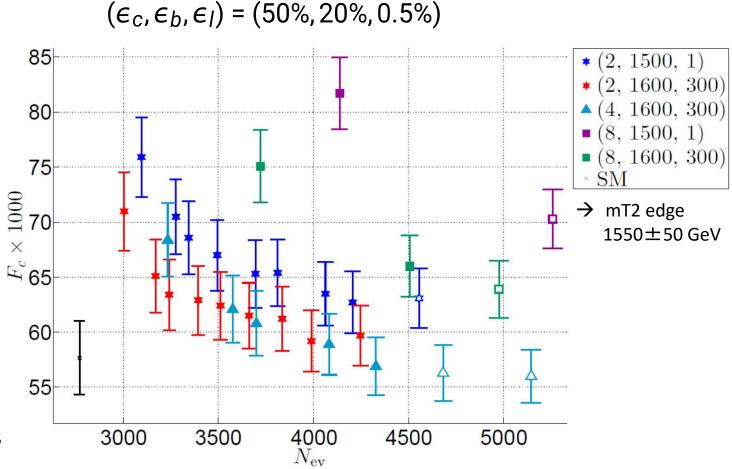
standard analyses: x-axis only: with ~10% uncertainty: discovery challenging

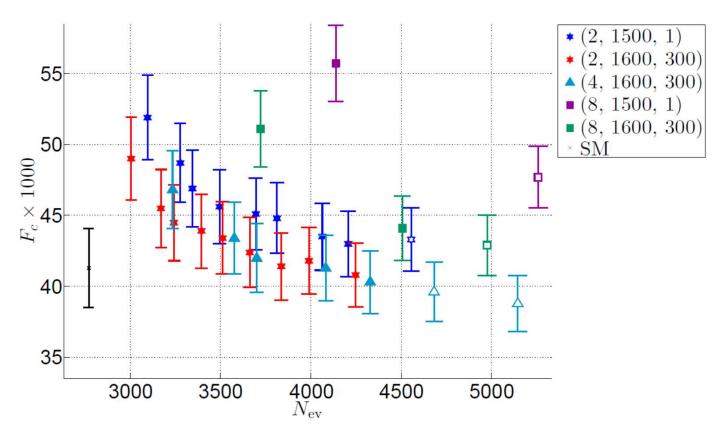
charm fraction increases sensitivity

many systematic errors cancel in ratio:

85 (2, 1500, 1)(2, 1600, 300)(4, 1600, 300)80 (8, 1500, 1)(8, 1600, 300)75 \times SM $F_c \times 1000$ 60 55 3000 3500 4000 4500 5000 $N_{\rm ev}$

 $(\epsilon_c, \epsilon_b, \epsilon_l) = (50\%, 20\%, 0.5\%)$


** systematic uncertainty on charm tagging; PDFs


post-DISCOVERY

with x-axis only: can't discriminate between different models

charm fraction: helps break degeneracy

discriminate between ``no gluino" and below 10TeV : syst uncertainties on c-tagging crucial

 $(\epsilon_c, \epsilon_b, \epsilon_l) = (30\%, 20\%, 0.5\%)$

To conclude

what's going on at the weak scale?

charm tagging provides a novel handle

SM measurements and NP searches are both interesting

- Z+charm cross section CMS-PAS-SMP-15-009
- charm squark search $(pp \rightarrow \widetilde{C}\widetilde{C}^*)$ ATLAS [1501.01325]
- Higgs charm Yukawa (Higgs to c cbar) Perez, Soreq, Stamou, Tobioka [1505.06689]
- compressed top squark $(pp \rightarrow \tilde{t}\tilde{t}^*, \tilde{t} \rightarrow c + \not \in_T)$ ATLAS [<u>1407.0608</u>], CMS [<u>CMS-PAS-SUS-13-009</u>]

o flavored naturalness top-charm mixing Giudice, Paradisi, Perez, Zupan [1302.7232]

here:

additional handle for squark searches

if discovered: what is it? are there additional particles beyond LHC?

- how many squarks?
- gluino mass?
- Dirac vs Majorana?
- flavor: if small mass splittings \rightarrow mixings:

 $pp \rightarrow \widetilde{u}\widetilde{c}^* \rightarrow u\overline{c} + \not E_T$

Thank you!