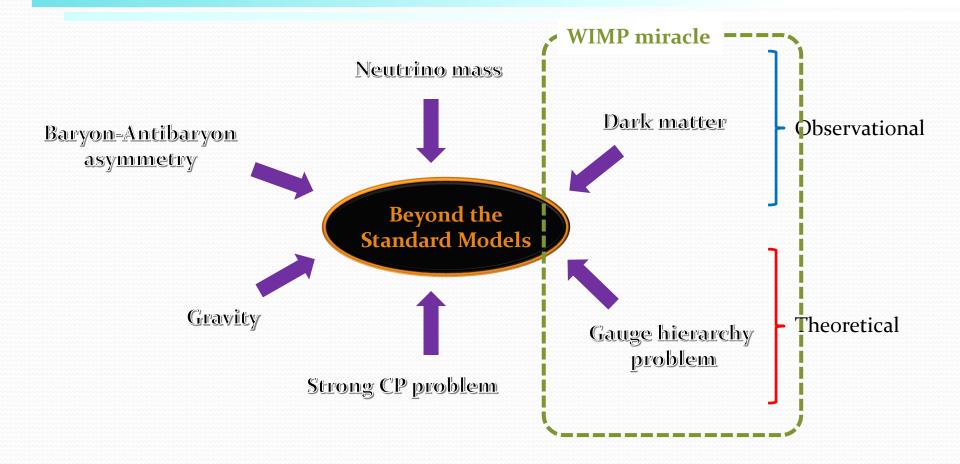

Ittes

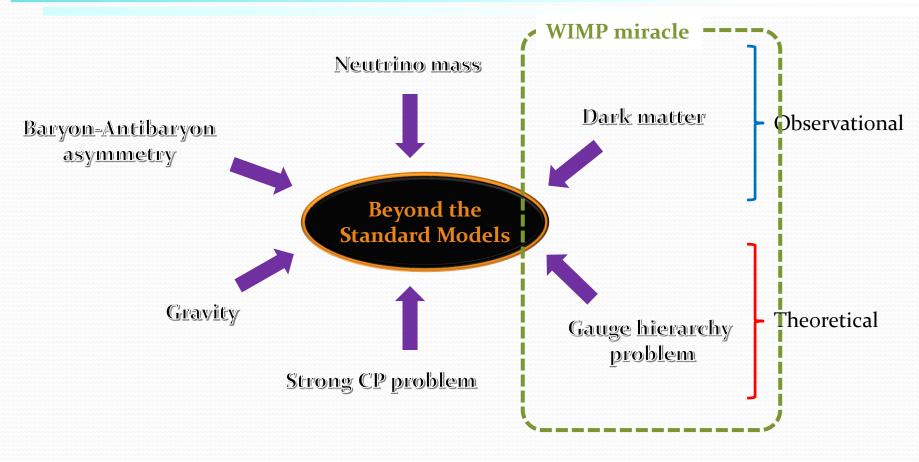
Physics Opport


Doojin Kim Korea-CERN Workshop at Jeju, Korea June 1st, 2017

Based on DK, J.-C. Park, and S. Shin, arXiv:1612.06867 G. Giudice, DK, J.-C. Park, S. Shin, ..., in progress

Need for New Physics

Need for New Physics at Weak/TeV Scale



Doojin Kim, CERN Theory Department

Korea-CERN Workshop

-2-

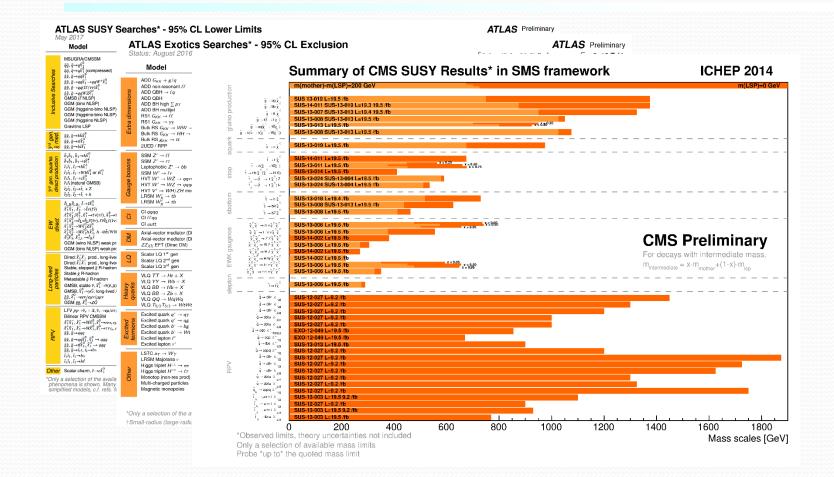
Need for New Physics at Weak/TeV Scale

Many experiments/searches targeting at Weak/TeV scale

Model			Tamico					$\sqrt{s} = 7, 8, 13 \text{ TeV}$
Model	e, μ, τ, γ	Jets	E _T	J£ d1[fb]	Mass limit	$\sqrt{s} = 7, 8$	TeV $\sqrt{s} = 13$ TeV	Reference
φ ₀ ∂ → φ ² φ ₁ ∂ → φ ² δ ₁ ∂ → φ ² δ ₂ ∧ → φ ² δ ₂ ∧ → qφ ² γ ² δ ₂ ∧ → qφ ² γ ² δ ₃ ∧ → qφ ² γ ² γ ² δ ₃ ∧ → qφ ² γ ² γ ² ∧ → qφ ² γ	$\begin{array}{c} 0.3 \ e, \mu/1\cdot 2 \ \tau & 3 \\ 0 \\ mono-jet \\ 0 \\ 3 \ e, \mu \\ 0 \\ 1\cdot 2 \ \tau + 0\cdot 1 \ \ell \\ 2 \ \gamma \\ \gamma \\ 2 \ e, \mu \ (Z) \\ 0 \end{array}$	2-6 jets 1-3 jets 2-6 jets 2-6 jets 4 jets 7-11 jets	Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes	20.3 36.1 36.1 36.1 36.1 36.1 36.1 3.2 20.3 13.3 20.3 20.3	2 2 900 GeV	2.02 TeV 2.01 TeV 1.825 TeV 1.8 TeV 2.0 TeV 1.65 TeV	m(i)+++(i) m(i)++2(i) GeV ((i)* pct, i)* pct, i) m(i)+2(i) GeV m(i)+2(i) GeV m(i)+2(i)+2(i)++(i)+(i)++(i)++(i)++(i)++(1507.05527 ATLAS-CONF-2017.022 (56.07)*2017.022 ATLAS-CONF-2017.022 ATLAS-CONF-2017.020 ATLAS-CONF-2017.020 ATLAS-CONF-2017.030 1507.05570 4507.05770 4507.05700 4507.057700 4507.057700 4507.057700 4
$\tilde{g}\tilde{g}, \tilde{g} \rightarrow tt\tilde{\chi}_{1}^{0}$	0 0-1 e,μ 0-1 e,μ	3 h 3 h 3 b	Yes Yes Yes	36.1 36.1 20.1	े इ हे	1.92 TeV 1.97 TeV 1.37 TeV	m(x ⁰)<800 GeV m(x ⁰)<200 GeV m(x ⁰)<300 GeV	ATLAS-CONF-2017-021 ATLAS-CONF-2017-021 1407.0600
$b_1 b_1, b_1 \rightarrow k \tilde{k}_1^+$ $\bar{l}_1 \bar{l}_1, \bar{l}_1 \rightarrow k \tilde{k}_1^+$ $\bar{l}_1 \bar{l}_1, \bar{l}_1 \rightarrow k \tilde{k}_1^0$ or $i \tilde{k}_1^0$ $\bar{l}_1 \bar{l}_1, \bar{l}_1 \rightarrow k \tilde{k}_1^-$ $\bar{l}_1 \bar{l}_1, \bar{l}_1 \rightarrow k \tilde{l}_1$ $\bar{l}_2 \bar{l}_2, \bar{l}_2 \rightarrow \bar{l}_1 + Z$	$\begin{array}{c} 0 \\ 2 e, \mu (\mathrm{SS}) \\ 0.2 e, \mu \\ 0.2 e, \mu \\ 0 \\ 2 e, \mu (Z) \\ 3 e, \mu (Z) \\ 1.2 e, \mu \end{array}$	2 h 1 b 1-2 b 0-2 jets/1-2 h mono-jet 1 b 1 b 4 h			r, 117-170 GeV 200-720 GeV r, 90-198 GeV 205-950 GeV r, 90-323 GeV 205-950 GeV r, 10-600 GeV r, 10-600 GeV		$\begin{split} m(\xi^{0}_{1}) &= 420 \ \text{GeV} \\ m(\xi^{0}_{1}) &= 2200 \ \text{GeV}, \ m(\xi^{0}_{2}) &= m(\xi^{0}_{1}) \pm 100 \ \text{GeV} \\ m(\xi^{0}_{1}) &= m(\xi^{0}_{1}) = 35 \ \text{GeV} \\ m(\xi^{0}_{1}) &= 16 \ \text{GeV} \\ m(\xi^{0}_{1}) &= 150 \ \text{GeV} \\ m(\xi^{0}_{1}) &= 100 \ \text{GeV} \end{split}$	ATLAS-CONF-2017-038 ATLAS-CONF-2017-030 1292/12/6, TLAS-CONF-2016-077 1566.08616, ATLAS-CONF-2017-020 1604.07773 1403.5222 ATLAS-CONF-2017-019 ATLAS-CONF-2017-019
$\begin{split} &\tilde{x}_1^*\tilde{x}_1^*\tilde{x}_2^*\tilde{x}_3^*\to\tilde{x}_1(t\gamma), \tilde{x}_2^0\to\tilde{\tau}_1(\gamma)), \tilde{x}_2^0\to\tilde{\tau}_1(\gamma))\\ &\tilde{x}_1^*\tilde{x}_1^*\tilde{x}_2^*\tilde{x}_3^*(t\gamma), \tilde{y}_2^*\tilde{x}_2(t\gamma))\\ &\tilde{x}_1^*\tilde{x}_3^*\to W\tilde{x}_2^*(t\gamma), \tilde{x}_2^*\tilde{x}_3^*(t\gamma), \tilde{x}_3^*\tilde{x}_3^*(t\gamma), \tilde{x}_3^*(t\gamma), \tilde{x}$		0 0 -0 0-2 jets 0-2 b 0 	Yes Yes Yes Yes Yes Yes Yes Yes	36.1 36.1 36.1 36.1 20.3 20.3 20.3 20.3 20.3	k ² 1.κ ² 580 GeV k ² 1.κ ² 270 GeV k ² 2		$m(\tilde{k}_1^+)-m(\tilde{k}_2^0), m(\tilde{k}_2^0)=0, \tilde{\ell}$ decoupled $m(\tilde{k}_1^+)-m(\tilde{k}_2^0), m(\tilde{k}_2^0)=0, \tilde{\ell}$ decoupled	ATLAS-CONF-2017-039 ATLAS-CONF-2017-039 ATLAS-CONF-2017-035 ATLAS-CONF-2017-039 ATLAS-CONF-2017-039 1501.07110 1405.5086 1307.05483
Direct $\hat{X}_1^* \hat{X}_1^-$ prod., long-lived \hat{X}_1^+ Stable, stopped \hat{g} R-hadron Metastable \hat{g} R-hadron GMSB, $\hat{s}_1^0 \rightarrow y \hat{c}$, long-lived $\hat{X}_1^0 \rightarrow g \hat{c}$.			Yes Yes - - Yes - Yes	36.1 18.4 27.9 3.2 19.1 20.3 20.3 20.3	27 430 GeV 27 485 GeV 28 850 GeV 29 537 GeV 29 440 GeV 21 10 TeV 21 10 TeV	1.58 TeV 1.57 TeV	$\begin{split} m(\tilde{t}_1^2) + m(\tilde{t}_1^2) &= 160 \ \text{MeV}, \tau(\tilde{t}_1^2) = 0.2 \ \text{ns} \\ m(\tilde{t}_1^2) + m(\tilde{t}_1^2) &= 160 \ \text{MeV}, \tau(\tilde{t}_1^2) &= 15 \ \text{ns} \\ m(\tilde{t}_1^2) &= 100 \ \text{GeV}, 10 \ \mu \text{s} &= \tau(\tilde{g}) < 100 \ \text{s} \\ 10 \ \text{ctarget} < 0 \ \text{ns} \\ 10 \ \text{ns} \\ 10 \ \text{ctarget} < 0 \ \text{ns} \\ 10 \ \text{ctarget} < 0 \ \text{ns} \\ 10 \ \text{ns} $	ATLAS-CON-2017-017 1506.00532 131.6584 1606.0129 1004.04520 1411.6785 1429.5542 1594.05162
LFV $pp \rightarrow br$, $+X$, $p_{r} \rightarrow e\mu/er/\mu\tau$ Biinear RPV CMSSM $R_{1}^{*}R_{1}^{*}$, $R_{1}^{*} \rightarrow WR_{2}^{*}$, $R_{1}^{*} \rightarrow eres$, $eper, eper, eper, eper, eper, R_{2}^{*}, R_{1}^{*} \rightarrow WR_{2}^{*}, R_{1}^{*} \rightarrow eres, eper, eper, R_{2}^{*}, R_{2}^{*} \rightarrow WR_{2}^{*}, R_{1}^{*} \rightarrow eres, R_{2}^{*}, R_{2}^{*} \rightarrow R_{1}^{*}, R_{1}^{*} \rightarrow qaqR_{2}^{*} \rightarrow R_{1}^{*}, R_{1}^{*} \rightarrow qaq$	04- 1 ε.μ 8- 1 ε.μ 8-	5 large- <i>R</i> je -10 jets/0-4 -10 jets/0-4	b - b -	3.2 20.3 13.3 20.3 14.8 14.8 36.1 36.1 36.1 15.4 36.1	21 450 GeV 1.08 Te 2 1.08 Te 2 3 3 5 1, 410 GeV 450-510 GeV	V 1.55 TeV 2.1 TeV 1.85 TeV	$\begin{split} & d_{311}^{-}=0.11, \mathcal{A}_{132,1332,335}=0.07 \\ & m(\delta)=m(\delta), \pi \pi_{210}< 1 \mathrm{mm} \\ & m(\delta)=0.02, m(\delta)=0.02 \\ & m(\delta)=0.02 \\ & m(\delta)=0.02 \\ & m(\delta)=0.00 \\ & m(\delta)=0$	1607.08079 1401.2300 ATLAS-CONF-2016-075 1405.5086 ATLAS-CONF-2016-067 ATLAS-CONF-2016-067 ATLAS-CONF-2017-013 ATLAS-CONF-2017-013 ATLAS-CONF-2017-013 ATLAS-CONF-2016-028 ATLAS-CONF-2016-028
Scalar charm, $\tilde{c} \rightarrow c \tilde{t}_{\perp}^{0}$	0	2 c	Yes	20.3	2 510 GeV		m(k ⁿ ₁)<200 GeV	1501.01325
	$\begin{array}{l} \operatorname{GOM}(\operatorname{hild} \operatorname{NR},\operatorname{SP}) \operatorname{weak}(\operatorname{pot}, \operatorname{for}^{-1}) \\ \operatorname{Direct}(\mathcal{F}_{1}^{-1}) \operatorname{cot}(\operatorname{sch})\operatorname{weak}(\mathcal{F}_{2}^{-1}) \\ \operatorname{Direct}(\mathcal{F}_{1}^{-1}) \operatorname{cot}(\operatorname{pot})\operatorname{weak}(\mathcal{F}_{2}^{-1}) \\ \operatorname{Direct}(\mathcal{F}_{1}^{-1}) \operatorname{pot}(\operatorname{pot}) \\ \operatorname{Situle}_{\mathcal{F}} + \operatorname{Situl}(\operatorname{pot}) \\ \operatorname{Situle}_{\mathcal{F}} + $	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$32, 3-40^2_1 - qerty V^2_1$ 0 2-6 pins Wei 22.3 PW 22.3 PW 22.3 PW 22.3 PW 22.3 PW 22.1 PW 23.1 PW 2	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

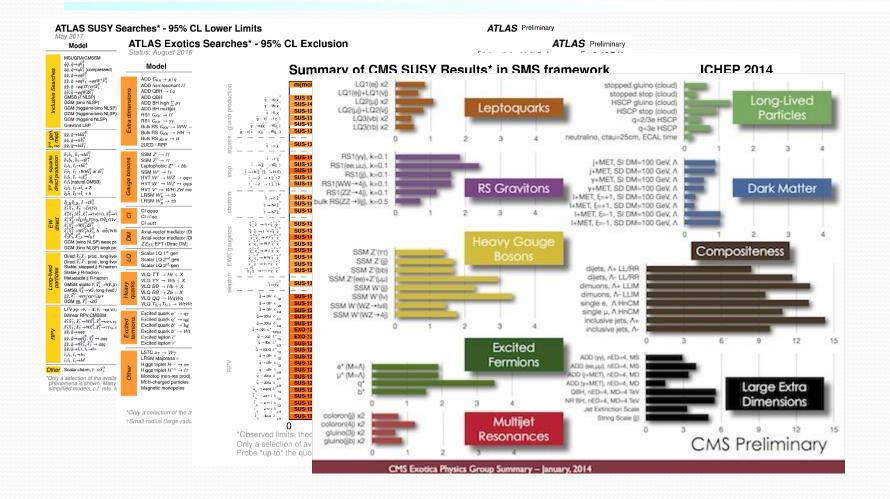
Doojin Kim, CERN Theory Department

Korea-CERN Workshop

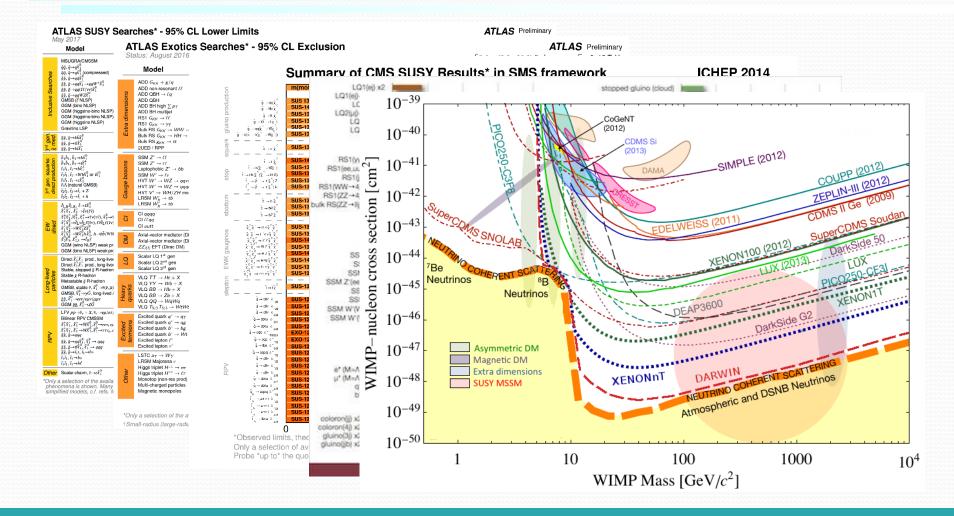

-4-

May 2017 Model	ATLAS Exotics S Status: August 2016		ATLAS Preliminar					
MSUGRA/CMSSM $\bar{q}\bar{q}, \bar{q} \rightarrow q\bar{k}_{1}^{0}$ $\bar{q}\bar{q}, \bar{q} \rightarrow q\bar{k}_{1}^{0}$ (compressed)	Model	ℓ,γ Jets∻E ^{mi} ⊤			່∫£dt[fb	∫£ dt -	= (3.2 - 20.3) fb ⁻¹	$\sqrt{s} = 8, 13 \text{ TeV}$ Reference
30 40, i − + 4ζ (nopressed) 82, k − 4 − 4ζ (nopressed) 40 − 4ζ (nopressed) 82, k − 4 − 4ζ (nopressed) 40 − 4ζ (nopressed) 93 52, k − 4 − 4ζ (nopressed) 94 6 − 4ζ (nopressed) 95 52, k − 4 − 4ζ (nopressed) 95 52, k − 4 − 4ζ (nopressed) 96 63, k − 4 − 4ζ (nopressed) 97 63, k − 4 − 4ζ (nopressed) 98 64, more NLSP) 66M (friggatino-bino NLSP) 97 67, more NLSP) 67, more NLSP) 98 67, more NLSP) 67, more NLSP) 97 67, more NLSP) 67, more NLSP)	ADD $G_{KK} + g/q$ ADD non-resonant $\ell\ell$ ADD QBH $\rightarrow \ell q$ ADD QBH $\rightarrow \ell q$ ADD QBH $\rightarrow l q$ ADD BH multiple BSH $G_{KK} \rightarrow \ell \ell$ BSH $G_{KK} \rightarrow \ell \ell$ BSH $G_{KK} \rightarrow \ell \ell$ BSH $G_{KK} \rightarrow \ell \ell$	- 2 e,μ 1 e,μ ≥ 1 e,μ - 2 e,μ 2 y 1 e,μ	≥1j - 1j 2j ≥2j ≥3j - - 1J	Yes - - - - - Yos	3.2 20.3 15.7 3.2 3.6 20.3 3.2 13.2	6.58 TeV 4.7 TeV 5.2 TeV 5.2 TeV 5.2 TeV 5.2 TeV 5.5 T	$n = 6, M_D = 3$ TeV, rot BH $n = 6, M_D = 3$ TeV, rot BH $k/\overline{M}_{FT} = 0.1$ $k/\overline{M}_{FT} = 0.1$ $k/\overline{M}_{FT} = 1.0$	1604.07773 1407.2410 1311.2006 ATLAS-CONF-2016-069 1606.2265 1512.02586 1405.4123 1606.03833 ATLAS-CONF-2016-062
200 200 200 200 200 200 200 200	Bulk RS $G_{KK} \rightarrow HH \rightarrow bbbb$ Bulk RS $g_{KK} \rightarrow tt$ 2UED / RPP	- 1 e,μ 1 e,μ	4 b ≥ 1 b, ≥ 1J/2 ≥ 2 b, ≥ 4 j		13.3 20.3 3.2	360-860 GeV 2.2 TeV 1.46 TeV	$k/\overline{M}_{Pl} = 1.0$ BR = 0.925 Tier (1,1), BR($A^{(1,1)} \rightarrow tt$) = 1	ATLAS-CONF-2016-049 1505.07018 ATLAS-CONF-2016-013
$ \begin{array}{c} \tilde{b}_{1}\tilde{b}_{1},\tilde{b}_{1}\rightarrow b\tilde{k}_{1}^{0}\\ \tilde{b}_{1}\tilde{b}_{1},\tilde{b}_{1}\rightarrow d\tilde{k}_{1}^{0}\\ \tilde{b}_{1}\tilde{b}_{1},\tilde{b}_{1}\rightarrow d\tilde{k}_{1}^{0}\\ \tilde{t}_{1}\tilde{b}_{1},\tilde{b}_{1}\rightarrow b\tilde{k}_{1}^{0}\\ \tilde{t}_{1}\tilde{b}_{1},\tilde{b}_{1}\rightarrow b\tilde{k}_{1}^{0}\\ \tilde{t}_{1}\tilde{b}_{1},\tilde{c}_{1}\rightarrow b\tilde{k}_{1}^{0}\\ \tilde{t}_{1}\tilde{c}_{1},\tilde{c}_{1}-d\tilde{k}_{1}^{0}\\ \tilde{t}_{1}\tilde{c}_{1},\tilde{c}_{1}-d\tilde{k}_{1}^{0}\\ \tilde{t}_{1}\tilde{c}_{1},\tilde{c}_{2}-d\tilde{t}_{1}\\ \tilde{t}_{1}\tilde{c}_{1},\tilde{c}_{2}-\tilde{t}_{1}+k\\ \tilde{t}_{2}\tilde{t}_{1},\tilde{t}_{2}\rightarrow\tilde{t}_{1}+k\\ \end{array}$	ULE LE SM $W'_{p} \rightarrow tb$	B – multi-channe 1 e,μ	2 b, 0-1 j		13.3 19.5 3.2 13.3 13.2 15.5 3.2 20.3	4 05 TeV 2.02 TeV 1.5 TeV 1.5 TeV 4.74 TeV 2.4 TeV 3.0 TeV 2.3 T TeV 1.32 TeV	$g_V = 1$ $g_V = 3$ $g_V = 3$	ATLAS-CONF-2016-045 1502.07177 1603.08791 ATLAS-CONF-2016-061 ATLAS-CONF-2016-052 1607.05621 1410.4103
$\begin{array}{c} \tilde{t}_{0,0}\tilde{t}_{0,1},\tilde{t} \rightarrow d\tilde{t}_{1}^{2} \\ \tilde{x}_{1}\tilde{x}_{1},\tilde{x}_{1}^{2},\tilde{x}_{1} \rightarrow d\tilde{t}_{1}^{2} \\ \tilde{x}_{1}\tilde{x}_{1}\tilde{x}_{1}^{2},\tilde{x}_{1}^{2$	Cl uutt	0 e, µ - 2 e, µ 2(SS)/≥3 e,		- - Yos	20.3 15.7 3.2 20.3	1.75 TeV 4.9 TeV	19.9 TeV $\eta_{11} = -1$ 25.2 TeV $\eta_{12} = -1$ $ C_{SR} = 1$	1408.0886 ATLAS-CONF-2018-069 1607.03669 1504.04605
	Axial-vector mediator (Dirac DM) Axial-vector mediator (Dirac DM) ZZ _{XX} EFT (Dirac DM)	0 e,μ 0 e,μ,1 γ 0 e,μ	≥1j 1j 1J,≤1j	Yes Yes Yes	3.2 3.2 3.2	1.0 TeV 710 GeV 550 GeV	g_q =0.25, g_{χ} =1.0, $m(\chi)$ < 250 GeV g_q =0.25, g_{χ} =1.0, $m(\chi)$ < 150 GeV $m(\chi)$ < 150 GeV	1604.07773 1604.01306 ATLAS-CONF-2015-080
Direct $\tilde{X}_{1}^{\dagger} \tilde{X}_{1}^{-}$ prod., long-liver Direct $\tilde{X}_{1}^{\dagger} \tilde{X}_{1}^{-}$ prod., long-liver	Scalar LQ 1 st gen Scalar LQ 2 nd gen Scalar LQ 3 rd gen	2 e 2 µ 1 c, µ	$\begin{array}{c} \geq 2 j \\ \geq 2 j \\ \geq 1 b, \geq 3 j \end{array}$	– Yes	3.2 3.2 20.3	1.1 TeV 1.05 TeV 640 GeV	$\beta = 1$ $\beta = 1$ $\beta = 0$	1605.06035 1605.06035 1508.04735
$GGM \tilde{g}\tilde{g}, \tilde{\chi}_1^{\circ} \rightarrow Z\tilde{G}$	$ \begin{array}{c} VLQ TT \rightarrow Ht + X \\ VLQ \ YY \rightarrow Wb + X \\ VLQ \ BB \rightarrow Hb + X \\ VLQ \ BB \rightarrow Hb + X \\ VLQ \ BB \rightarrow Zb + X \\ VLQ \ QQ \rightarrow WqWq \\ VLQ \ QT \rightarrow Wwwt \end{array} $	1 e, μ 1 e, μ 1 e, μ 2/≥3 e, μ 1 e, μ 2(SS)/≥3 e,	$\geq 2 b, \geq 3 j$ $\geq 1 b, \geq 3 j$ $\geq 2 b, \geq 3 j$ $\geq 2/\geq 1 b$ $\geq 4 j$ $z \geq 1 b, \geq 1 j$	Yes	20.3 20.3 20.3 20.3 20.3 3.2	855 GeV 770 GeV 735 GeV 735 GeV 950 GeV 990 GeV	T in (T,B) doublet Y in (B,Y) doublet Isospin singlet B in (B,Y) doublet	1505.04306 1505.04308 1505.04308 1409.5500 1509.04261 ATLAS-CONF-2016-032
$\begin{array}{c} & & & & \\ & & & & \\ & & & & \\ & & & & $	Excited quark $q^* \rightarrow qy$ Excited quark $q^* \rightarrow qg$ Excited quark $q^* \rightarrow gg$ Excited quark $b^* \rightarrow bg$ Excited quark $b^* \rightarrow We$ Excited lepton r^*	1 γ 1 or 2 e, μ 3 e, μ 3 e, μ, τ	1 j 2 j 1 b, 1 j 1 b, 2-0 j -	- - Yes -	3.2 15.7 8.8 20.3 20.3 20.3	4.4 TeV 2.3 TeV 2.3 TeV 1.5 TeV 1.6 TeV 1.6 TeV	only u^* and d^* , $\Lambda = m(q^*)$ only u^* and d^* , $\Lambda = m(q^*)$ $f_q = f_L = f_R = 1$ $\Lambda = 3.0$ TeV $\Lambda = 1.6$ TeV	1512.05910 ATLAS-CONF-2016-069 ATLAS-CONF-2016-060 1510.02664 1411.2921 1411.2921
$\begin{array}{c} \overline{g}_{2}, \overline{g}_{-} = \overline{i}_{1}, \overline{i}_{1} \rightarrow b s \\ \overline{i}_{1}, \overline{i}_{1}, \overline{i}_{1} \rightarrow b s \\ \overline{i}_{1}, \overline{i}_{1}, \overline{i}_{1} \rightarrow b s \end{array}$ $\begin{array}{c} \textbf{Dither} & \textbf{Scalar charm}, \overline{c} \rightarrow \overline{c}_{1}^{R} \\ \textbf{Only a selection of the availa phenomena is shown. Many simplified models, c.f. refs. ft \end{array}$	$\begin{array}{c} \text{LSTC } a_{\mathcal{T}} \rightarrow W \gamma \\ \text{LRSM Majorana } \nu \\ \text{Higgs triplet } H^{\pm\pm} \rightarrow ee \\ \text{Higgs triplet } H^{\pm\pm} \rightarrow \ell \tau \\ \text{Monotop (non-res prod)} \\ \text{Multi-charged particles} \\ \text{Magnetic monopoles} \end{array}$	1 e, μ, 1 γ 2 e, μ 2 e (SS) 3 e, μ, τ 1 e, μ -	- 2 j - 1 b -	Yes - - Yes -	20.3 20.3 13.9 20.3 20.3 20.3 7.0	960 GeV 570 GeV 400 GeV 9 particle mass 785 GeV 1.34 TeV	$\begin{split} m(W_{B}) &= 2.4 \text{ TeV, no mixing} \\ \text{DY production, } BR(H_{L}^{\text{EI}} \to ee) = 1 \\ \text{DY production, } BR(H_{L}^{\text{EI}} \to ee) = 1 \\ \text{Dy production, } BR(H_{L}^{\text{EI}} \to ee) = 1 \\ \text{By production, } explain \\ \text{DY production, } explain \\ DY $	1407.8150 1506.06020 ATLAS-CONF-2016-051 1411.2821 1410.28404 1504.04188 1509.08059

+Small-radius (large-radius) jets are denoted by the letter j (J).


Doojin Kim, CERN Theory Department

-5-


-6-

Doojin Kim, CERN Theory Department

-7-

Doojin Kim, CERN Theory Department

Doojin Kim, CERN Theory Department

Korea-CERN Workshop

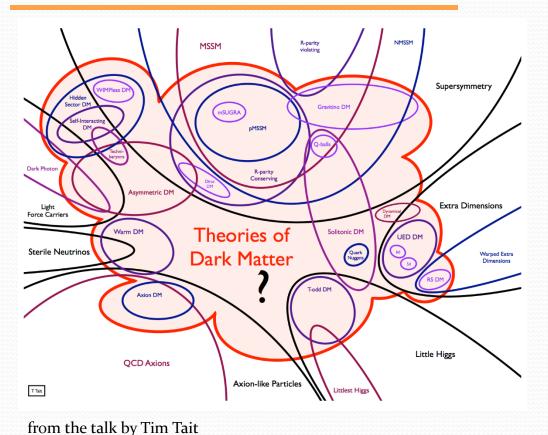
-8-

Effort Further

"Attacking" every single corner of parameter space in new physics models and/or probing unexplored territories

- Filling missing gaps (e.g., compressed mass spectra)
- Displaced vertex searches (e.g., MATSULA), disappearing tracks
- Exotic final states (e.g., tri-boson searches, "dark" showering)
- SM precision studies (e.g., top quark sector, higgs sector)
- Improving signal sensitivity in DM direct detection experiments
- Light mediators (e.g., dark photon) and their "relatives" searches
- Ultra-light dark matter searches (e.g., CCD, semi-conductors)
- New satellites with better energy resolution
- Many more part of which will be covered at this workshop!

Effort Further

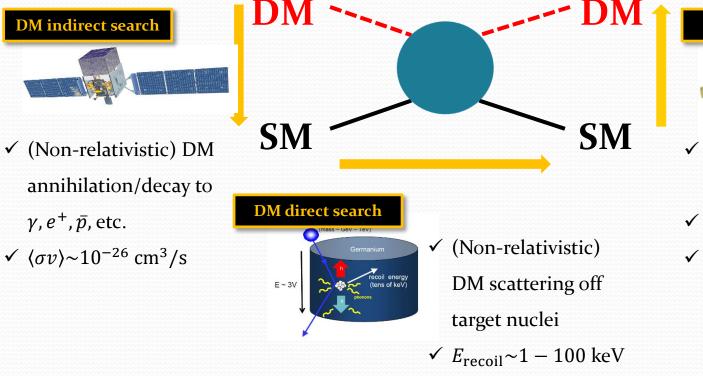

"Attacking" every single corner of parameter space in new physics models and/or probing unexplored territories

- Filling missing gaps (e.g., compressed mass spectra)
- Displaced vertex searches (e.g., MATSULA), disappearing tracks
- Exotic final states (e.g., tri-boson searches, "dark" showering)
- SM precision studies (e.g., top quark sector, higgs sector)
- Improving signal sensitivity in DM direct detection experiments
- Light mediators (e.g., dark photon) and their "relatives" searches
- Ultra-light dark matter searches (e.g., CCD, semi-conductors)
- New satellites with better energy resolution
- Many more part of which will be covered at this workshop!

Dark sector particle (including DM) searches at dark matter "colliders"

Dark Matter Models

Various DM models

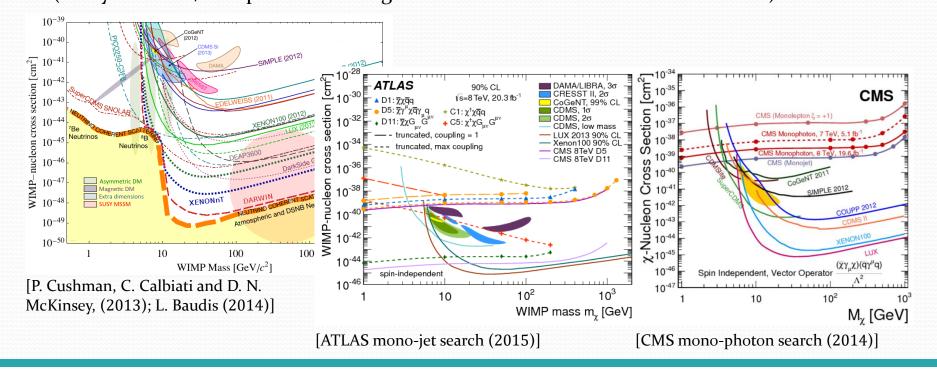


 Many dark matter simplified models or new physics models including a dark matter candidate proposed

- ✤ Supersymmetric
- Extra-dimensional
- ✤ Low-energy effective
- ✤ Many others ...
- Many of them constructed under the minimality assumption (as we know very little about DM)

"Minimal" Dark Sector

"Minimal" phenomenological implications in the context of dark matter detection under minimal dark matter scenarios



- Active DM production at colliders
- ✓ Mono-X searches
- ✓ Expected rate inferred from/related to $\langle \sigma v \rangle \sim 10^{-26} \text{ cm}^3/\text{s}$

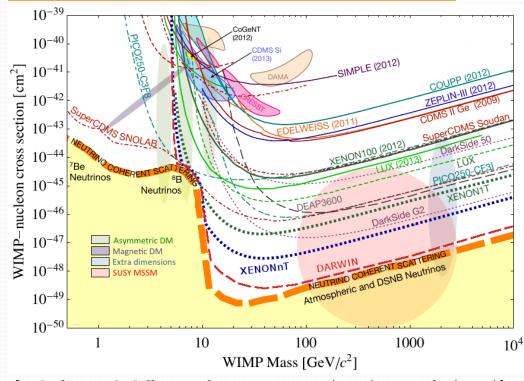
Dark Matter Searches

Current status

□ **No "unambiguous" observation** of DM signatures via non-gravitational interactions (many searches/interpretations designed under minimal dark-sector scenarios)

Dark Matter Direct Detection

Current status



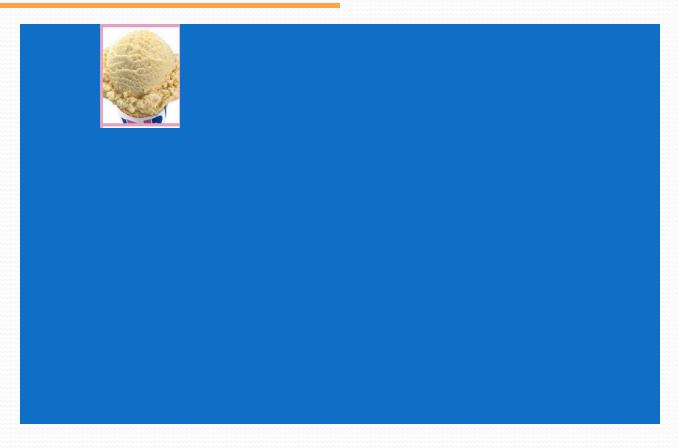
[P. Cushman, C. Calbiati and D. N. McKinsey, (2013); L. Baudis (2014)]

- Weakly Interacting Massive Particles
 (WIMPs): a well-motivated DM
 candidate (motivated by DM relic
 measurement and weak-scale new
 physics models)
- □ Different exp. → Different tech. → Different sensitivity
- A wide range of parameter space probed already and facing eventually irreducible neutrino backgrounds

Dark Matter Direct Detection

Current status

[P. Cushman, C. Calbiati and D. N. McKinsey, (2013); L. Baudis (2014)]


- Weakly Interacting Massive Particles
 (WIMPs): a well-motivated DM
 candidate (motivated by DM relic
 measurement and weak-scale new
 physics models)
- □ Different exp. \rightarrow Different tech. \rightarrow Different sensitivity
- A wide range of parameter space probed already and facing eventually

irreducible neutrino backgrounds

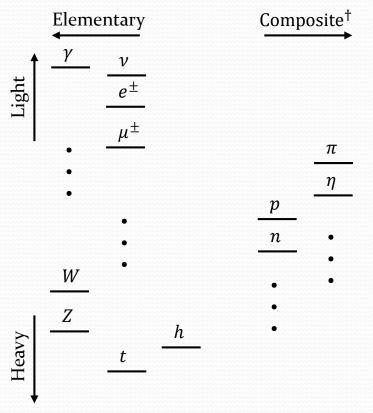
New search schemes needed!

"Minimal" vs. "Non-minimal"

"Vanilla" vs. "Flavorful"

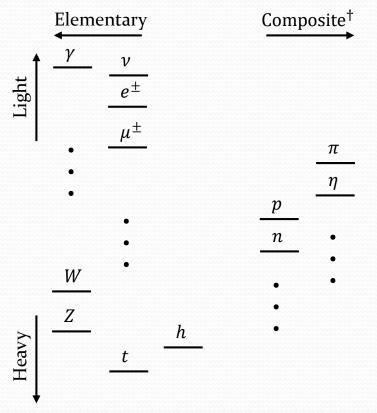
Doojin Kim, CERN Theory Department

"Minimal" vs. "Non-minimal"


"Vanilla" vs. "Flavorful"

"Flavorful" Dark Sector

• Why flavorful? Flavorful SM!


†: here meaning the particles made of elementary ones

□ Various particles in the SM sector

Doojin Kim, CERN Theory Department

"Flavorful" Dark Sector

Why flavorful? Flavorful SM!

†: here meaning the particles made of elementary ones

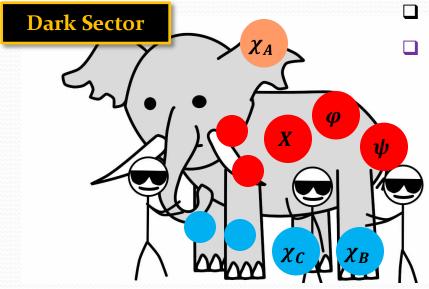

Various particles in the SM sector

 ✓ Multiple stable particles → interesting physics from other stable members which are not difficult to detect albeit not dominant (proton is dominant in the visible sector)

Doojin Kim, CERN Theory Department

"Flavorful" Dark Sector

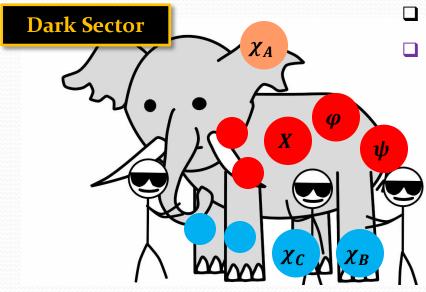
Why flavorful? Flavorful SM!


^{†:} here meaning the particles made of elementary ones

□ Various particles in the SM sector

- ✓ Multiple stable particles → interesting physics from other stable members which are not difficult to detect albeit not dominant (proton is dominant in the visible sector)
 - ✓ Many heavier (unstable) states →
 interesting signatures/phenomenology
 stemming from their decays (e.g., at
 lepton/hadron colliders)

"Flavorful" Dark-sector Scenarios


In what sense?

- $\Box \quad \chi_A: \text{ dominant relic (as in the minimal setup)}$ $\Box \quad \text{More members in the dark sector}$
 - Unstable members, say ψ, φ, X, ... (e.g., cosmic ray excess interpretations [DK and J.-C.
 Park (2015)])
 - ✓ More dark matter species, say χ_B , χ_C ... (e.g., dynamical dark matter models [K. Dienes and B. Thomas, (2011)])

"Flavorful" Dark-sector Scenarios

In what sense?

Rising interest

- $\Box \quad \chi_A: \text{ dominant relic (as in the minimal setup)}$ $\Box \quad \text{More members in the dark sector}$
 - ✓ Unstable members, say ψ , φ , X, ... (e.g., cosmic ray excess interpretations [**DK** and J.-C. Park (2015)])
 - More dark matter species, say χ_B, χ_B ... (e.g., dynamical dark matter models [K. Dienes and B. Thomas, (2011)])
- Boosted dark matter scenarios [K. Agashe et al., (2014); K. Kong, G. Mohlabeng, J.-C. Park (2014)]
- Assisted freeze-out mechanism [G. Belanger and J.-C. Park (2011)]
- Dark matter "transporting" mechanism [DK, J.-C. Park and S. Shin (2017)]

Doojin Kim, CERN Theory Department

"Non-conventional" Implications?

Big question

□ Existence of more members in the dark sector
 → are there any non-trivial/non conventional implications not available in
 the minimal setup?

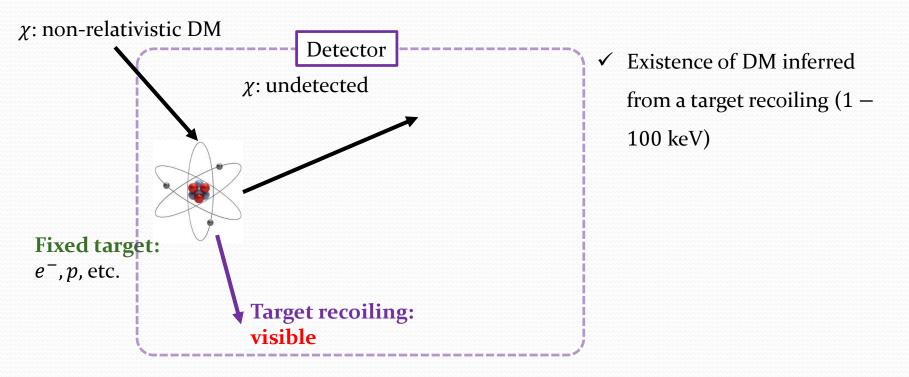
Doojin Kim, CERN Theory Department

-24-

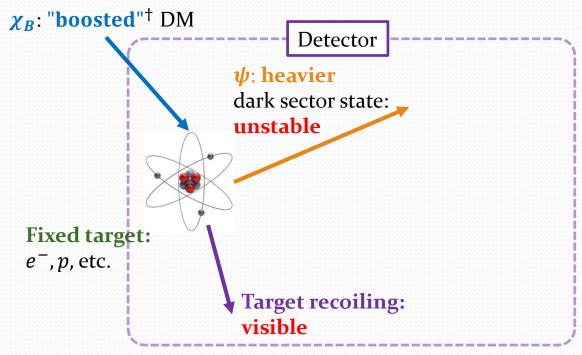
"Non-conventional" Implications!

Big question

□ Existence of more members in the dark sector
 → are there any non-trivial/non conventional implications not available in
 the minimal setup?

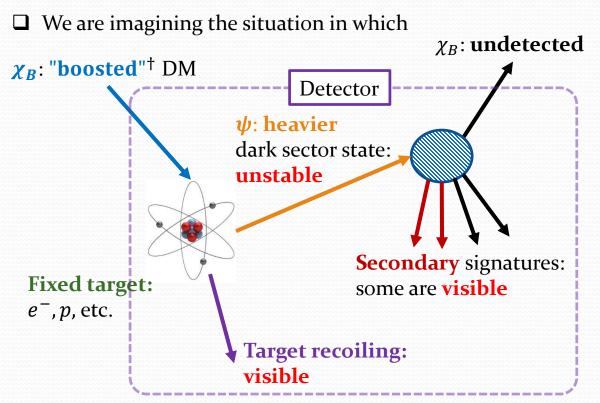

 New dark matter search strategies: dark matter "colliders" [DK, J.-C. Park and S. Shin (2016)]

Dark Matter Direct Detection


Basic idea

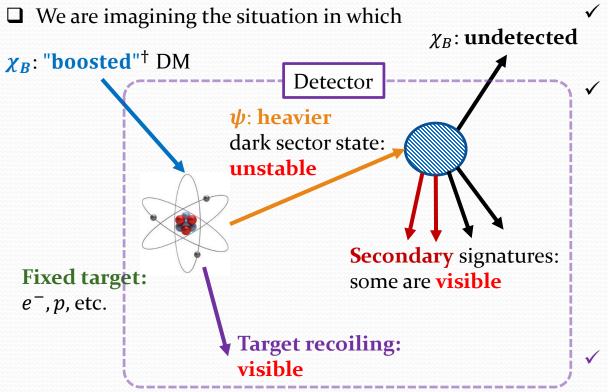
□ Conventional DM direct detection experiments are considering the situation in which

• Basic idea [DK, J.-C. Park and S. Shin (2016)]


□ We are imagining the situation in which

†: Production of boosted DM will be discussed in a couple of slides.

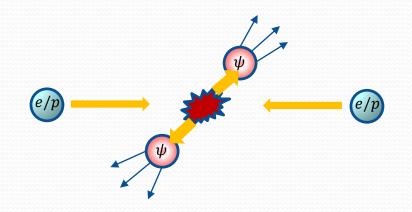
Doojin Kim, CERN Theory Department


• Basic idea [DK, J.-C. Park and S. Shin (2016)]

†: Production of boosted DM will be discussed in a couple of slides.

Doojin Kim, CERN Theory Department

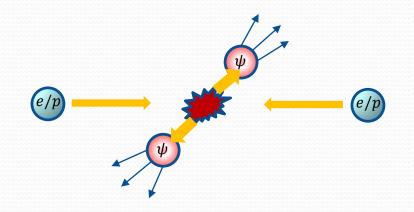
Basic idea [DK, J.-C. Park and S. Shin (2016)]



†: Production of boosted DM will be discussed in a couple of slides.

Probing heavier dark/ hidden-sector states Target recoil (like in typical DM direct detection exp.) + secondary visible signatures \Rightarrow **more** handles, (relatively) **background-free** (no secondary signatures in usual backgrounds) **Complementary** to standard DM direct searches

Doojin Kim, CERN Theory Department


Collider as a heavy-state probe

Conventional colliders

- Head-on collision of light SM-sector (stable) particles
- □ to produce heavier states
- □ and study resulting phenomenology

Collider as a heavy-state probe

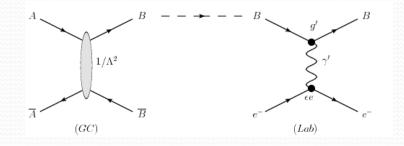
Conventional colliders

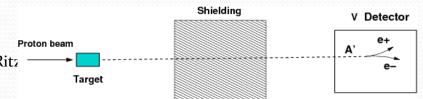
- Head-on collision of light SM-sector (stable) particles
- to produce heavier states
- □ and study resulting phenomenology

Dark matter colliders

□ Collision of light hidden-sector (stable)

particles onto a target

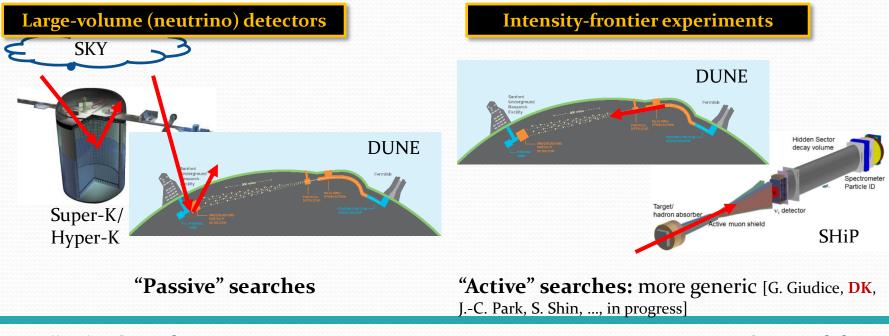

- □ to produce heavier hidden-sector states
- □ and study resulting phenomenology


Boosted Dark Matter

Sources

□ Boosted DM needed

- The cosmic frontier: Boosted Dark Matter (BDM) scenarios (in a couple of slides) [K. Agashe et al., (2014); K. Kong, G. Mohlabeng, J.-C. Park (2014)]
- The intensity frontier: fixed target
 experiments [Bjorken et al. (2009); Batell, Pospelov, Ritz (2009); Izaquirre et al. (2014)]



-32-

Signal Detection

Detection strategy

Null observation of DM signatures may suggest small interaction strengths between SM particles and dark-sector particles (including DM).

Doojin Kim, CERN Theory Department

DM "Colliders" at the Cosmic Frontier

Boosted DM Source: Cosmic Frontier

Boosted DM source

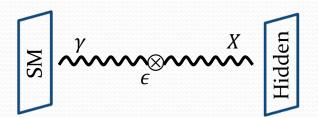
Boosted DM scenarios [K. Agashe et al., (2014); K. Kong, G. Mohlabeng, J.-C. Park (2014)]

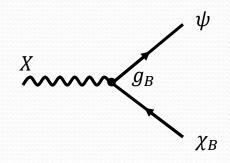
 $Z_2 \otimes Z'_2, U(1) \otimes U(1)'$, etc.

- * χ_A : heavier DM, dominant relic, non-relativistic, not directly communicating with SM
- * χ_B : lighter DM, subdominant relic, **relativistic** at the current universe (non-relativistic at the early universe), **directly** communicating with SM
- Typical flux of χ_B : ~10⁻⁷ cm⁻²s⁻¹ for $\mathcal{O}(10 100)$ GeV χ_A
- □ (**NOT the only way** of having boosted DM particles)

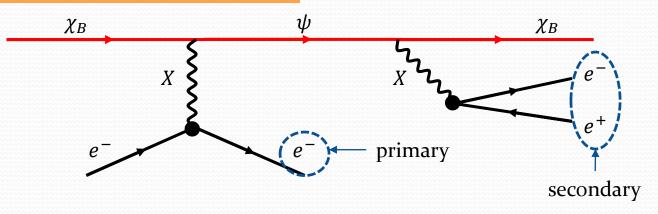
Doojin Kim, CERN Theory Department

Dark Sector Model

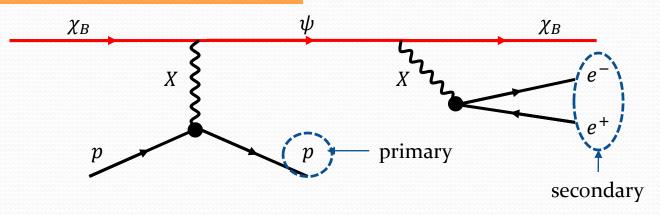

Vector portal


$$\mathcal{L}_{\rm int} \equiv -\frac{\epsilon}{2} F_{\mu\nu} X^{\mu\nu} + g_B \bar{\psi} \gamma^{\mu} \chi_B X_{\mu} + h.c.$$

- Vector portal (e.g., dark "photon" scenario) [Holdom (1986)]
- Fermionic DM
 - Flavor-changing neutral current [e.g., J.-E. Kim,
 - M. S. Seo, and S. Shin (2012)]
 - ✤ (Relevant models may have flavor-conserving)


currents as well, $\bar{\psi}\gamma^{\mu}\psi X_{\mu}$, $\bar{\chi}_{B}\gamma^{\mu}\chi_{B}X_{\mu}$)

□ (NOT restricted to vector portal scenarios)


Typical signal features: e-scattering

GeV/sub-GeV mass and sizable boost factor of hidden-sector particles preferred by kinematics
 e-scattering preferred ← smaller threshold energy, *e*⁻ as a fundamental particle
 e+*e*⁻ from the secondary: highly collimated (not separable in most favored parameter region)
 e⁻ from the primary: collimated, but separable with detectors of good angular resolution
 High chance to observe two separable charged tracks

- Ingli chullee to observe two separable charged th

Typical signal features: p-scattering

GeV/sub-GeV mass and decent boost factor of hidden-sector particles preferred by kinematics

- \Box (Typically) Larger threshold energy, *p* could be broken apart, atomic form factor
- \Box e^+e^- from the secondary: **separated**
- \Box *p* from the primary: **separated** from the secondary particles
- □ High chance to observe three separable charged tracks

Results and outlook

Exp.	Run time	<i>e</i> -ref.1	e-ref.2	p-ref.1	p-ref.2
SK	13.6 yr	170	7.1	3500	5200
HK	$1 \mathrm{yr}$	88	3.7	1900	2800
HK	$13.6 \mathrm{\ yr}$	6.7	0.28	140	210
DUNE	$1 { m yr}$	190	9.0	150	1600
DUNE	$13.6 \mathrm{yr}$	14	0.69	11	120

TABLE II:	Required fluxes in unit of 10^{-7} cm ⁻² s ⁻¹ with	
which our re	eference points become sensitive in various exper-	
iments.		

[**DK**, J.-C. Park and S. Shin (2016)]

	m_{χ_B}	m_ψ	m_X	γ_{χ_B}
e-ref1	0.4	0.5	0.06	250
e-ref2	0.1	0.14	0.03	200
p-ref1	0.4	0.9	0.2	15
p-ref2	0.1	1.0	0.5	50

★ $\epsilon^2 = (3 \times 10^{-4})^2$ and $g_B = 0.5$ for all reference points

- γ_{χ_B} : boost factor of boosted DM χ_B
- "Zero" background assumed
- ✤ Every mass in GeV

Results and outlook

Exp.	Run time	e-ref.1	e-ref.2	p-ref.1	p-ref.2
SK	13.6 yr	170	7.1	3500	5200
HK	$1 { m yr}$	88	3.7	1900	2800
HK	$13.6 \mathrm{\ yr}$	6.7	0.28	140	210
DUNE	$1 { m yr}$	190	9.0	150	1600
DUNE	$13.6 \mathrm{yr}$	14	0.69	11	120

TABLE II:	Required fluxes in unit of 10^{-7} cm ⁻² s ⁻¹ with	
which our re	eference points become sensitive in various exper-	
$\mathrm{iments.}$		

[**DK**, J.-C. Park and S. Shin (2016)]

	m_{χ_B}	m_ψ	m_X	γ_{χ_B}	
e-ref1	0.4	0.5	0.06	250	
e-ref2	0.1	0.14	0.03	200	
p-ref1	0.4	0.9	0.2	15	
p-ref2	0.1	1.0	0.5	50	

★ $\epsilon^2 = (3 \times 10^{-4})^2$ and $g_B = 0.5$ for all reference points

•
$$\gamma_{\chi_B}$$
: boost factor of boosted DM χ_B

Every mass in GeV

□ Remind, in a minimal boosted DM scenario, if flux over the whole sky is $O(10^{-7})$ cm⁻²s⁻¹, it is **promising and achievable**!

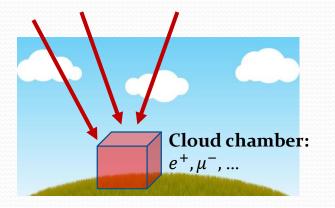
Results and outlook

Exp. Run time <i>e</i> -ref.1	e-ref.2	p-ref.1	p-ref.2
SK 13.6 yr 170	7.1	3500	5200
HK 1 yr 88	3.7	1900	2800
HK 13.6 yr <u>6.7</u>	0.28	140	210
DUNE 1 yr 190	9.0	150	1600
DUNE 13.6 yr 14	0.69	11	120

		m_{χ_B}	m_ψ	m_X	γ_{χ_B}
ğ	e-ref1	0.4	0.5	0.06	250
	e-ref2	0.1	0.14	0.03	200
	p-ref1	0.4	0.9	0.2	15
	p-ref2	0.1	1.0	0.5	50

- ★ $\epsilon^2 = (3 \times 10^{-4})^2$ and $g_B = 0.5$ for all reference points
- γ_{χ_B} : boost factor of boosted DM χ_B
- ✤ "Zero" background assumed
- Every mass in GeV

TABLE II: Required fluxes in unit of 10^{-7} cm⁻² s⁻¹ with which our reference points become sensitive in various experiments.

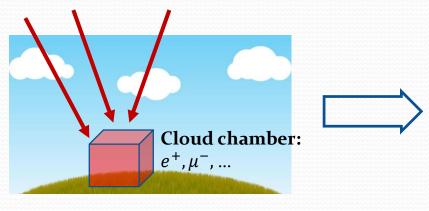

[**DK**, J.-C. Park and S. Shin (2016)]

□ Remind, in a minimal boosted DM scenario, if flux over the whole sky is $O(10^{-7})$ cm⁻²s⁻¹, it is **promising and achievable**!

□ *p*-scattering improved at DUNE due to **smaller threshold energy**

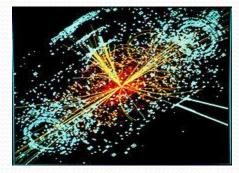
DM "Colliders" at the Intensity Frontier

New Particles at Cosmic Frontier



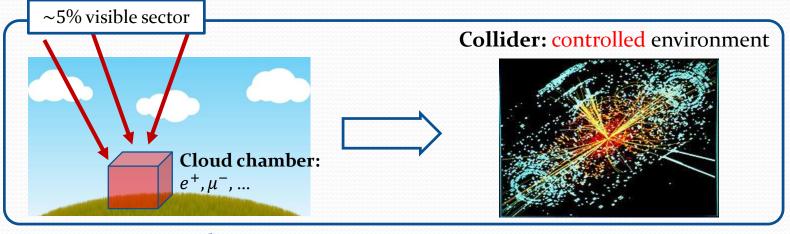
Passive searches

Doojin Kim, CERN Theory Department



New Particles at Energy Frontier

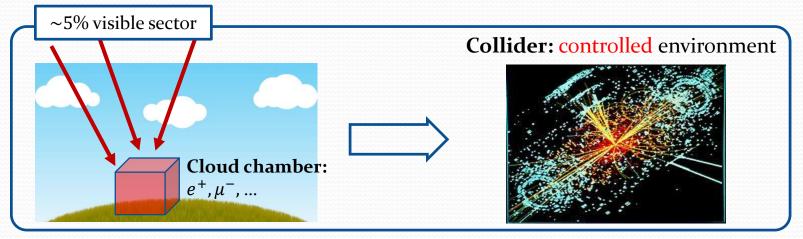
Passive searches


Collider: controlled environment

Active searches

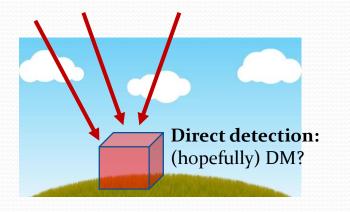
Doojin Kim, CERN Theory Department

Exploring the Visible Sector


Passive searches

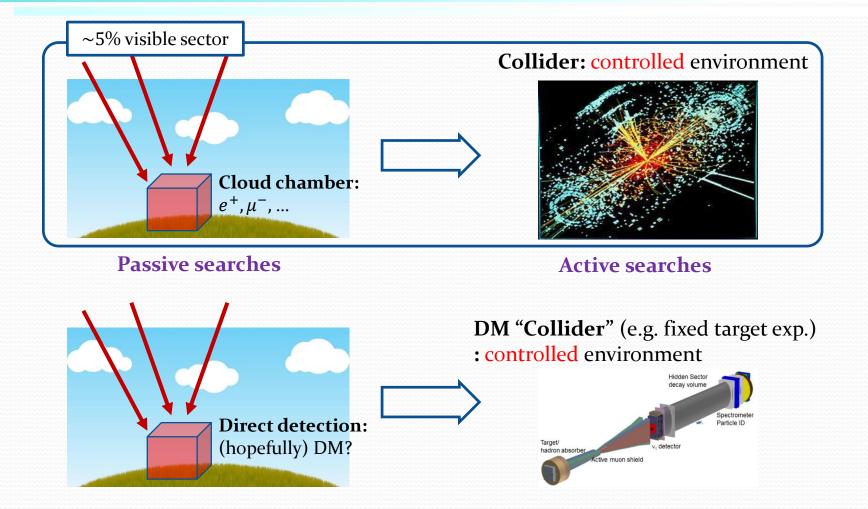
Active searches

Doojin Kim, CERN Theory Department

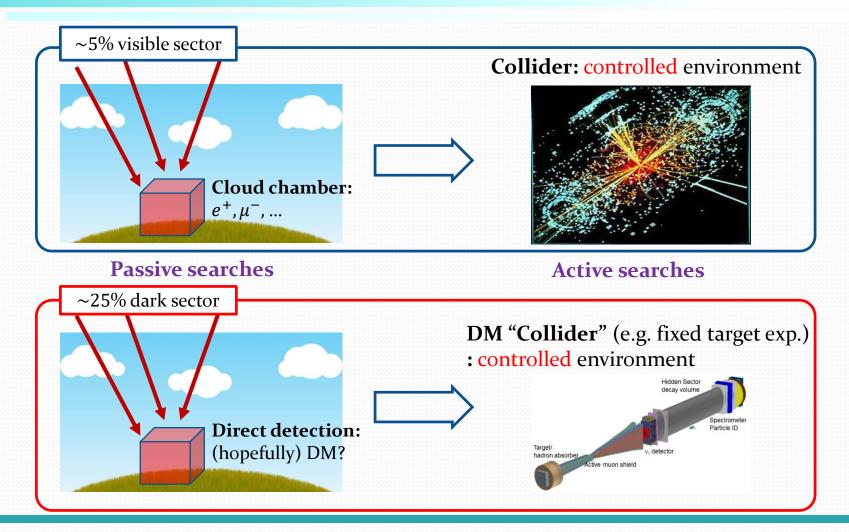


DM Searches at Cosmic Frontier

Passive searches


Active searches

Doojin Kim, CERN Theory Department



DM Colliders at Intensity Frontier

-47-

Exploring the Dark Sector

Doojin Kim, CERN Theory Department

Korea-CERN Workshop

-48-

Candidate Experiments

Exp.	DUNE	SHiP [†]	SK/HK [‡]
Near-far detector	Yes	Yes	(Yes)
Distance b/w detectors	1,300 km	50 m	(700 – 1,000) km
Volume*	8 t/ <mark>40</mark> kt	9.6 t/NA	(190/190) kt
			22.5 kt for SK
Detector type	LArTPC	Emulsion/Calorimeter	Cherenkov
Particle identification	Very good	Very good	Good
Beam energy	120 GeV	400 GeV	30 GeV
РоТ	11×10^{20} /year	0.4×10^{20} /year	48×10^{20} /year
Power	1.2 MW	(> 0.15 MW)	1.3 MW
Angular resolution (e/p)	1°/5°	(Good)	3°/3°
Threshold energy (e/p)	30/50 MeV	(Equally small)	0.1/1 GeV*
Position resolution	1 – 2 cm	0.1 – 1 mm	Not good

†: Numbers in parentheses are our estimation.

‡: Numbers in parentheses are relevant to T2HKK.

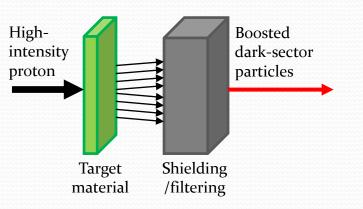
*: Red-font numbers are fiducial volume.

*: Threshold energy for the "good" angular resolution above

DUNE/SHiP/Kamiokande ideal for sub-GeV to GeV hidden sector particle searches: different

exps. require different strategies optimized to the production mechanism and associated detectors.

Boosted DM Source: Intensity Frontier


-50-

Physics opportunities at fixed target exps.

- Production by target collision (e.g., in vector portal scenarios)
 - \succ Meson decay: *pp* → π/η + others,

 $\begin{aligned} \pi/\eta &\to X^* \gamma \to \chi_B \chi_B \gamma; \pi/\eta \to X^* \gamma \to \\ \chi_B \psi \gamma; \pi/\eta \to X^* \gamma \to \psi \psi \gamma \end{aligned}$

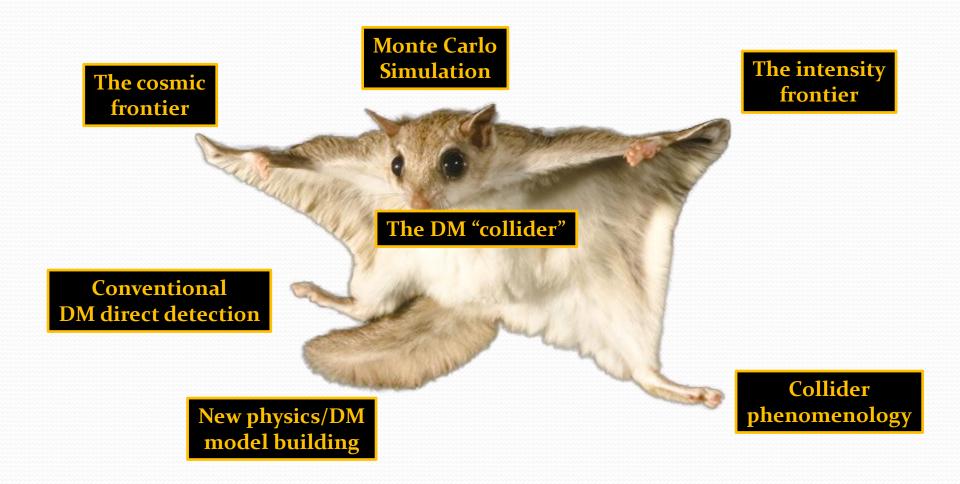
- ► Drell-Yan: $pp \rightarrow X^* \rightarrow \chi_B \chi_B, \chi_B \psi, \psi \psi$
- \triangleright Boost of χ_B given by a distribution

Signal Detection

Physics opportunities at fixed target exps.


- Production by target collision (e.g., in vector portal scenarios)
 - ▶ Meson decay: $pp \rightarrow \pi/\eta$ + others,

```
\pi/\eta \to X^*\gamma \to \chi_B\chi_B\gamma; \pi/\eta \to X^*\gamma \to
```


- $\chi_B \psi \gamma; \pi/\eta \to X^* \gamma \to \psi \psi \gamma$
- ▶ Drell-Yan: $pp \rightarrow X^* \rightarrow \chi_B \chi_B, \chi_B \psi, \psi \psi$
- > Boost of χ_B given by a distribution

Detection by detector complex (e.g., DM "colliders") [G. Giudice, DK, J.-C. Park, S. Shin, ..., in progress]

- Detector-specific strategies required
- Far/near detector system at e.g., DUNE, T2HKK: ratio of N^{signal} to N^{signal} available/useful for further DM signal confirmation
- Signal events with **displaced secondary vertex**: better signal identification (e.g., SHiP)

Dark Matter "Colliders" and Beyond

Research Opportunities

Physics opportunities at the intensity frontier

- ✓ The DUNE experiment (in progress)
- ✓ The SHiP experiment (in progress)
- ✓ The T2HKK experiment
- ✓ Other existing/prospective fixed target experiments

Physics opportunities at DM direct detection experiments

- ✓ Signal (coming from the sky) detection by a displaced vertex (e.g. SuperCDMS)
- ✓ New experiment proposal

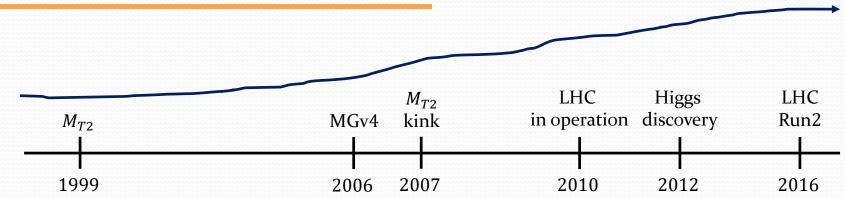
Physics opportunities at the cosmic frontier

- ✓ Potential of cosmic ray excesses
- ✓ Cosmology: relic abundance, impact on the evolution of the universe

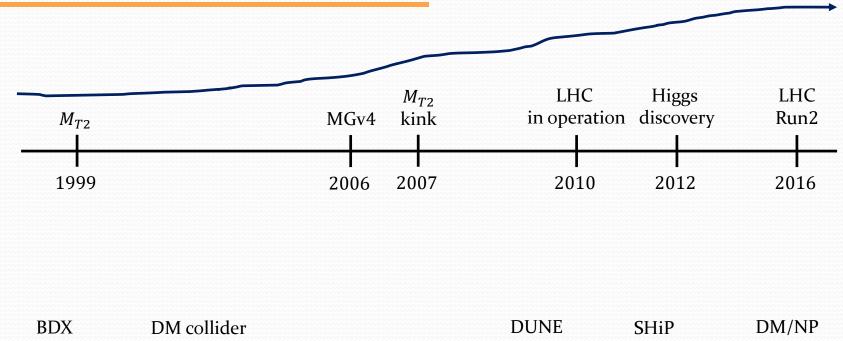
Monte Carlo simulation for DM "colliders"

- ✓ "Pre-calculated" boosted DM generator
- Developing MC simulation packages for fixed target experiments in collaboration with MCtool authors

Gamma Collider" phenomenology


- ✓ Signal detection prospects at standard colliders
- ✓ Applying collider variables to DM colliders
- ✓ Developing optimized variables for DM colliders
- Constructing new physics models probable at DM colliders
 - ✓ Light KK graviton model (in progress)
 - ✓ UV-completed/effective hidden-sector models

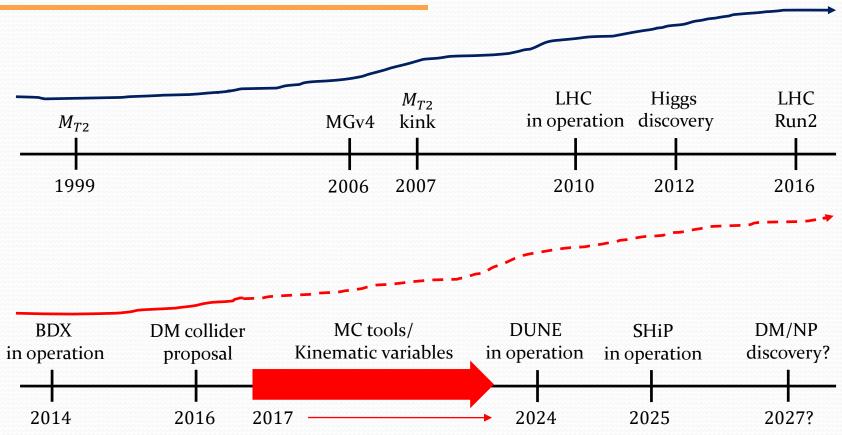
Doojin Kim, CERN Theory Department


DM Collider Physics: Take-home Message

Collider physics vs. DM collider physics

DM Collider Physics: Take-home Message

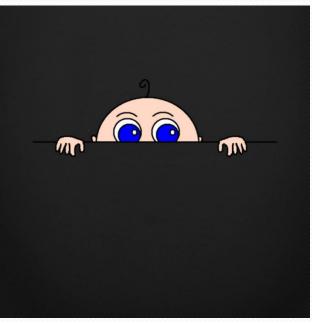
• Collider physics vs. DM collider physics



in operation	proposal	in operation	in operation	discovery?
2014	2016	2024	2025	2027?

Doojin Kim, CERN Theory Department

DM Collider Physics: Take-home Message

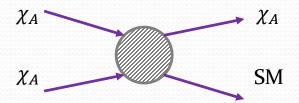

• Collider physics vs. DM collider physics

Doojin Kim, CERN Theory Department

Conclusions

- ❑ What's going on at the weak scale? ⇒ our Nature might be "shy" so hide herself
- □ The more, the messier? The more, the merrier!
 - Don't be shy to explore "flavorful" hidden/dark sector scenarios
 ⇒ Peeping into the hidden/dark sector through them
 - Rising interest in "flavorful" dark sector physics
- Physics opportunities at dark matter "colliders"
 - ◆ Orthogonal: (relatively) background-free due to secondary signatures → new direct DM search paradigm!
 - Inexpensive: exclusion limit/detection prospects at neutrino detectors such as Super/Hyper-K, DUNE, SHiP, etc. without extra apparatus
 - * Complementary: constraining parameters for various DM scenarios/models
 - Interdisciplinary: if this scenario is the truth, many ideas in collider phenomenology directly apply!

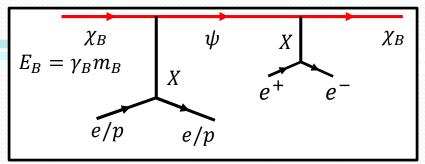
Doojin Kim, CERN Theory Department



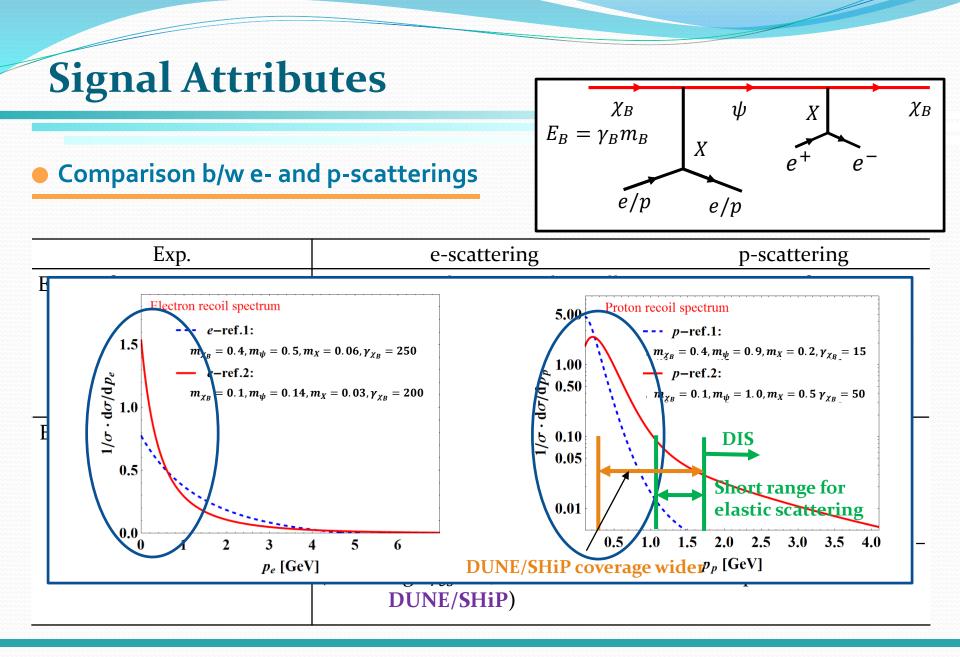
Boosted DM from the Sky

Semi-annihilation

□ In DM models where relevant DM is stabilized by e.g., *Z*₃ symmetry, one may have a process like

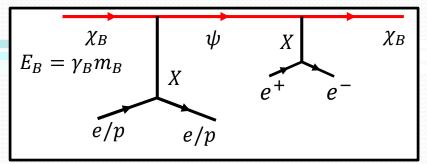


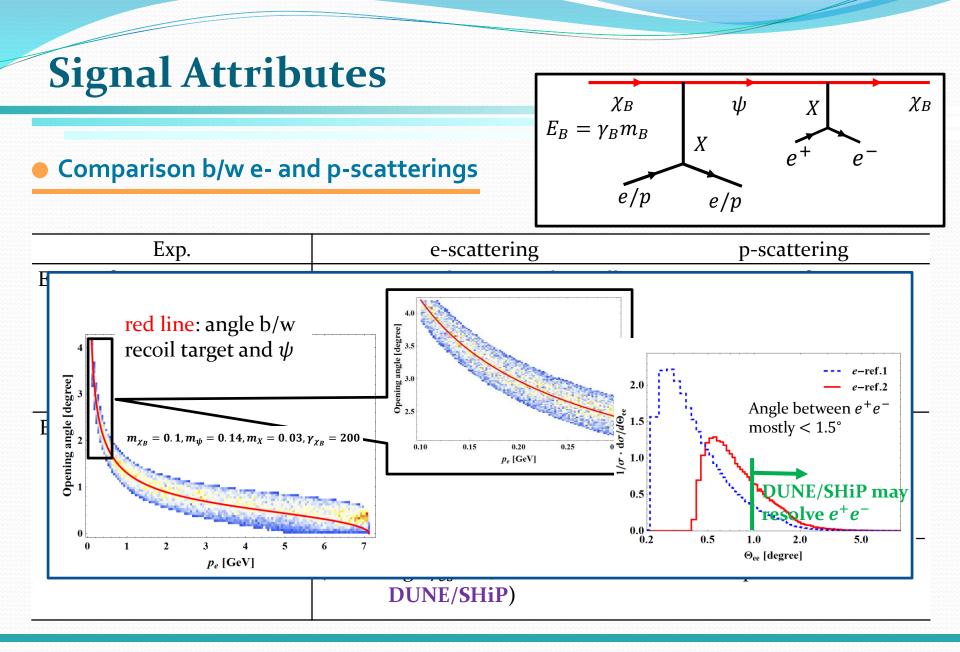
□ Under the circumstance in which the mass of SM here is lighter (i.e., $m_A > m_{SM}$), the outgoing χ_A can be boosted and its boost factor is given by


$$\gamma_A = \frac{5m_A^2 - m_{\rm SM}^2}{4m_A^2}$$

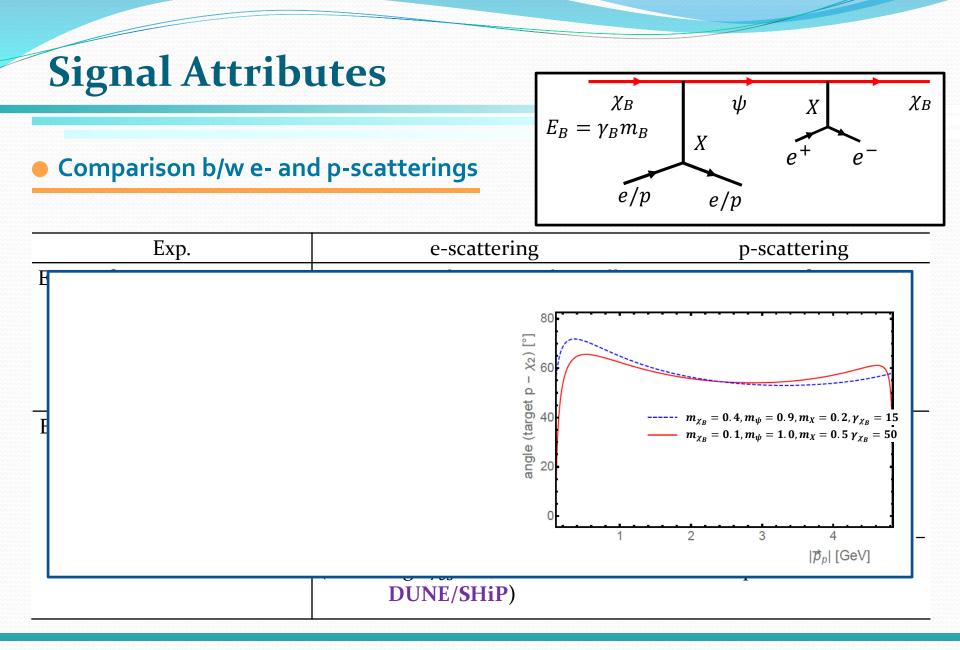
Signal Attributes

Comparison b/w e- and p-scatterings


Exp.	e-scattering	p-scattering	
Energy for primary scattering	Peaking towards sn	naller momentum transfer	
Threshold energy	Small	Large for Cherenkov (Small for DUNE/SHiP detectors)	
Form factor suppression	N/A	Yes	
Deep inelastic scattering	N/A	Yes	
Energy for secondary process	(Typically) highly boosted	(Typically) less boosted	
Object identification	Highly collimated (in preferred mass spectra) Recoil electron + single object-like e^+e^- pair (assuming $\theta_{res} \sim 3^\circ$, better at DUNE/SHiP)	Reasonably separated (in preferred mass spectra) Recoil proton + well-separated e^+e^- pair	

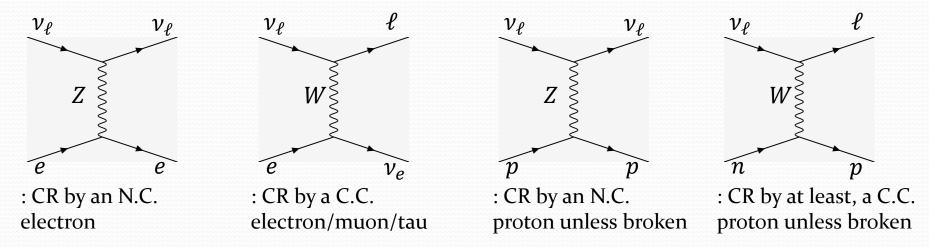

Doojin Kim, CERN Theory Department

Signal Attributes


Comparison b/w e- and p-scatterings

Exp.	e-scattering	p-scattering	
Energy for primary scattering	Peaking towards sn	naller momentum transfer	
Threshold energy	Small	Large for Cherenkov (Small for DUNE/SHiP detectors)	
Form factor suppression	N/A	Yes	
Deep inelastic scattering	N/A	Yes	
Energy for secondary process	(Typically) highly boosted	(Typically) less boosted	
Object identification	Highly collimated (in preferred mass spectra) Recoil electron + single object-like e^+e^- pair (assuming $\theta_{res} \sim 3^\circ$, better at DUNE/SHiP)	Reasonably separated (in preferred mass spectra) Recoil proton + well-separated e^+e^- pair	

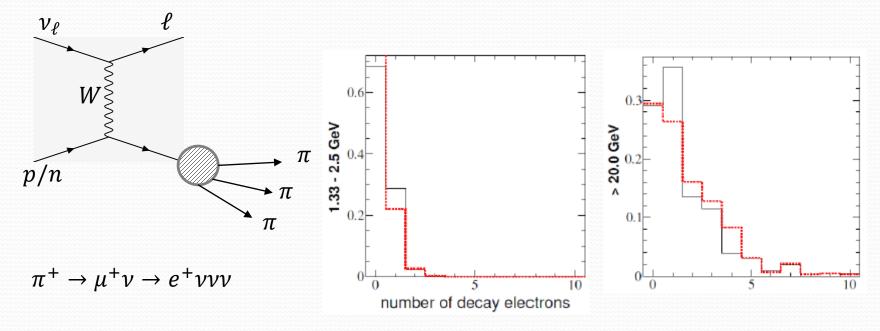
Doojin Kim, CERN Theory Department


Doojin Kim, CERN Theory Department

Background Considerations

Potential sources

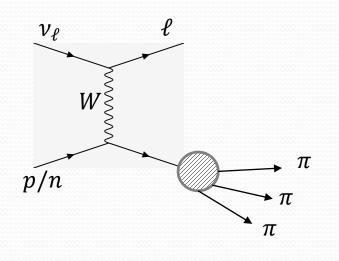
Cherenkov radiation (CR) by electron/muon is distinguished from that by proton.

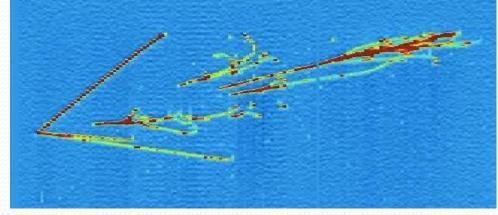

□ Electron-preferred scenarios:

Proton-preferred scenarios: opening angles among recoil proton, decayed electrons are large enough to resolve

Background Considerations

More challenging cases: broken nuclei


Super-K (2012)

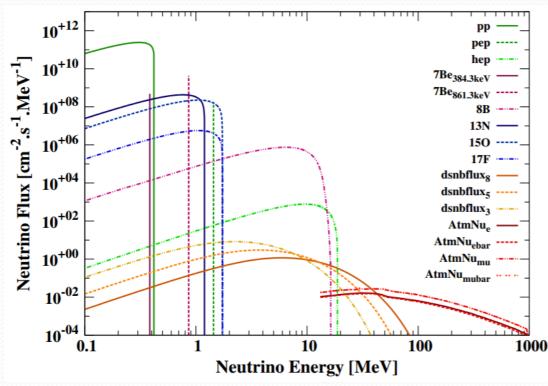

- □ Similar expectations for neutral currents
- □ (Dedicated study in progress)

Doojin Kim, CERN Theory Department

Background Considerations

More challenging cases: broken nuclei

Particle tracks created by a neutrino interaction in liquid argon in the ArgoNeuT

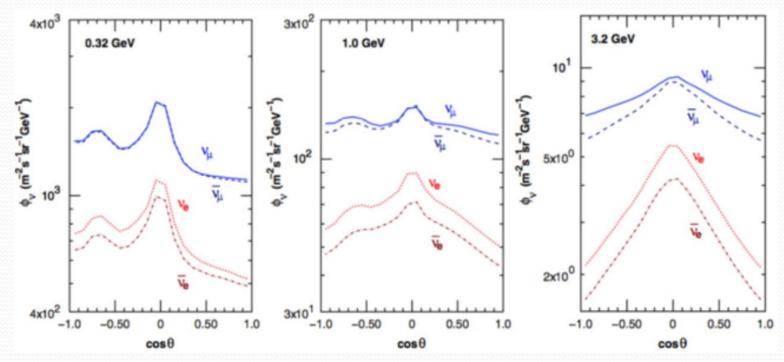

Expecting again that (quality) track-based particle identification allows us to distinguish multi-track background events from signal ones

□ A dedicated study is needed

e.g. $\pi^+ \rightarrow \mu^+ \nu \rightarrow e^+ \nu \nu \nu$

Flux of Neutrino

Neutrino as a background

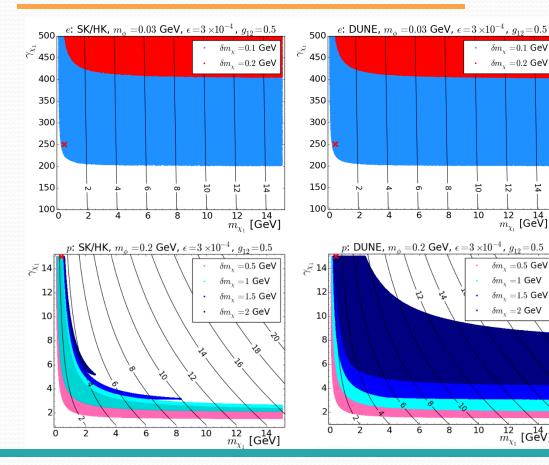


 Relevant neutrino fluxes to the background of direct DM detection experiments: solar, atmospheric, and diffuse supernovae

[[]Ruppin et al., (2014)]

Flux of Atmospheric Neutrino

Neutrino as a background



 θ : zenith angle

Energetic neutrino flux $\sim 10^{-4}$ cm⁻² s⁻¹

Accessible Parameter Region

Parameter scanning

• *e*-scattering (upper panels) and *p*-scattering (lower panels) □ Black solid lines: kinematically allowed maximum mass of heavier hidden-sector states \square m_{χ_1} : mass of incident boosted DM, γ_{χ_1} : boost factor of incident boosted DM, δm_{χ} : mass gap between the DM and the heavier state

Doojin Kim, CERN Theory Department

 $\delta m_{\gamma} = 0.1 \text{ GeV}$

 $\delta m_{\chi} = 0.2 \text{ GeV}$

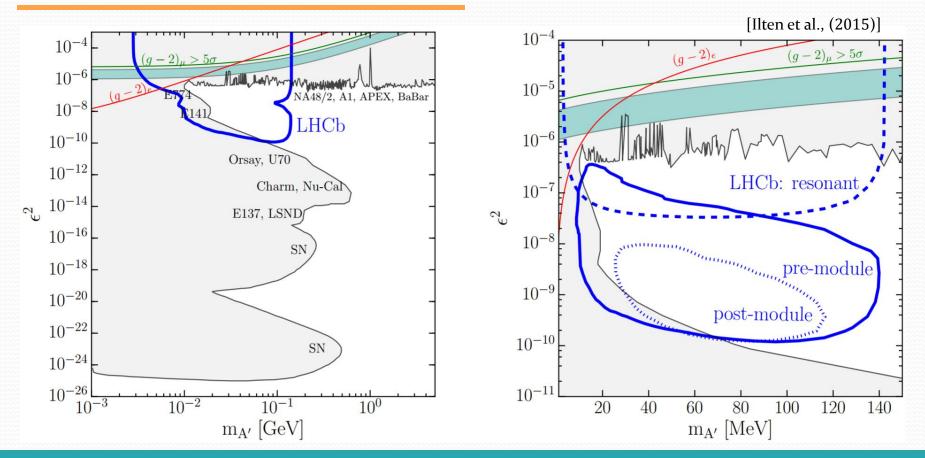
 $m_{\chi_1}^{12}$ [GeV]

 $\delta m_{\chi} = 0.5 \text{ GeV}$

 $\delta m_v = 1 \text{ GeV}$

 $\delta m_{\gamma} = 1.5 \text{ GeV}$

 $\delta m_{\nu} = 2 \text{ GeV}$


 $m_{\chi_1}^{12} \, [GeV]$

ы

10

Current Status of Dark Photon Searches

Kinetic mixing parameter choice

Doojin Kim, CERN Theory Department