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Effort Further

 “Attacking” every single corner of parameter space in new physics models and/or probing 

unexplored territories

 Filling missing gaps (e.g., compressed mass spectra)

 Displaced vertex searches (e.g., MATSULA), disappearing tracks

 Exotic final states (e.g., tri-boson searches, “dark” showering)

 SM precision studies (e.g., top quark sector, higgs sector)

 Improving signal sensitivity in DM direct detection experiments

 Light mediators (e.g., dark photon) and their “relatives” searches

 Ultra-light dark matter searches (e.g., CCD, semi-conductors)

 New satellites with better energy resolution

 Many more part of which will be covered at this workshop!
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Effort Further

 “Attacking” every single corner of parameter space in new physics models and/or probing 

unexplored territories

 Filling missing gaps (e.g., compressed mass spectra)

 Displaced vertex searches (e.g., MATSULA), disappearing tracks

 Exotic final states (e.g., tri-boson searches, “dark” showering)

 SM precision studies (e.g., top quark sector, higgs sector)

 Improving signal sensitivity in DM direct detection experiments

 Light mediators (e.g., dark photon) and their “relatives” searches

 Ultra-light dark matter searches (e.g., CCD, semi-conductors)

 New satellites with better energy resolution

 Many more part of which will be covered at this workshop!

 Dark sector particle (including DM) searches at dark matter “colliders”
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Dark Matter Models

Various DM models

from the talk by Tim Tait

 Many dark matter simplified 

models or new physics models 

including a dark matter candidate 

proposed

 Supersymmetric

 Extra-dimensional

 Low-energy effective

 Many others … 

 Many of them constructed under 

the minimality assumption (as 

we know very little about DM)
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“Minimal” Dark Sector

DM

SM SM

DM

 (Non-relativistic) DM 

annihilation/decay to 

𝛾, 𝑒+,  𝑝, etc.

 𝜎𝑣 ~10−26 cm3/s

DM indirect search DM production

DM direct search

 (Non-relativistic) 

DM scattering off 

target nuclei

 𝐸recoil~1 − 100 keV

 Active DM production 

at colliders

 Mono-X searches

 Expected rate inferred 

from/related to 

𝜎𝑣 ~10−26 cm3/s

 “Minimal” phenomenological implications in the context of dark matter detection under 

minimal dark matter scenarios
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Dark Matter Searches

Current status

No “unambiguous” observation of DM signatures via non-gravitational interactions 

(many searches/interpretations designed under minimal dark-sector scenarios) 

[P. Cushman, C. Calbiati and D. N. 
McKinsey, (2013); L. Baudis (2014)]

[ATLAS mono-jet search (2015)] [CMS mono-photon search (2014)]
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Dark Matter Direct Detection

Current status

[P. Cushman, C. Calbiati and D. N. McKinsey, (2013); L. Baudis (2014)]

 Weakly Interacting Massive Particles 

(WIMPs): a well-motivated DM 

candidate (motivated by DM relic 

measurement and weak-scale new 

physics models)

 Different exp. → Different tech. →

Different sensitivity

 A wide range of parameter space 

probed already and facing eventually 

irreducible neutrino backgrounds



Doojin Kim, CERN Theory Department Korea-CERN Workshop-16-

Dark Matter Direct Detection

Current status

[P. Cushman, C. Calbiati and D. N. McKinsey, (2013); L. Baudis (2014)]
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probed already and facing eventually 

irreducible neutrino backgrounds



Doojin Kim, CERN Theory Department Korea-CERN Workshop-17-

“Minimal” vs. “Non-minimal”

“Vanilla” vs. “Flavorful”
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“Flavorful” Dark Sector

Why flavorful? Flavorful SM!

 Various particles in the SM sector
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“Flavorful” Dark Sector

Why flavorful? Flavorful SM!

 Various particles in the SM sector

 Multiple stable particles → interesting 

physics from other stable members which are 

not difficult to detect albeit not dominant 

(proton is dominant in the visible sector)
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“Flavorful” Dark Sector

Why flavorful? Flavorful SM!

 Various particles in the SM sector

 Multiple stable particles → interesting 

physics from other stable members which are 

not difficult to detect albeit not dominant 

(proton is dominant in the visible sector)

 Many heavier (unstable) states →

interesting signatures/phenomenology

stemming from their decays (e.g., at 

lepton/hadron colliders)
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“Flavorful” Dark-sector Scenarios

In what sense?

Dark Sector

𝝌𝑩

𝝍

𝝋
𝑿

𝝌𝑨

𝝌𝑪

 𝜒𝐴: dominant relic (as in the minimal setup)

 More members in the dark sector

 Unstable members, say 𝜓, 𝜑, 𝑋, … (e.g., 

cosmic ray excess interpretations [DK and J.-C. 

Park (2015)])

 More dark matter species, say 𝜒𝐵, 𝜒𝐶 … (e.g., 

dynamical dark matter models [K. Dienes and B. 

Thomas, (2011)])
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“Flavorful” Dark-sector Scenarios

In what sense?

Dark Sector

𝝌𝑩

𝝍

𝝋
𝑿

 Rising interest

 Boosted dark matter scenarios [K. Agashe et al., (2014); K. Kong, G. Mohlabeng, J.-C. Park (2014)]

 Assisted freeze-out mechanism [G. Belanger and J.-C. Park (2011)]

 Dark matter “transporting” mechanism [DK, J.-C. Park and S. Shin (2017)]

𝝌𝑨

𝝌𝑪

 𝜒𝐴: dominant relic (as in the minimal setup)

 More members in the dark sector

 Unstable members, say 𝜓, 𝜑, 𝑋, … (e.g., 

cosmic ray excess interpretations [DK and J.-C. 

Park (2015)])

 More dark matter species, say 𝜒𝐵, 𝜒𝐵 … (e.g., 

dynamical dark matter models [K. Dienes and B. 

Thomas, (2011)])
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“Non-conventional” Implications?

Big question

 Existence of more members in the dark sector 

→ are there any non-trivial/non-

conventional implications not available in 

the minimal setup?
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“Non-conventional” Implications!

Big question

 Existence of more members in the dark sector 

→ are there any non-trivial/non-

conventional implications not available in 

the minimal setup?

 New dark matter search strategies: dark 

matter “colliders” [DK, J.-C. Park and S. Shin 

(2016)]



Doojin Kim, CERN Theory Department Korea-CERN Workshop-26-

Dark Matter Direct Detection

Basic idea

𝜒: non-relativistic DM 

Fixed target: 
𝑒−, 𝑝, etc.

Target recoiling: 
visible

𝜒: undetected 

Detector

 Conventional DM direct detection experiments are considering the situation in which

 Existence of DM inferred 

from a target recoiling (1 −

100 keV)
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Dark Matter “Colliders”

Basic idea [DK, J.-C. Park and S. Shin (2016)]

𝝌𝑩: "𝐛𝐨𝐨𝐬𝐭𝐞𝐝"† DM 

Fixed target: 
𝑒−, 𝑝, etc.

Target recoiling: 
visible

𝝍: heavier 
dark sector state:
unstable

Detector

 We are imagining the situation in which

†: Production of boosted DM will be discussed in a couple of slides.
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Dark Matter “Colliders”

Basic idea [DK, J.-C. Park and S. Shin (2016)]

𝝌𝑩: "𝐛𝐨𝐨𝐬𝐭𝐞𝐝"† DM 

Fixed target: 
𝑒−, 𝑝, etc.

𝜒𝐵: undetected

Secondary signatures:
some are visible

Target recoiling: 
visible

𝝍: heavier 
dark sector state:
unstable

Detector

 We are imagining the situation in which  Probing heavier dark/ 

hidden-sector states

 Target recoil (like in typical 

DM direct detection exp.) + 

secondary visible signatures 

 more handles, (relatively) 

background-free (no 

secondary signatures in usual 

backgrounds)

 Complementary to standard 

DM direct searches†: Production of boosted DM will be discussed in a couple of slides.
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Dark Matter “Colliders”

Collider as a heavy-state probe

𝑒/𝑝 𝑒/𝑝

𝜓

𝜓

Conventional colliders

 Head-on collision of light SM-sector 

(stable) particles

 to produce heavier states

 and study resulting phenomenology
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Dark Matter “Colliders”

Collider as a heavy-state probe

𝑒/𝑝 𝑒/𝑝

𝜓

𝜓

Conventional colliders

 Head-on collision of light SM-sector 

(stable) particles

 to produce heavier states

 and study resulting phenomenology

DM 𝜓

primary

secondary

Dark matter colliders

 Collision of light hidden-sector (stable) 

particles onto a target

 to produce heavier hidden-sector states

 and study resulting phenomenology
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Boosted Dark Matter

Sources

 Boosted DM needed

 The cosmic frontier: Boosted Dark Matter 

(BDM) scenarios (in a couple of slides) [K. 

Agashe et al., (2014); K. Kong, G. Mohlabeng, J.-C. Park 

(2014)]

 The intensity frontier: fixed target 

experiments [Bjorken et al. (2009); Batell, Pospelov, Ritz 

(2009); Izaquirre et al. (2014)]
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Signal Detection

Detection strategy

 Null observation of DM signatures may suggest small interaction strengths between SM 

particles and dark-sector particles (including DM).

SKY

Large-volume (neutrino) detectors 

Super-K/
Hyper-K

DUNE

“Passive” searches

Intensity-frontier experiments

DUNE

SHiP

“Active” searches: more generic [G. Giudice, DK, 

J.-C. Park, S. Shin, …, in progress] 



DM “Colliders” at
the Cosmic Frontier



Doojin Kim, CERN Theory Department Korea-CERN Workshop-35-

Boosted DM Source: Cosmic Frontier

Boosted DM source

 Boosted DM scenarios [K. Agashe et al., (2014); K. Kong, G. Mohlabeng, J.-C. Park (2014)]

 𝜒𝐴: heavier DM, dominant relic, non-relativistic, not directly communicating with SM

 𝜒𝐵: lighter DM, subdominant relic, relativistic at the current universe (non-relativistic 

at the early universe), directly communicating with SM

 Typical flux of 𝜒𝐵: ~10−7cm−2s−1 for 𝒪(10 − 100) GeV 𝜒𝐴

 (NOT the only way of having boosted DM particles) 

𝜒𝐴

𝜒𝐴

𝜒𝐵

𝜒𝐵

𝜒𝐵

~1/Λ2

𝑍2 ⊗ 𝑍2
′ , 𝑈 1 ⊗ 𝑈 1 ′, etc.

(Galactic Center) (Laboratory)
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Dark Sector Model

Vector portal

 Vector portal (e.g., dark “photon” scenario) [Holdom

(1986)]

 Fermionic DM

 Flavor-changing neutral current [e.g., J.-E. Kim, 

M. S. Seo, and S. Shin (2012)]

 (Relevant models may have flavor-conserving 

currents as well,  𝜓𝛾𝜇𝜓𝑋𝜇,  𝜒𝐵𝛾
𝜇𝜒𝐵𝑋𝜇)

 (NOT restricted to vector portal scenarios)

ℒint ∋ −
𝜖

2
𝐹𝜇𝜈𝑋

𝜇𝜈 + 𝑔𝐵
 𝜓𝛾𝜇𝜒𝐵𝑋𝜇 + ℎ. 𝑐.

S
M

H
id

d
en𝛾 𝑋

𝜖

𝑋

𝜓

𝜒𝐵

𝑔𝐵



Doojin Kim, CERN Theory Department Korea-CERN Workshop-37-

Discovery Potential

Typical signal features: 𝒆-scattering

𝜒𝐵 𝜒𝐵𝜓

𝑋 𝑋

𝑒− 𝑒−

𝑒−

𝑒+

primary

secondary

 GeV/sub-GeV mass and sizable boost factor of hidden-sector particles preferred by kinematics

 𝑒-scattering preferred ← smaller threshold energy, 𝑒− as a fundamental particle

 𝑒+𝑒− from the secondary: highly collimated (not separable in most favored parameter region)

 𝑒− from the primary: collimated, but separable with detectors of good angular resolution

 High chance to observe two separable charged tracks



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Discovery Potential

Typical signal features: 𝒑-scattering

𝜒𝐵 𝜒𝐵𝜓

𝑋 𝑋

𝑝 𝑝

𝑒−

𝑒+

primary

secondary

 GeV/sub-GeV mass and decent boost factor of hidden-sector particles preferred by kinematics

 (Typically) Larger threshold energy, 𝑝 could be broken apart, atomic form factor

 𝑒+𝑒− from the secondary: separated 

 𝑝 from the primary: separated from the secondary particles

 High chance to observe three separable charged tracks



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Discovery Potential

Results and outlook

𝑚𝜒𝐵
𝑚𝜓 𝑚𝑋 𝛾𝜒𝐵

𝑒-ref1 0.4 0.5 0.06 250

𝑒-ref2 0.1 0.14 0.03 200

𝑝-ref1 0.4 0.9 0.2 15

𝑝-ref2 0.1 1.0 0.5 50

 𝜖2 = (3 × 10−4)2 and 𝑔𝐵 = 0.5 for all 
reference points

 𝛾𝜒𝐵
: boost factor of boosted DM 𝜒𝐵

 “Zero” background assumed
 Every mass in GeV

[DK, J.-C. Park and S. Shin (2016)]
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Discovery Potential

Results and outlook

 Remind, in a minimal boosted DM scenario, if flux over the whole sky is 𝒪 10−7 cm−2s−1, 

it is promising and achievable! 
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𝑝-ref2 0.1 1.0 0.5 50

 𝜖2 = (3 × 10−4)2 and 𝑔𝐵 = 0.5 for all 
reference points

 𝛾𝜒𝐵
: boost factor of boosted DM 𝜒𝐵

 “Zero” background assumed
 Every mass in GeV

[DK, J.-C. Park and S. Shin (2016)]
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Discovery Potential

Results and outlook

 Remind, in a minimal boosted DM scenario, if flux over the whole sky is 𝒪 10−7 cm−2s−1, 

it is promising and achievable! 

 𝑝-scattering improved at DUNE due to smaller threshold energy

𝑚𝜒𝐵
𝑚𝜓 𝑚𝑋 𝛾𝜒𝐵

𝑒-ref1 0.4 0.5 0.06 250

𝑒-ref2 0.1 0.14 0.03 200

𝑝-ref1 0.4 0.9 0.2 15

𝑝-ref2 0.1 1.0 0.5 50

 𝜖2 = (3 × 10−4)2 and 𝑔𝐵 = 0.5 for all 
reference points

 𝛾𝜒𝐵
: boost factor of boosted DM 𝜒𝐵

 “Zero” background assumed
 Every mass in GeV

[DK, J.-C. Park and S. Shin (2016)]



DM “Colliders” at
the Intensity Frontier
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New Particles at Cosmic Frontier

Cloud chamber: 
𝑒+, 𝜇−, …

Passive searches
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New Particles at Energy Frontier

Cloud chamber: 
𝑒+, 𝜇−, …

Passive searches Active searches

Collider: controlled environment
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Exploring the Visible Sector

Cloud chamber: 
𝑒+, 𝜇−, …

Passive searches Active searches

Collider: controlled environment
~5% visible sector
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DM Searches at Cosmic Frontier

Cloud chamber: 
𝑒+, 𝜇−, …

Direct detection: 
(hopefully) DM?

Passive searches Active searches

Collider: controlled environment
~5% visible sector
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DM Colliders at Intensity Frontier

Cloud chamber: 
𝑒+, 𝜇−, …

Direct detection: 
(hopefully) DM?

Passive searches Active searches

Collider: controlled environment

DM “Collider” (e.g. fixed target exp.)
: controlled environment

~5% visible sector
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Exploring the Dark Sector

Cloud chamber: 
𝑒+, 𝜇−, …

Direct detection: 
(hopefully) DM?

Passive searches Active searches

Collider: controlled environment

DM “Collider” (e.g. fixed target exp.)
: controlled environment

~5% visible sector

~25% dark sector
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Candidate Experiments

†: Numbers in parentheses are our estimation.
‡: Numbers in parentheses are relevant to T2HKK.
∗: Red-font numbers are fiducial volume.
⋆: Threshold energy for the “good” angular resolution above

 DUNE/SHiP/Kamiokande ideal for sub-GeV to GeV hidden sector particle searches: different 

exps. require different strategies optimized to the production mechanism and associated detectors.

Exp. DUNE SHiP† SK/HK‡

Near-far detector Yes Yes (Yes)
Distance b/w detectors 1,300 km 50 m (700 – 1,000) km

Volume∗ 8 t/40 kt 9.6 t/NA (190/190) kt
22.5 kt for SK

Detector type LArTPC Emulsion/Calorimeter Cherenkov
Particle identification Very good Very good Good

Beam energy 120 GeV 400 GeV 30 GeV
PoT 11 × 1020/year 0.4 × 1020/year 48 × 1020/year

Power 1.2 MW (> 0.15 MW) 1.3 MW
Angular resolution (𝑒/𝑝) 1°/5° (Good) 3°/3°

Threshold energy (𝑒/𝑝) 30/50 MeV (Equally small) 0.1/1 GeV⋆

Position resolution 1 – 2 cm 0.1 – 1 mm Not good
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Boosted DM Source: Intensity Frontier

Physics opportunities at fixed target exps.

High-
intensity
proton

Target
material

Shielding
/filtering

Boosted
dark-sector
particles

 Production by target collision (e.g., in 

vector portal scenarios)

 Meson decay: 𝑝𝑝 → 𝜋/𝜂 + others, 

𝜋/𝜂 → 𝑋∗𝛾 → 𝜒𝐵𝜒𝐵𝛾; 𝜋/𝜂 → 𝑋∗𝛾 →

𝜒𝐵𝜓𝛾; 𝜋/𝜂 → 𝑋∗𝛾 → 𝜓𝜓𝛾

 Drell-Yan: 𝑝𝑝 → 𝑋∗ → 𝜒𝐵𝜒𝐵, 𝜒𝐵𝜓, 𝜓𝜓

 Boost of 𝝌𝑩 given by a distribution
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Signal Detection

Physics opportunities at fixed target exps.

High-
intensity
proton

Target
material

Shielding
/filtering

Boosted
dark-sector
particles

 Production by target collision (e.g., in 

vector portal scenarios)

 Meson decay: 𝑝𝑝 → 𝜋/𝜂 + others, 

𝜋/𝜂 → 𝑋∗𝛾 → 𝜒𝐵𝜒𝐵𝛾; 𝜋/𝜂 → 𝑋∗𝛾 →

𝜒𝐵𝜓𝛾; 𝜋/𝜂 → 𝑋∗𝛾 → 𝜓𝜓𝛾

 Drell-Yan: 𝑝𝑝 → 𝑋∗ → 𝜒𝐵𝜒𝐵, 𝜒𝐵𝜓, 𝜓𝜓

 Boost of 𝝌𝑩 given by a distribution

Detector
complex

 Detection by detector complex (e.g., DM “colliders”) [G. Giudice, DK, J.-C. Park, S. Shin, …, in progress]

 Detector-specific strategies required

 Far/near detector system at e.g., DUNE, T2HKK: ratio of 𝑵𝐧𝐞𝐚𝐫
𝐬𝐢𝐠𝐧𝐚𝐥

to 𝑵𝐟𝐚𝐫
𝐬𝐢𝐠𝐧𝐚𝐥

available/useful for 

further DM signal confirmation

 Signal events with displaced secondary vertex: better signal identification (e.g., SHiP)
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Dark Matter “Colliders” and Beyond

The DM “collider”

The cosmic
frontier

The intensity
frontier

Monte Carlo
Simulation

New physics/DM
model building

Collider
phenomenology

Conventional
DM direct detection
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Research Opportunities

 Physics opportunities at the 
intensity frontier
 The DUNE experiment (in progress)
 The SHiP experiment (in progress)
 The T2HKK experiment
 Other existing/prospective fixed 

target experiments

 Physics opportunities at DM direct  
detection experiments
 Signal (coming from the sky) 

detection by a displaced vertex (e.g. 
SuperCDMS)

 New experiment proposal

Monte Carlo simulation for DM 
“colliders”
 “Pre-calculated” boosted DM generator
 Developing MC simulation packages for fixed 

target experiments in collaboration with MC-
tool authors

 Constructing new physics models probable 
at DM colliders
 Light KK graviton model (in progress)
 UV-completed/effective hidden-sector models

 “Collider” phenomenology
 Signal detection prospects at standard colliders
 Applying collider variables to DM colliders
 Developing optimized variables for DM colliders

 Physics opportunities at the 
cosmic frontier
 Potential of cosmic ray excesses
 Cosmology: relic abundance, impact 

on the evolution of the universe
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DM Collider Physics: Take-home Message

Collider physics vs. DM collider physics

LHC 
in operation

20102006

MGv4

1999

𝑀𝑇2

Higgs 
discovery

20122007

𝑀𝑇2
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LHC
Run2

2016
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DM Collider Physics: Take-home Message

Collider physics vs. DM collider physics
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DM Collider Physics: Take-home Message

Collider physics vs. DM collider physics

LHC 
in operation

20102006

MGv4

1999

𝑀𝑇2

Higgs 
discovery

2012

SHiP
in operation

20252014

BDX 
in operation

DM collider
proposal
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DUNE
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MC tools/
Kinematic variables

2017
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Conclusions

 What’s going on at the weak scale?  our Nature might be 

“shy” so hide herself

 The more, the messier? The more, the merrier!

 Don’t be shy to explore “flavorful” hidden/dark sector scenarios 

 Peeping into the hidden/dark sector through them 

 Rising interest in “flavorful” dark sector physics

 Physics opportunities at dark matter “colliders” 

 Orthogonal: (relatively) background-free due to 

secondary signatures → new direct DM search paradigm!

 Inexpensive: exclusion limit/detection prospects at

neutrino detectors such as Super/Hyper-K, DUNE, SHiP, etc. without extra apparatus

 Complementary: constraining parameters for various DM scenarios/models

 Interdisciplinary: if this scenario is the truth, many ideas in collider phenomenology 

directly apply!





Back-up
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Boosted DM from the Sky

Semi-annihilation

 In DM models where relevant DM is stabilized by e.g., 𝑍3 symmetry, one may have a process 

like 

 Under the circumstance in which the mass of SM here is lighter (i.e., 𝑚𝐴 > 𝑚SM), the 

outgoing 𝜒𝐴 can be boosted and its boost factor is given by

𝛾𝐴 =
5𝑚𝐴

2 − 𝑚SM
2

4𝑚𝐴
2

𝜒𝐴

𝜒𝐴

𝜒𝐴

SM
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Signal Attributes
𝜒𝐵 𝜓 𝜒𝐵

𝑋

𝑋

𝑒/𝑝 𝑒/𝑝

𝐸𝐵 = 𝛾𝐵𝑚𝐵

𝑒+ 𝑒−
Comparison b/w e- and p-scatterings

Exp. e-scattering p-scattering

Energy for primary scattering Peaking towards smaller momentum transfer

Threshold energy Small
Large for Cherenkov

(Small for DUNE/SHiP detectors)

Form factor suppression N/A Yes

Deep inelastic scattering N/A Yes

Energy for secondary process (Typically) highly boosted (Typically) less boosted

Object identification

Highly collimated 
(in preferred mass spectra)

Recoil electron + single 
object-like 𝑒+𝑒− pair 

(assuming 𝜃𝑟𝑒𝑠~3∘, better at 
DUNE/SHiP)

Reasonably separated
(in preferred mass spectra)

Recoil proton + well-separated 𝑒+𝑒−

pair
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Exp. e-scattering p-scattering

Energy for primary scattering Peaking towards smaller momentum transfer

Threshold energy Small
Large for Cherenkov
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Form factor suppression N/A Yes

Deep inelastic scattering N/A Yes

Energy for secondary process (Typically) highly boosted (Typically) less boosted

Object identification
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Signal Attributes

Comparison b/w e- and p-scatterings

𝒎𝝌𝑩
= 𝟎. 𝟒,𝒎𝝍 = 𝟎. 𝟓,𝒎𝑿 = 𝟎. 𝟎𝟔, 𝜸𝝌𝑩

= 𝟐𝟓𝟎

𝒎𝝌𝑩
= 𝟎. 𝟏,𝒎𝝍 = 𝟎. 𝟏𝟒,𝒎𝑿 = 𝟎. 𝟎𝟑, 𝜸𝝌𝑩

= 𝟐𝟎𝟎

𝑒+ 𝑒−

𝜙: vector

𝒎𝝌𝑩
= 𝟎. 𝟒,𝒎𝝍 = 𝟎. 𝟗,𝒎𝑿 = 𝟎. 𝟐, 𝜸𝝌𝑩

= 𝟏𝟓

𝒎𝝌𝑩
= 𝟎. 𝟏,𝒎𝝍 = 𝟏. 𝟎,𝒎𝑿 = 𝟎. 𝟓 𝜸𝝌𝑩

= 𝟓𝟎

DIS

Short range for
elastic scattering

DUNE/SHiP coverage wider

𝜒𝐵 𝜓 𝜒𝐵

𝑋

𝑋

𝑒/𝑝 𝑒/𝑝

𝐸𝐵 = 𝛾𝐵𝑚𝐵

𝑒+ 𝑒−
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Signal Attributes

Comparison b/w e- and p-scatterings

Exp. e-scattering p-scattering

Energy for primary scattering Peaking towards smaller momentum transfer

Threshold energy Small
Large for Cherenkov

(Small for DUNE/SHiP detectors)

Form factor suppression N/A Yes

Deep inelastic scattering N/A Yes

Energy for secondary process (Typically) highly boosted (Typically) less boosted

Object identification

Highly collimated 
(in preferred mass spectra)

Recoil electron + single 
object-like 𝑒+𝑒− pair 

(assuming 𝜃𝑟𝑒𝑠~3∘, better at 
DUNE/SHiP)

Reasonably separated
(in preferred mass spectra)

Recoil proton + well-separated 𝑒+𝑒−

pair

𝜒𝐵 𝜓 𝜒𝐵

𝑋

𝑋

𝑒/𝑝 𝑒/𝑝

𝐸𝐵 = 𝛾𝐵𝑚𝐵

𝑒+ 𝑒−
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Exp. e-scattering p-scattering
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Object identification
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(in preferred mass spectra)

Recoil proton + well-separated 𝑒+𝑒−
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Signal Attributes

Comparison b/w e- and p-scatterings

red line: angle b/w 
recoil target and 𝜓

𝒎𝝌𝑩
= 𝟎. 𝟏,𝒎𝝍 = 𝟎. 𝟏𝟒,𝒎𝑿 = 𝟎. 𝟎𝟑, 𝜸𝝌𝑩

= 𝟐𝟎𝟎

Angle between 𝑒+𝑒−

mostly < 1.5∘

DUNE/SHiP may 
resolve 𝒆+𝒆−

𝜒𝐵 𝜓 𝜒𝐵

𝑋

𝑋

𝑒/𝑝 𝑒/𝑝

𝐸𝐵 = 𝛾𝐵𝑚𝐵

𝑒+ 𝑒−



Doojin Kim, CERN Theory Department Korea-CERN Workshop

Exp. e-scattering p-scattering
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Large for Cherenkov
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Signal Attributes

Comparison b/w e- and p-scatterings

𝜒𝐵 𝜓 𝜒𝐵

𝑋

𝑋

𝑒/𝑝 𝑒/𝑝

𝐸𝐵 = 𝛾𝐵𝑚𝐵

𝑒+ 𝑒−

𝒎𝝌𝑩
= 𝟎. 𝟒,𝒎𝝍 = 𝟎. 𝟗,𝒎𝑿 = 𝟎. 𝟐, 𝜸𝝌𝑩

= 𝟏𝟓

𝒎𝝌𝑩
= 𝟎. 𝟏,𝒎𝝍 = 𝟏. 𝟎,𝒎𝑿 = 𝟎. 𝟓 𝜸𝝌𝑩

= 𝟓𝟎
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Background Considerations

Potential sources 

𝜈ℓ

𝑒 𝑒

𝑍

𝜈ℓ

: CR by an N.C.
electron

𝜈ℓ

𝑒

ℓ

𝑊

𝜈𝑒
: CR by a C.C.
electron/muon/tau

𝜈ℓ

𝑝 𝑝

𝑍

𝜈ℓ

: CR by an N.C.
proton unless broken

𝜈ℓ

𝑛

ℓ

𝑊

𝑝
: CR by at least, a C.C.
proton unless broken

 Cherenkov radiation (CR) by electron/muon is distinguished from that by proton.

 Electron-preferred scenarios:

 Proton-preferred scenarios: opening angles among recoil proton, decayed electrons are large 

enough to resolve
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Background Considerations

More challenging cases: broken nuclei

𝜈ℓ

𝑝/𝑛

ℓ

𝑊

𝜋

𝜋

𝜋

𝜋+ → 𝜇+𝜈 → 𝑒+𝜈𝜈𝜈

Super-K (2012)

 Similar expectations for neutral currents

 (Dedicated study in progress)
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Background Considerations

More challenging cases: broken nuclei

𝜈ℓ

𝑝/𝑛

ℓ

𝑊

𝜋

𝜋

𝜋

e.g. 𝜋+ → 𝜇+𝜈 → 𝑒+𝜈𝜈𝜈

 Expecting again that (quality) track-based particle identification allows us to 

distinguish multi-track background events from signal ones 

 A dedicated study is needed

Particle tracks created by a neutrino interaction in liquid argon in 
the ArgoNeuT



Doojin Kim, CERN Theory Department Korea-CERN Workshop-69-

Flux of Neutrino

Neutrino as a background

[Ruppin et al., (2014)]

 Relevant neutrino fluxes to the 

background of direct DM 

detection experiments: solar, 

atmospheric, and diffuse 

supernovae
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Flux of Atmospheric Neutrino

Neutrino as a background

𝜃: zenith angle

Energetic neutrino flux ~10−4cm−2s−1
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Accessible Parameter Region

Parameter scanning

 𝑒-scattering (upper panels) 

and 𝑝-scattering (lower panels)

 Black solid lines: kinematically

allowed maximum mass of 

heavier hidden-sector states

 𝑚𝜒1
: mass of incident boosted 

DM, 𝛾𝜒1
: boost factor of 

incident boosted DM, 𝛿𝑚𝜒: 

mass gap between the DM and 

the heavier state
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Current Status of Dark Photon Searches

Kinetic mixing parameter choice

[Ilten et al., (2015)]


