Strongly coupled new physics and

Precision measurements at the LHC

LianTao Wang University of Chicago

Work in collaboration with Da Liu and Andrea Tesi

2017 CERN-CKC workshop. Jeju island, Korea. June 2. 2017

Future of Large Hadron Collider

LHC schedule beyond LS1

Only EYETS (19 weeks) (no Linac4 connection during Run2)
LS2 starting in 2018 (July) 18 months + 3months BC (Beam Commissioning)
LS3 LHC: starting in 2023 => 30 months +3 BC injectors: in 2024 => 13 months + 3 BC

- Will continue and improve in the next two decades
- $E_{c m}=13-14 \mathrm{TeV}$.
- $95+\%$ more data.

As data accumulates

Rapid gain initial $10 \mathrm{~s} \mathrm{fb}^{-1}$, slow improvements afterwards. Reached "slow" phase after Moriond 2017

LHC will press on the "standard"

 searches for SUSY, extraD, composite... with slower progresses
In addition to waiting patiently...

Do more with (95+\% more) LHC data.

On-going work. Preliminary results. With Da Liu and Andrea Tesi.

A direction with potential

- Difficult channels that:
- Not rate limited, but small S / B
- Limited by reducible backgrounds, systematics.
- More data and more time (improving techniques) can help.

Shapes of signals

no rate beyond this

- Strongly coupled heavy new physics

e.g. Liu, Pomarol, Rattazzi, Riva

Strong coupling

$m>$ kinematical limit. Integrate out

$$
\frac{g^{\prime 2}}{m^{2}} \mathcal{O}^{(6)}
$$

Best channels are usually di-lepton, di-jet and so on. Well studied

Another recent example of using di-lepton and potentially di-jet Farina, Panico, Pappadopulo, Ruderman, Torre, Wulzer

My focus here:

- The question of electroweak symmetry breaking has hinted that there should be NP not too far away from the weak scale.
- Naturalness, etc.
s Some of these need strong dynamics
- Final states with $\mathrm{W} / \mathrm{Z} / \mathrm{h} /$ top. "Precision measurement"

Broad features with di-boson, tops etc.

no rate beyond this

- Closely related to electroweak symmetry breaking
- Difficult. More data can help a lot.

Operators.

$$
\begin{aligned}
\mathcal{O}_{W} & =\frac{i g}{2}\left(H^{\dagger} \sigma^{a} \overleftrightarrow{D^{\mu}} H\right) D^{\nu} W_{\mu \nu}^{a}, & \mathcal{O}_{B}=\frac{i g^{\prime}}{2}\left(H^{\dagger} \overleftrightarrow{D}^{\mu} H\right) \partial^{\nu} B_{\mu \nu} \\
\mathcal{O}_{H W} & =i g\left(D^{\mu} H\right)^{\dagger} \sigma^{a}\left(D^{\nu} H\right) W_{\mu \nu}^{a}, & \mathcal{O}_{H B}=i g^{\prime}\left(D^{\mu} H\right)^{\dagger}\left(D^{\nu} H\right) B_{\mu \nu} \\
\mathcal{O}_{3 W} & =\frac{1}{3!} g \epsilon_{a b c} W_{\mu}^{a \nu} W_{\nu \rho}^{b} W^{c \rho \mu}, & \mathcal{O}_{T}=\frac{g^{2}}{2}\left(H^{\dagger} \overleftrightarrow{D}^{\mu} H\right)\left(H^{\dagger} \overleftrightarrow{D_{\mu}}\right) H \\
\mathcal{O}_{R}^{u} & =i g^{2}\left(H^{\dagger} \overleftrightarrow{D}_{\mu} H\right) \bar{u}_{R} \gamma^{\mu} u_{R}, & \mathcal{O}_{R}^{d}=i g^{2}\left(H^{\dagger} \overleftrightarrow{D_{\mu}} H\right) \bar{d}_{R} \gamma^{\mu} d_{R} \\
\mathcal{O}_{L}^{q} & =i g^{2}\left(H^{\dagger} \overleftrightarrow{D}_{\mu} H\right) \bar{Q}_{L} \gamma^{\mu} Q_{L}, & \left.\mathcal{O}_{L}^{(3) q}=i g^{2}\left(H^{\dagger} \sigma^{a} \overleftrightarrow{D}{ }_{\mu} H\right) \bar{Q}_{L} \sigma^{a} \gamma^{\mu} Q_{L}\right)
\end{aligned}
$$

$$
\begin{aligned}
& { }_{8} \mathcal{O}_{T W W}=g^{2} \mathcal{T}_{f}^{\mu \nu} W_{\mu \rho}^{a} W_{\nu}^{a \rho} \quad{ }_{8} \mathcal{O}_{T B B}=g^{\prime 2} \mathcal{T}_{f}^{\mu \nu} B_{\mu \rho} B_{\nu}^{\rho} \\
& { }_{8} \mathcal{O}_{T W B}=g g^{\prime} \mathcal{T}_{f}^{a}{ }^{\mu \nu} W_{\mu \rho}^{a} B_{\nu}^{\rho}, \quad{ }_{8} \mathcal{O}_{T H}=g^{2} \mathcal{T}_{f}^{\mu \nu} D_{\mu} H^{\dagger} D_{\nu} H \\
& { }_{8} \mathcal{O}_{T H}^{(3)}=g^{2} \mathcal{T}_{f}^{a \mu \nu} D_{\mu} H^{\dagger} \sigma^{a} D_{\nu} H \\
& \mathcal{T}_{f}^{\mu \nu}=\frac{i}{4} \bar{\psi}\left(\gamma^{\mu} \stackrel{\leftrightarrow}{D^{\nu}}+\gamma^{\nu} \stackrel{\leftrightarrow}{D^{\mu}}\right) \psi \quad \mathcal{T}_{f}^{a, \mu \nu}=\frac{i}{4} \bar{\psi}\left(\gamma^{\mu} \stackrel{\leftrightarrow}{D^{\nu}}+\gamma^{\nu} \stackrel{\leftrightarrow}{D^{\mu}}\right) \sigma^{a} \psi
\end{aligned}
$$

Observables.

Observable	$\delta \sigma / \sigma_{\mathrm{SM}}$	Observable	$\delta \sigma / \sigma_{\mathrm{SM}}$
\hat{S}	$\left(c_{W}+c_{B}\right) \frac{m_{W}^{2}}{\Lambda^{2}}$	\hat{T}	$4 c_{T} \frac{m_{W}^{2}}{\Lambda^{2}}$
$W_{L}^{+} W_{L}^{-}$	$\left[\left(c_{W}+c_{H W}\right) T_{f}^{3}+\left(c_{B}+c_{H B}\right) Y_{f} t_{w}^{2}\right] \frac{E_{c}^{2}}{\Lambda^{2}}, c_{f} \frac{E_{c}^{2}}{\Lambda^{2}}, c_{T H} \frac{E_{c}^{4}}{\Lambda^{4}}, c_{T H}^{(3)} \frac{E_{c}^{4}}{\Lambda^{4}}$	$W_{T}^{+} W_{T}^{-}$	$c_{3 W} \frac{m_{W}^{2}}{\Lambda^{2}}+c_{3 W}^{2} \frac{E_{c}^{4}}{\Lambda^{4}}, c_{T W W} \frac{E_{c}^{4}}{\Lambda^{4}}$
$W_{L}^{ \pm} Z_{L}$	$\left(c_{W}+c_{H W}-4 c_{L}^{(3) q}\right) \frac{E_{c}^{2}}{\Lambda^{2}}, c_{T H}^{(3)} \frac{E_{c}^{4}}{\Lambda^{4}}$	$W_{T}^{+} Z_{T}(\gamma)$	$c_{3 W} \frac{m_{W}^{2}}{\Lambda^{2}}+c_{3 W}^{2} \frac{E_{c}^{4}}{\Lambda^{4}}, c_{T W B} \frac{E_{c}^{4}}{\Lambda^{4}}$
$W_{L}^{ \pm} h$	$\left(c_{W}+c_{H W}-4 c_{L}^{(3) q}\right) \frac{E_{c}^{2}}{\Lambda^{2}}, c_{T H}^{(3)} \frac{E_{c}^{4}}{\Lambda^{4}}$	$Z h$	$\left[\left(c_{W}+c_{H W}\right) T_{f}^{3}-\left(c_{B}+c_{H B}\right) Y_{f} t_{w}^{2}\right] \frac{E_{c}^{2}}{\Lambda^{2}}, c_{f} \frac{E_{c}^{2}}{\Lambda^{2}}$
$Z_{T} Z_{T}$	$\left(c_{T W W}+t_{w}^{2} c_{T B B}-2 T_{f}^{3} t_{w}^{2} c_{T W B}\right) \frac{E_{c}^{4}}{\Lambda^{4}}$	$\left(c_{H W}-c_{H B}\right) \frac{(4 \pi v)^{2}}{\Lambda^{2}}$	$h \gamma \rightarrow W^{+} W^{-}$
$h \rightarrow Z \gamma$			

- LEP precision EW, high energy non-resonant WW/Wh, and Higgs measurement all relevant.
- Sensitive to different combination of the operators.
- OHw and $\mathrm{O}_{\text {нв }}$ contribute to $\mathrm{h} \rightarrow \mathrm{Z} \gamma$.
- LEP limit on OT dominant. LHC probably can't improve.

Precision measurement at the LHC possible?

LEP precision tests probe NP about 2 TeV

$$
\frac{\delta \sigma}{\sigma_{\mathrm{SM}}} \sim \frac{m_{W}^{2}}{\Lambda^{2}} \sim 2 \times 10^{-3}
$$

At LHC
Signal-SM interference
Without interference

$$
\frac{\delta \sigma}{\sigma_{\mathrm{SM}}} \sim \frac{E^{2}}{\Lambda^{2}} \sim 0.25 \quad \frac{\delta \sigma}{\sigma_{\mathrm{SM}}} \sim \frac{E^{4}}{\Lambda^{4}} \sim 0.05
$$

LHC has potential.
Both interference and energy growing behavior crucial

Helicity structure at LHC

$$
f_{L} \bar{f}_{R} \rightarrow W^{+} W^{-}
$$

$\left(h_{W^{+}}, h_{W^{-}}\right)$	SM	\mathcal{O}_{W}	$\mathcal{O}_{H W}$	$\mathcal{O}_{H B}$	\mathcal{O}_{B}	$\mathcal{O}_{3 W}$	$\mathcal{O}_{T W W}$
(\pm, \mp)	1	0	0	0	0	0	$\frac{E^{4}}{\Lambda^{4}}$
$(0,0)$	1	$\frac{E^{2}}{\Lambda^{2}}$	$\frac{E^{2}}{\Lambda^{2}}$	$\frac{E^{2}}{\Lambda^{2}}$	$\frac{E^{2}}{\Lambda^{2}}$	0	$\frac{E^{4}}{\Lambda^{4}} \frac{m_{W}^{2}}{E^{2}}$
$(0, \pm),(\pm, 0)$	$\frac{m_{W}}{E}$	$\frac{E^{2}}{\Lambda^{2}} \frac{m_{W}}{E}$	$\frac{E^{4}}{\Lambda^{4}} \frac{m_{W}}{E}$				
(\pm, \pm)	$\frac{m_{W}^{2}}{E^{2}}$	$\frac{m_{W}^{2}}{\Lambda^{2}}$	$\frac{m_{W}^{W}}{\Lambda^{2}}$	0	0	$\frac{E^{2}}{\Lambda^{2}}$	$\frac{E^{4}}{\Lambda^{4}} \frac{m_{W}^{2}}{E^{2}}$

$$
f_{R} \bar{f}_{L} \rightarrow W^{+} W^{-}
$$

$\left(h_{W^{+}}, h_{W^{-}}\right)$	SM	\mathcal{O}_{W}	$\mathcal{O}_{H W}$	$\mathcal{O}_{H B}$	\mathcal{O}_{B}	$\mathcal{O}_{3 W}$	$\mathcal{O}_{T W W}$
(\pm, \mp)	0	0	0	0	0	0	$\frac{E^{4}}{\Lambda^{4}}$
$(0,0)$	1	$\frac{E^{2}}{\Lambda^{2}}$	$\frac{E^{2}}{\Lambda^{2}}$	$\frac{E^{2}}{\Lambda^{2}}$	$\frac{E^{2}}{\Lambda^{2}}$	0	$\frac{E^{4}}{\Lambda^{4}} \frac{m_{W}^{2}}{E^{2}}$
$(0, \pm),(\pm, 0)$	$\frac{m_{W}}{E}$	$\frac{E^{2}}{\Lambda^{2}} \frac{m_{W}}{E}$	$\frac{E^{2}}{\Lambda^{2}} \frac{m_{W}}{E}$	$\frac{E^{2}}{\Lambda^{2}} \frac{m_{W}}{E}$	$\frac{E^{2}}{\Lambda^{2}} \frac{m_{W}}{E}$	$\frac{m_{W}^{2}}{\Lambda^{2}} \frac{m_{W}}{E}$	$\frac{E^{4}}{\Lambda^{4}} \frac{m_{W}}{E}$
(\pm, \pm)	$\frac{m_{W}^{2}}{E^{2}}$	$\frac{m_{W}^{2}}{\Lambda^{2}}$	$\frac{m_{W}^{2}}{\Lambda^{2}}$	0	0	$\frac{m_{W}^{2}}{\Lambda^{2}}$	$\frac{E^{4}}{\Lambda^{4}} \frac{m_{W}^{2}}{E^{2}}$

Helicity structure at LHC

$$
f_{L} \bar{f}_{R} \rightarrow W^{+} W^{-}
$$

$\left(h_{W^{+}}, h_{W^{-}}\right)$	SM	\mathcal{O}_{W}	$\mathcal{O}_{H W}$	$\mathcal{O}_{H B}$	\mathcal{O}_{B}	$\mathcal{O}_{3 W}$	$\mathcal{O}_{T W W}$
(\pm, \mp)	1	0	0	0	0	0	$\frac{E^{4}}{\Lambda^{4}}$
$(0,0)$	1	$\frac{E^{2}}{1^{2}}$	$\frac{E^{2}}{\Lambda^{2}}$	$\frac{E^{2}}{\Lambda^{2}}$	$\frac{E^{2}}{\Lambda^{2}}$	0	$\frac{E^{4} m^{2}}{\Lambda^{4}} \underline{m}_{E^{2}}^{E^{2}}$
$(0, \pm),(\pm, 0)$	$\frac{m_{V}}{L}$	$\frac{E^{-}}{\Lambda^{-} \frac{m u}{E}}$	$\frac{L^{2}}{L^{2} \frac{m^{2}}{E}}$	$\frac{L^{2}}{\Lambda^{2}} \frac{}{m w}$	$\frac{L^{2}}{L^{2} \frac{m W}{E}}$	$\frac{E^{2}}{\Lambda^{2}} \frac{m_{W}}{E}$	$\frac{E^{4}}{\Lambda^{4} \frac{m_{W}}{E}}$
(\pm, \pm)	$\frac{m_{\text {N }}^{2}}{E^{2}}$	$\frac{m_{\text {N }}}{\Lambda^{2}}$	$\frac{m_{\text {N }}{ }^{2}}{}$	0	0	$\frac{E^{2}}{\Lambda^{2}}$	$\frac{E^{4}}{\mathcal{A}^{4} \frac{m_{V}^{2}}{E^{2}}}$

$$
f_{R} \bar{f}_{L} \rightarrow W^{+} W^{-}
$$

$\left(h_{W^{+}}, h_{W^{-}}\right)$	SM	\mathcal{O}_{W}	$\mathcal{O}_{H W}$	$\mathcal{O}_{H B}$	\mathcal{O}_{B}	$\mathcal{O}_{3 W}$	$\mathcal{O}_{T W W}$
(\pm, \mp)	0	0	0	0	0	0	$\frac{E^{4}}{\Lambda^{4}}$
$(0,0)$	1	$\frac{E^{2}}{\Lambda^{2}}$	$\frac{E^{2}}{\Lambda^{2}}$	$\frac{E^{2}}{\Lambda^{2}}$	$\frac{E^{2}}{\Lambda^{2}}$	0	$\frac{E^{4}}{\Lambda^{4}} \frac{m_{W}^{2}}{E^{2}}$
$(0, \pm),(\pm, 0)$	$\frac{m_{W}}{E}$	$\frac{E^{2}}{\Lambda^{2}} \frac{m W}{E}$	$\frac{E^{2}}{\Lambda^{2}} \frac{m_{W}}{E}$	$\frac{E^{2}}{\Lambda^{2}} \frac{m_{W}}{E}$	$\frac{E^{2}}{\Lambda^{2}} \frac{m_{W}}{E}$	$\frac{m_{W}^{2}}{\Lambda^{2}} \frac{m_{W}}{E}$	$\frac{E^{4}}{\Lambda^{4}} \frac{m_{W}}{E}$
(\pm, \pm)	$\frac{m_{W}^{2}}{E^{2}}$	$\frac{m_{W}^{2}}{\Lambda^{2}}$	$\frac{m_{W}^{2}}{\Lambda^{2}}$	0	0	$\frac{m_{W}^{2}}{\Lambda^{2}}$	$\frac{E^{4}}{\Lambda^{4}} \frac{m_{W}^{2}}{E^{2}}$

\bigcirc growing with energy

Helicity structure at LHC

$$
f_{L} \bar{f}_{R} \rightarrow W^{+} W^{-}
$$

$\left(h_{W^{+}}, h_{W^{-}}\right)$	SM	\mathcal{O}_{W}	$\mathcal{O}_{H W}$	$\mathcal{O}_{H B}$	\mathcal{O}_{B}	$\mathcal{O}_{3 W}$	$\mathcal{O}_{T W W}$
(\pm, \mp)	1	0	0	0	0	0	$\frac{E^{4}}{\Lambda^{4}}$
$(0,0)$	1	$\frac{E^{2}}{\Lambda^{2}}$	$\frac{E^{2}}{\Lambda^{2}}$	$\frac{E^{2}}{\Lambda^{2}}$	$\frac{E^{2}}{\Lambda^{2}}$	0	$\frac{E^{4}}{\Lambda^{4}} \frac{m^{2}}{E^{2}}$
$(0, \pm),(\pm, 0)$	$\frac{m_{W}}{F}$	$\frac{E^{2}}{\Lambda^{2}} \frac{m_{W}}{E}$	$\frac{E^{2}}{\Lambda^{2}} \frac{m_{W}}{E}$	$\frac{\dot{L}^{2}}{\Lambda^{2}} \frac{m_{W}}{E}$	$\frac{E^{2}}{\Lambda^{2}} \frac{m_{W}}{E}$	$\frac{E^{2}}{\Lambda^{2}} \frac{m_{W}}{E}$	$\frac{E^{4}}{\Lambda^{4}} \frac{m_{W}}{E}$
(\pm, \pm)	$\frac{m_{W}^{2}}{E^{2}}$	$\frac{m_{W}^{2}}{\Lambda^{2}}$	$\frac{m_{W}^{2}}{\Lambda^{2}}$	0	0	$\frac{E^{2}}{\Lambda^{2}}$	$\frac{E^{4}}{\Lambda^{4}} \frac{m_{W V}^{2}}{E^{2}}$

$$
f_{R} \bar{f}_{L} \rightarrow W^{+} W^{-}
$$

$\left(h_{W^{+}}, h_{W^{-}}\right)$	SM	\mathcal{O}_{W}	$\mathcal{O}_{H W}$	$\mathcal{O}_{H B}$	\mathcal{O}_{B}	$\mathcal{O}_{3 W}$	$\mathcal{O}_{T W W}$
(\pm, \mp)	0	0	0	0	0	0	$\frac{E^{4}}{\Lambda^{4}}$
$(0,0)$	1	$\frac{E^{2}}{\Lambda^{2}}$	$\frac{E^{2}}{\Lambda^{2}}$	$\frac{E^{2}}{\Lambda^{2}}$	$\frac{E^{2}}{\Lambda^{2}}$	0	$\frac{E^{4}}{\Lambda^{4}} \frac{m_{W}^{2}}{E^{2}}$
$(0, \pm),(\pm, 0)$	$\frac{m_{W}}{E}$	$\frac{E^{2}}{\Lambda^{2}} \frac{m_{W}}{E}$	$\frac{E^{2}}{\Lambda^{2}} \frac{m_{W}}{E}$	$\frac{E^{2}}{\Lambda^{2}} \frac{m_{W}}{E}$	$\frac{E^{2}}{\Lambda^{2}} \frac{m_{W}}{E}$	$\frac{m_{W}^{2}}{\Lambda^{2}} \frac{m_{W}}{E}$	$\frac{E^{4}}{\Lambda^{4}} \frac{m_{W}}{E}$
(\pm, \pm)	$\frac{m_{W}^{2}}{E^{2}}$	$\frac{m_{W}^{2}}{\Lambda^{2}}$	$\frac{m_{W}^{2}}{\Lambda^{2}}$	0	0	$\frac{m_{W}^{2}}{\Lambda^{2}}$	$\frac{E^{4}}{\Lambda^{4}} \frac{m_{W}^{2}}{L^{2}}$

(growing with energy

SM piece is small. Interference does not grow with E .

Helicity structure at LHC

$$
f_{L} \bar{f}_{R} \rightarrow W^{+} W^{-}
$$

$\left(h_{W^{+}}, h_{W^{-}}\right)$	SM	\mathcal{O}_{W}	$\mathcal{O}_{H W}$	$\mathcal{O}_{H B}$	\mathcal{O}_{B}	$\mathcal{O}_{3 W}$	$\mathcal{O}_{T W W}$
(\pm, \mp)	1	0	0	0	0	0	$\frac{E^{4}}{\Lambda^{4}}$
$(0,0)$	1	$\frac{E^{2}}{\Lambda^{2}}$	$\frac{E^{2}}{\Lambda^{2}}$	$\frac{E^{2}}{\Lambda^{2}}$	$\frac{E^{2}}{\Lambda^{2}}$	0	$\frac{E^{4}}{\Lambda^{4}} \frac{m_{W}^{2}}{E^{2}}$
$(0, \pm),(\pm, 0)$	$\frac{m_{W}}{E^{2}}$	$\frac{E}{\Lambda^{2}} \frac{m_{W}}{2}$	$\frac{E^{2}}{\Lambda^{2}} \frac{m_{W}}{2}$	$\frac{E^{2}}{\Lambda^{2}} \frac{m_{W}}{E}$	$\frac{E^{2}}{\Lambda^{2}} \frac{m_{W}}{E}$	$\frac{E^{2}}{\Lambda^{2}} \frac{m_{W}}{E}$	$\frac{E^{4}}{\Lambda^{4}} \frac{m_{W}}{E}$
(\pm, \pm)	$\frac{m_{W}^{2}}{E^{2}}$	$\frac{m_{W}^{2}}{\Lambda^{2}}$	$\frac{m_{W}^{W}}{\Lambda^{2}}$	0	0	$\frac{E^{2}}{\Lambda^{2}}$	$\frac{E^{4}}{\Lambda^{4}} \frac{m_{W}^{2}}{E^{2}}$

$$
f_{R} \bar{f}_{L} \rightarrow W^{+} W^{-}
$$

growing with energy

$\left(h_{W^{+}}, h_{W^{-}}\right)$	SM	\mathcal{O}_{W}	$\mathcal{O}_{H W}$	$\mathcal{O}_{H B}$	\mathcal{O}_{B}	$\mathcal{O}_{3 W}$	$\mathcal{O}_{T W W}$
(\pm, \mp)	0	0	0	0	0	0	$\frac{E^{4}}{\Lambda^{4}}$
$(0,0)$	1	$\frac{E^{2}}{\Lambda^{2}}$	$\frac{E^{2}}{\Lambda^{2}}$	$\frac{E^{2}}{\Lambda^{2}}$	$\frac{E^{2}}{\Lambda^{2}}$	0	$\frac{E^{4}}{\Lambda^{4}} \frac{m_{W}^{2}}{E^{2}}$
$(0, \pm),(\pm, 0)$	$\frac{m_{W}}{E}$	$\frac{E^{2}}{\Lambda^{2}} \frac{m_{W}}{E}$	$\frac{E^{2}}{\Lambda^{2}} \frac{m W}{2}$	$\frac{E^{2}}{\Lambda^{2}} \frac{m_{W}}{E}$	$\frac{E^{2}}{\Lambda^{2}} \frac{m_{W}}{E}$	$\frac{m_{W}^{2}}{\Lambda^{2}} \frac{m_{W}}{E}$	$\frac{E^{4}}{\Lambda^{4}} \frac{m_{W}}{E}$
(\pm, \pm)	$\frac{m_{W}^{2}}{E^{2}}$	$\frac{m_{W}^{2}}{\Lambda^{2}}$	$\frac{m_{W}^{2}}{\Lambda^{2}}$	0	0	$\frac{m_{W}^{2}}{\Lambda^{2}}$	$\frac{E^{4}}{\Lambda^{4}} \frac{m_{W}^{2}}{E^{2}}$

- Whether interference or not depends on polarization of WW. Polarization differentiation can be crucial.
- Need large SM piece to interfere with. Longitudinal $(0,0)$ most promising.

Growing with energy

Sensitivity to tails. Ideal case.

$$
\begin{array}{rll}
\text { "tail" parameterized by } & \frac{\mathcal{O}}{\Lambda^{d}} & \Lambda \approx \mathrm{~m}_{*} \\
\sigma_{\text {signal }} \propto \frac{1}{E^{n}}\left(\frac{E}{\Lambda}\right)^{d} & \sigma_{\mathrm{SM}} \propto \frac{1}{E^{n}} & \begin{array}{l}
\mathrm{E}: \text { energy bin of the measurement } \\
\text { n: 5-8 falling parton luminosity }
\end{array} \\
\frac{S}{\sqrt{B}} \sim \sqrt{\frac{\mathcal{L}}{E^{n}}}\left(\frac{E}{\Lambda}\right)^{d} & \mathcal{L}=\text { integrated luminosity }
\end{array}
$$

- For small d, lower E with higher reach. (e.g. dim 6, d=2)
- Limited by systematics.
- Interference important. Otherwise, signal proportional to (operator)2, effect further suppressed by $(E / \Lambda)^{\text {d }}$.

Ideal case.

$\mathrm{E}_{\mathrm{c}}=$ partonic c.o.m. energy = diboson invariant mass

dim 8 with interference or $\operatorname{dim} 6$ without interference

The role of systematics

An example: $\mathcal{O}_{W} \quad$ LHC contribution same as $\mathcal{O}_{H W}$

$$
\frac{c_{W} \mathcal{O}_{W}}{\Lambda^{2}}=\frac{i g c_{W}}{2 \Lambda^{2}}\left(H^{\dagger} \sigma^{a} \overleftrightarrow{D^{\mu}} H\right) D^{\nu} W_{\mu \nu}^{a}
$$

LEP precision test: $\quad \mathcal{L}=-\frac{\tan \theta_{w}}{2} \hat{S} W_{\mu \nu}^{(3)} B^{\mu \nu}$

$$
\hat{S}=c_{W} \frac{m_{W}^{2}}{\Lambda^{2}} \Rightarrow \Lambda>2.5 \mathrm{TeV@95} \mathrm{\%}, \quad c_{W}=1
$$

LHC longitudinal mode:

$$
W_{L}^{+} W_{L}^{-}, W_{L}^{ \pm} Z_{L}, W_{L}^{ \pm} h, Z_{L} h: \frac{\delta \sigma}{\sigma_{S M}} \sim c_{W} \frac{E_{c}^{2}}{\Lambda^{2}}
$$

Potential difficulties

Potential difficulties

SMWW,WZ processes are dominated by transverse modes

$\sigma_{S M}^{\text {total }} / \sigma_{S M}^{L L} \sim 15-50$
Polarization tagging of W/Z crucial

Potential difficulties

SMWW,WZ processes are dominated by transverse modes

$$
\begin{gathered}
\sigma_{S M}^{\text {total }} / \sigma_{S M}^{L L} \sim 15-50 \\
\text { Polarization tagging of W } / \mathrm{Z} \text { crucial }
\end{gathered}
$$

$\mathrm{Wh} / \mathrm{Zh}(\mathrm{bb})$ channels have large reducible background

$$
\text { LHC © } 8 \mathrm{TeV}: \quad \sigma_{b}^{\text {red }} / \sigma_{S M}^{W h} \sim 200-10
$$

Potential difficulties

SMWW,WZ processes are dominated by transverse modes

$$
\sigma_{S M}^{\text {total }} / \sigma_{S M}^{L L} \sim 15-50
$$

Polarization tagging of W/Z crucial
$\mathrm{Wh} / \mathrm{Zh}(\mathrm{bb})$ channels have large reducible background

$$
\text { LHC @ } 8 \mathrm{TeV}: \quad \sigma_{b}^{\text {red }} / \sigma_{S M}^{W h} \sim 200-10
$$

Difficult measurement. Large improvement needed. Much more data and 20 years can help!
Instead of making projections based on current performance, we will give several targets (goals).

Reach projection

Crude parameterization of significance

$$
\frac{S^{h_{1}}}{\sqrt{B}}=\frac{\epsilon_{\mathrm{sig}}\left[\epsilon_{h_{1}}\left(\mathcal{M}_{\mathrm{sig}}^{h_{1}}+\mathcal{M}_{\mathrm{SM}}^{h_{1}}\right)^{2}+\sum_{h \neq h_{1}} \epsilon_{h}\left(\mathcal{M}_{\mathrm{sig}}^{h}+\mathcal{M}_{\mathrm{SM}}^{h}\right)^{2}\right] \times \mathcal{L}}{\sqrt{\left[\epsilon_{h_{1}} \sigma_{\mathrm{SM}}^{h_{1}}+\sum_{h \neq h_{1}} \epsilon_{h} \sigma_{\mathrm{SM}}^{h}\right] \mathcal{L}+\left(\Delta \times n_{\mathrm{SM}}\right)^{2}}}
$$

$\epsilon_{\text {sig }}$ signal efficiency or acceptance
ϵ_{h} (mis)tag probability of polarization h Δ : systematical error

Wh channel

Wh channel

With assumptions about systematics and background.

WW, semileptonic channel

WW, semileptonic channel

Bounds on \mathcal{O}_{W} at the LEP and the HL-LHC

(TeV] @95\%	$\mathcal{O}_{w}, \Delta=0$
LEP	2.5
$W V(\ell+$ jets $)[0.5,1.0] \mathrm{TeV}$	(5.2,2.5,2.1)
$W V(\ell+$ jets) $[1.0,1.5] \mathrm{TeV}$	(4.8,2.2,1.9)
$\mathrm{Zh}(\nu \nu b b)[0.5,1.0] \mathrm{TeV}$	(3.4,2.4,1.9)
Zh($\nu \nu b b$) [1.0,1.5] TeV	(3.2,2.3,1.8)
$W^{ \pm} h(l b b)[0.5,1.0] ~ \mathrm{TeV}$	(4.3,3.0,2.4)
$W^{ \pm} h(\ell b b)[1.0,1.5] ~ \mathrm{TeV}$	(4.0,2.9,2.3)
$W^{ \pm} h(\ell+\ell \nu \ell \nu)[0.5,1.0] \mathrm{TeV}$	2.4
$W^{ \pm} h(\ell+\ell \nu \ell \nu)[1.0,1.5] \mathrm{TeV}$	2.3

The selection efficiency $\epsilon=10 \%$ for semi-leptonic channels The selection efficiency $\epsilon=50 \%$ for fully leptonic channels
\square $\left(\epsilon_{L L}=1.0 \& \& \epsilon_{T T}=0, \epsilon_{L L}=0.5 \& \& \epsilon_{T T}=0.05, \epsilon_{L L}=0.5 \& \& \epsilon_{T T}=0.1\right)$
\square reducible background is $(0,3,10)$ times irreducible background

LHC benchmarks

$\Lambda[\mathrm{TeV}]$	\mathcal{O}_{W}	\mathcal{O}_{B}	$\mathcal{O}_{H W}$	$\mathcal{O}_{H B}$	$\mathcal{O}_{3 W}$
LEP	2.5	2.5	0.3	0.3	0.4
$W V(\ell+j e t s)$	$4.8(1.9)$	$1.5)(0.71)$	$4.8(1.9)$	$(1.5)(0.71)$	1.2
$W^{ \pm} h(\ell b b)$	$(4.0,2.9,2.3)$		$(4.0,2.9,2.3)$		
$W^{ \pm} h(\ell+\ell \nu \ell \nu)$	1.6		1.6		
$h \rightarrow Z \gamma$			1.7	1.7	

- Can beat LEP precision if some of these benchmarks can be reached.

Direct searches of composite resonance

> Shaded areas: current bounds

Most optimistic case can be competitive with direct narrow resonance searches.
The resonance may be broad, not covered by direct searches.

Dimension-8

- Less sensitive. But can be leading effect in certain NP scenarios.
- Gives rise to unique signals.
- ZZ, $\gamma \gamma, \mathrm{hh}$.
- Can interfere with the SM in some cases where dim-6 do not.
- e.g. $W_{T} W_{T}$. SM rate about 10 times $W_{L} W_{L}$.
- Dim-6 interference with SM suppressed. Dim-8 interfere with SM. Equally important.

$$
f_{L} \bar{f}_{R} \rightarrow W^{+} W^{-}
$$

$\left(h_{W^{+}}, h_{W^{-}}\right)$	SM	\mathcal{O}_{W}	$\mathcal{O}_{H W}$	$\mathcal{O}_{H B}$	$\mathcal{O}_{3 W}$	\mathcal{O}_{8}
(\pm, \mp)	1	0	0	0	0	$\frac{E^{4}}{\Lambda^{4}}$

$\Lambda[\mathrm{TeV}]$	$\mathcal{O}_{T W W}$	$\mathcal{O}_{T W B}$	$\mathcal{O}_{T H}$	$\mathcal{O}_{T H}^{(3)}$
$W V(\ell+$ jets $)$	0.90	0.90	$1.1(0.83)$	$0.83(0.65)$
$W^{ \pm} h(\ell b b)$				$(0.86,0.79,0.76)$
$W^{ \pm} h(\ell+\ell \nu \ell \nu)$				0.67

Conclusion

- LHC is pursuing a comprehensive program which covers the ground pretty well. After Moriond 2017, slow gain with luminosity.
- A promising long term prospect at LHC: focusing on nonresonant broad features. Di-boson, ttbar, etc.
- Difficult. But a lot data can make a significant difference here!
- May find other things, such as broad resonance, along the way.
- Even without a discovery, this can have lasting impact on future directions (similar to LEP electroweak program).
extra

$$
\begin{aligned}
\mathcal{M}_{f}^{00} & \rightarrow-\frac{\sin \theta}{2}\left\{T_{f}^{3} g^{2}+Y_{f} g^{2}+\frac{s}{\Lambda^{2}}\left[\left(c_{W}+c_{H W}\right) T_{f}^{3} g^{2}+\left(c_{B}+c_{H B}\right) Y_{f} g^{\prime 2}\right]\right\}-c_{T H} \frac{g^{2}}{16} \frac{s^{2}}{\Lambda^{4}} \sin 2 \theta \\
& -g^{2} \sin \theta \frac{s}{\Lambda^{2}}\left[\delta_{f}^{u_{R}} c_{R}^{u}+\delta_{f}^{d_{R}} c_{R}^{d}+\delta_{f}^{u_{L}}\left(c_{L}^{q}+c_{L}^{(3) q}\right)++\delta_{f}^{d_{L}}\left(c_{L}^{q}-c_{L}^{(3) q}\right)\right]
\end{aligned}
$$

Status of new physics searches

From gravity to the Higgs we're still waiting for new physics

Annual physics jamboree Rencontres de Moriond has a history of revealing exciting results from colliders, and this year new theories and evidence abound

Guardian

