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New light particles

• Old particle / new interactions 
• Fifth force 

• New particle / old interactions 
• Gravity 

• Electricity and magnetism 

• So what about new particles that carry 
charge and mass?



Milli-charged particles
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FIG. 10. Bounds on the millicharge Q vs mass m
MCP

from astrophysics and various experiments.

sub-eV masses, light-shining-through-wall-type setups can even go below some cosmological

constraints [281, 282].

New electron and proton beam dump experiments, planned or proposed to search for light

DM, could also cover new parameters space of MCPs, particularly the m
MCP

⇠ GeV region.

The primary modes of production are pN ! pNQ+Q� or pp ! Q+Q� at proton beam

dump experiments, and e�N ! e�NQ+Q� at electron beam dump experiments. MCPs

produced at the beam dump would exit the dump and travel to the detector, where they

could scatter elastically and deposit measurable energy, like neutral current events. The

detection of MCPs relies on an experiment sensitive to low momentum recoil channels, such

as electron recoils and/or coherent nuclear scattering, see §4.3.3.

4.3. Proposed and Future Searches

4.3.1. Proton Beam Dump Experiments

Proton beam dump experiments have significant potential to search for light DM and other

long-lived dark sector states. An intense source of dark sector states can be produced in

the primary proton-target collisions and detected through their scattering [155, 268, 283] or

visible decays [113, 155] in a near detector. Of particular importance to this experimental
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• Two types of charges under the photon 

• Electric and magnetic (hence E+M) 

• What about milli-magnetic charged 
particles? 

• Quantization of angular momentum

Milli-charged particles



Angular momentum

• Electric charge can be quantized in units of 
electron charge but quarks have fractional 
charge 

• Will evade constraints in a similar manner 
• Physical string 

• All finite energy objects have quantized charges



Angular momentum
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Angular momentum
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• Given that electrons exist, there exists a 
minimum magnetic charge 

• Most work directed towards this mimimim 
charge



Angular momentum

• Generalization to multiple U(1) 

• Can have charges which are subminimal! 

• Rest of angular momentum carried by other 
U(1) field
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Example

• Angular momentum in U(1) canceled by 
angular momentum in U(1)’
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Plausible?

• Milli-magnetic charged particles are 
possible but are they plausible? 

• Claim - Just as plausible as any other 
scenario with dark photons



Kinetic Mixing

• Dark photon with kinetic mixing 

• Naturally gives epsilon charged matter

The largest magnetic fields in the universe occur at magnetars. Magnetars are neutron
stars with exceptionally high magnetic fields B ⇠ 1015 Gauss. Unlike the typical neutron
stars, which are powered by accretion or their spin, magnetars are instead powered by
their magnetic fields. If there were very light magnetically charged particles, un-suppressed
production would constitute a new source of energy loss. Requiring that the energy lost
to pair producing particles is smaller than the total energy loss, or equivalently that pair
production does not destroy the magnetic field in the lifetime of the magnetar, gives a very
strong bound on the charge of the monopole to be be less than 10�18. The exact bound as
a function of mass is given in Fig. ??.

The rest of the letter is organized as follows. Sec. ?? gives some brief theory motivation
and explanation of mmCPs. Sec. 3 discusses the bound from neutralizing the magnetic field
of the magnetar. Finally, we end with discussions of future directions in Sec. 4.

2 Motivating light milli-magnetically charged particles

In this section, we seek to dispel the bias that magnetically charged particles must be
heavy and explain how it is consistent to have a small magnetic charge. The argument for
the quantization of magnetic charge is an argument based on the quantization of angular
momentum. Consider an electron and a monopole of charge Qm a distance d apart. The
angular momentum stored in the electromagnetic field needs to be quantized in units of
~/2.
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We see that the magnetic charge of a particle is quantized in rather large units when e

is small. It is for this reason that most experiments interpret their results using a large
magnetic charge.

The previous argument can be generalized to the case of particle 1 and 2 charged under
multiple U(1) gauge fields to read
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This generalization is simply the statement that the sum of the angular momentum carried
by the various fields needs to be quantized. The generalization of the Dirac quantization
condition illustrates how to get around the standard Dirac quantization condition. One can
have ✏ charge particles as long as the total sum is still a half integer.

To see how milli-magnetically charge particles can occur naturally, consider the case of
a dark U(1) kinetically mixed with the Standard model.
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We will take the particle content of the theory to be the standard electron and a dark
monopole. As is usual, the kinetic terms are diagonalized by sending A ! A+ ✏AD. This
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Kinetic Mixing
• Maxwell’s equations are more natural when 

dealing with monopoles
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Kinetic Mixing

• Photon is not massive 

• Use field redefinition to remove kinetic 
mixing while keeping photons massless
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Kinetic Mixing
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stars, which are powered by accretion or their spin, magnetars are instead powered by
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production would constitute a new source of energy loss. Requiring that the energy lost
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condition illustrates how to get around the standard Dirac quantization condition. One can
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Kinetic Mixing
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• Our electron epsilon charged under their U(1) 

• Their monopoles epsilon charged under our U(1)!



Kinetic Mixing

• Exactly the charge assignments mentioned earlier
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Physical Picture

• What is the physical picture of this 
Lagrangian?

The largest magnetic fields in the universe occur at magnetars. Magnetars are neutron
stars with exceptionally high magnetic fields B ⇠ 1015 Gauss. Unlike the typical neutron
stars, which are powered by accretion or their spin, magnetars are instead powered by
their magnetic fields. If there were very light magnetically charged particles, un-suppressed
production would constitute a new source of energy loss. Requiring that the energy lost
to pair producing particles is smaller than the total energy loss, or equivalently that pair
production does not destroy the magnetic field in the lifetime of the magnetar, gives a very
strong bound on the charge of the monopole to be be less than 10�18. The exact bound as
a function of mass is given in Fig. ??.

The rest of the letter is organized as follows. Sec. ?? gives some brief theory motivation
and explanation of mmCPs. Sec. 3 discusses the bound from neutralizing the magnetic field
of the magnetar. Finally, we end with discussions of future directions in Sec. 4.

2 Motivating light milli-magnetically charged particles

In this section, we seek to dispel the bias that magnetically charged particles must be
heavy and explain how it is consistent to have a small magnetic charge. The argument for
the quantization of magnetic charge is an argument based on the quantization of angular
momentum. Consider an electron and a monopole of charge Qm a distance d apart. The
angular momentum stored in the electromagnetic field needs to be quantized in units of
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This generalization is simply the statement that the sum of the angular momentum carried
by the various fields needs to be quantized. The generalization of the Dirac quantization
condition illustrates how to get around the standard Dirac quantization condition. One can
have ✏ charge particles as long as the total sum is still a half integer.

To see how milli-magnetically charge particles can occur naturally, consider the case of
a dark U(1) kinetically mixed with the Standard model.
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We will take the particle content of the theory to be the standard electron and a dark
monopole. As is usual, the kinetic terms are diagonalized by sending A ! A+ ✏AD. This
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Physical Picture

• Milli-magnetic charge 

• Dark U(1) Higgsed so monopoles are 
confined 

• Like QCD, strings connecting monopole with anti-monopole

• signatures due to monopole annihilation
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Physical Picture

• Dark U(1) Higgsed so monopoles are 
confined 

• Like QCD, strings connecting monopole with anti-monopole

m+ m�



Physical Picture

• signatures due to monopole annihilation
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• Electron generates a field  

• Monopole feels a field
E,B,E0 = ✏E,B0 = ✏B

Ee↵ = �✏E + E0 = 0

Be↵ = �✏B +B0 = 0

If dark photon mass is irrelevant



Physical Picture

• signatures due to monopole annihilation
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• Electron generates a field  

• Monopole feels a field 

• As long as distance long enough 
that dark magnetic field is 
screened, then electron and 
monopole can interact

B0 = ✏Be�mA0r

Be↵ = ✏B(e�mA0r � 1)



Constraints

• If magnetic charges already exist around 
us 

• Astrophysical constraints/experimental constraints/… 

• If they are not surrounding us 
1. No constraints if they are non-perturbative (’t Hooft Polyakov 

monopoles) 

2. Weak constraints if fundamental



Parker bound

• Magnetic fields accelerate monopoles 
• Energy in monopoles comes from B field 

• If too much energy is taken, then B field of Milky Way 
neutralized 

• Usually applied to some cosmological abundance

superconductivity that B0 will be exponentially screened with a screening length 1/mA0 . In order
for the B0 field to be screened, we require that

r
magnetar

>
1

mA

(4.6)

Note that if symmetry is restored, then the mass of the photon’ goes to zero and this inequality
is never satisfied.

Depending on how the mass for the photon’ arises, there can be another constraint. If the
mass arises from the Higgs mechanism rather than the Stuckleberg mechanism, there is a worry of
symmetry restoration. In the presence of a magnetic field, the mass of the Higgs boson is modified
by

m2
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H + ✏gB
e↵

(4.7)

If the magnetic field is large enough, then symmetry may be restored in the photon’ sector. B
e↵

is
the magnetic field generated within a radius of 1/mA of any given point. Since it is not know how
a magnetar generates its large magnetic fields, one cannot compute this reliably. If the magnetic
field is generated uniformly from the entire neutron star, then B

e↵

= B/(mArmagnetar

)2. However,
if the entire magnetic field is generated from a single extremely small core in the middle of the
magnetar, then B

e↵

= B. Given that this bound is extremely dependent on unknowns about the
magnetar, we do not discuss it any further.

5 Parker Bound

In the presence of earth, galactic and inter-galactic magnetic field, the MSM system can be
significantly a↵ected by these fields, especially when the tension v2 is very small. The galactic
magnetic field dominates the motion of the monopole and string system when the dark photon
vev v satisfies the relation (red dashed)

v2 < ✏B
gal

(5.1)

In this case, the mili-magnetic monopoles can be treated as free streaming through a galaxy and
are therefore subjected to a version of the Parker Bound.

Due to the presense of galactic magnetic field, the energy loss of the magnetic field due to
acceleration of the monopoles have to be small enough for the galactic field to last through the
history of the galaxy. This constrain the flux of magnetic charge to be less than

F
Parker

= 10�16 cm�2 s�1 sr�1. (5.2)

When particles are being pair created, the magnetic flux of particles generated by magnetar is
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where n
mag

⇠ 10/(10 kpc)3 is the number density of magnetars and 105 years is both time it takes
for the monopoles to escape the Milky way and the lifetime of the magnetar.
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Goal

• Obtain model independent bounds on milli-
magnetic charged particles



Goal

• Perturbative production can be 
exponentially suppressed 

• Need non-perturbative production

• Obtain model independent bounds on milli-
magnetic charged particles



Goal

• Exponentially large number of initial states 
(photons) 

• Extremely large electric and magnetic 
fields

• Perturbative production can be 
exponentially suppressed 

• Need non-perturbative production

• Obtain model independent bounds on milli-
magnetic charged particles



Schwinger pair production

• Production of electric (magnetic) particles 
in a strong electric (magnetic) field
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Figure 1: A brief summary of the bounds on monopoles coming from stellar constraints. The
bounds can be completely negligible depending on the mass of the dark photon. In this plot, we
show the absolute strongest bounds on kinetic mixing where we assume that mA = m.

2 Current constraints

We first look at the current constraints on light (sub MeV) monopoles. The easiest way to do this
is to compare how bounds on a milli charge particle with charge � can be mapped to a bound on
a milli charge monopole with charge ✏. The interaction cross sections are the same up to
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Thus we can take any of the current bounds on � and turn them into bounds on ✏. The strongest
bounds will result from the lowest energy experiments. Roughly speaking, astrophysical con-
straints constrain � < 10�14. Note that if we take v ⇠ 1/10 km, then this means that ✏ < 1041.
As such, we see that the constraint can be completely negligible for certain regions of parameter
space. We plot the strongest possible bound obtainable as a function of v.

3 Schwinger Pair production

Schwinger pair production gives the probability of pair creating electrons in an electric field to be
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for an electric particle of mass m and charge e in an electric field. An analogous process occurs for
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where the di↵erence in 1/2 in the prefactor is a scalar vs fermion di↵erence. The g2 piece is
subleading in the electric picture. We see that in order for Schwinger pair production to be
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Schwinger pair production

• We have monopoles connected by strings 

• Easy to modify pair production to account 
for strings

P

V t
⇠ e

� ⇡m2

eE�m2
A

• As long as string tension smaller than         
ε Electric/Magnetic field then pair 
production proceeds as before



• Unsuppressed production of milli-magnetic 
charged particles if there is a large 
magnetic field 

• Largest magnetic fields in the universe are 
at magnetars 

• Production of magnetic particles 
neutralizes magnetic field 

• Require that it is not neutralized over the lifetime of magnetar

Schwinger pair production



• Neutron stars with extremely large 
magnetic fields 

• Size ~ 10 km 

• B ~ 1013-16 gauss ~ MeV2 

• Age ~ 103-5 years 

• Luminosity (persistent x-rays) ~ 1033-36 ergs/s ~ B2 V/t 

• ~ 20 observed, ~ kiloparsec away 

• Not much known about them

Magnetars



• Anomalous x-ray pulsars 
• Emit soft x rays 

• Anomalous because not powered by standard means 

• Soft gamma-ray repeaters 
• Peak luminosity larger than Eddington limit

Magnetars



Magnetic Field

• Evidence for magnetic field is from soft 
gamma-ray bursts 

• Strong magnetic fields allow for super Eddington luminosity 
emissions 

• Fall off of burst depends on magnetic instabilities of the 
magnetar 

• Crude estimate of the magnetic field can 
be made via loss of angular momentum



Magnetic Field
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Magnetic Field

B ⇡ 3⇥ 10

19

r
P

second

˙P Gauss

• Observed periods of a few seconds 

• dP/dt ~ 10-11 

• B ~ 1015 gauss ~ MeV2 

• More refined estimates change results by 
only O(1) factors



Magnetars

• Given huge uncertainties, we will take the 
following values 

• Radius = 10 km 

• B = 1015 gauss 

• Age = 104 years



Magnetars

B ⇠ MeV 2



Magnetars

B ⇠ MeV 2

Be↵ = B(e�mAr � 1)



Bound

• Energy loss due to production of 
monopoles 

• After pair production, monopoles carry 
away energy

E
loss

= 2QmgB
e↵

r



• Magnetic field is not neutralized by pair 
production during the lifetime of magnetar 

• Equivalent to saying that total energy loss 
must be smaller than observed energy loss
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Figure 1. Bounds on the charge (Qm) of a milli-magnetically charged particle as a function of
its mass m. The black line is a bound that is valid whenever the dark photon mass is in the range
mD > 1/20 km. The blue (red) line shows how the bound behaves when mD = 10(100)/20 km.

3 Model Independent bounds from Magnetars

In this section we show that Schwinger pair production of mmCPs at magnetars puts tight
constraints on the magnetic charges of mmCPs. As very little is known about magnetars
we will be extremely explicit about what we assume so that as more information arrives, it
will be simple to update the bound. Due to the uncertain nature of various quantities, we
expect that the constraints we place should have order of magnitude error bars.

We assume that the magnetic field of the magnetar is a constant magnetic field of
B = 10

15 Gauss and occupies a box of size d = 20 km. We will take the lifetime of the
magnetar to be t = 10

4 years. We will be bounding a fermionc mmCP with a mass m and
a milli-magnetic charge of Qm measured in units of g = 4⇡/e.

The pair creation rate of mmCPs is given by [27]
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As mentioned in Sec. 2, the effective B field felt by the mmCP depends on the distance
of the mmCP from what is creating the magnetic field. We approximate the averaged
magnetic field felt by the mmCP by

B

eff

= B(1� e

mDd
) (3.2)

After being produced, the mmCP are accelerated by the magnetic field such that the
energy lost per per mmCP created is

E

loss

= gQmB

eff

d (3.3)
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Conclusion

• Just like there can be milli-electric charged 
particles, there can be milli-magnetic 
charged particles 

• Currently NO model independent bounds 
• Model dependent bounds are weak and often come from 

cosmology 

• Magnetars have large magnetic fields that 
let one place new very strong model 
independent bounds


