A search for dark-matter annihilation in galaxy groups

Ben Safdi

Massachusetts Institute of Technology

Dark matter exists!

We just don't know what it is ...

Coma Cluster of Galaxies

Coma: 1933 to today

Coma: 1933 to today

From Theory...

Phys. Rev. Lett., 117, 141801 (2016): Yoni Kahn, B.S., Jesse Thaler

 Ultimate goal: Detect axion dark matter from GUT-scale solution to strong-CP problem

...to Experiment

ABRACADABRA-10 cm

- The team: J. Conrad, J. Formaggio, S. Heine, J. Minervini, J. Ouellet, K. Perez, A. Radovinsky, D. Winklehner, L. Winslow, . . .
- Funded by the NSF, data soon!

Relic abundance of thermal dark matter

• $\Omega_{\chi}h^2 = 0.1199 \pm 0.0027$ (Planck + WMAP)

Relic abundance of thermal dark matter

- $\Omega_{\chi} h^2 = 0.1199 \pm 0.0027 \text{ (Planck + WMAP)}$
- ho $\Omega_\chi h^2 pprox 0.1 imes rac{3 imes 10^{-26} ext{ cm}^3/ ext{s}}{\langle \sigma_{ extsf{A}} v
 angle}$ (DM freezeout)

Hints of dark matter annihilation in Fermi data?

Excess may also arise from dim Point Sources

- Non Poissonian Template Fit (NPTF)
 - JCAP 2015: S. Lee, M. Lisanti, B. S.
 - Phys. Rev. Lett. 2016: S. Lee, M. Lisanti, B. S., T. Slatyer, W. Xue
 - PRD 2016: T. Linden, N. Rodd, B.S., T. Slatyer
 - Astrophys. J. 2016: M. Lisanti, S.M. Sharma, L. Necib, B.S.
 - 1612.03173: S.M. Sharma, N. Rodd, B.S.
- Wavelets: Phys. Rev. Lett. 2016: (R. Bartels, S. Krishnamurthy, C. Weniger)
- Population study: Fermi 2017: (1705.00009)
- MSP model: Astrophys. J. 2015: T. Brandt, B. Kocsis

Milky Way Center: largest gamma-ray flux from DM

▶ DM-induced flux \propto to L.O.S. integral of DM density:

Milky Way Dwarf Spheroidal Satellites (dSphs)

Milky Way Dwarf Spheroidal Satellites (dSphs)

Extragalactic Halos

Extragalactic Halos: stacked limit ($N_H = 100$)

- Real data: M. Lisanti, S.M. Sharma, N. Rodd, B.S., 170x.xxxxx
- ► Simulated data: M. Lisanti, S.M. Sharma, N. Rodd, B.S., R. Wechsler, 170x.xxxxx

DM annihilation with group catalogs

▶ 1. DM model + group catalog → gamma-ray flux map

DM annihilation with group catalogs

▶ 1. DM model + group catalog → gamma-ray flux map

2. How do we search for that flux in Fermi data?

DarkSky (2014) N-body simulation

- ▶ 4096^3 particles, $m \sim 7.6 \times 10^7~M_{\odot}$
- ▶ $400 \text{ Mpc } h^{-1} \text{ per-side box, } z \leq 93$
- galaxy-halo connection: populate with galaxies
- ▶ Halo catalog generated with Rockstar group finder

DarkSky: galaxy-halo connection

▶ *J*-factor depends on M_{vir} , c, $b_{\text{sh}}(M_{\text{vir}})$, and z:

$$J = (1 + b_{\sf sh}(M_{\sf Vir})) \int
ho_{\sf NFW}^2(s,\Omega) ds d\Omega$$

Navarro-Frenk-White (NFW) profile:

$$ho_{
m NFW}(r) = rac{
ho_s}{r/r_s(1+r/r_s)^2} \,, \qquad c_{
m Vir} = r_{
m Vir}/r_s$$

DarkSky: concentration-mass relation

▶ *J*-factor depends on M_{vir} , c, $b_{\text{sh}}(M_{\text{vir}})$, and z:

$$\begin{split} J &= (1 + b_{\rm sh}(M_{\rm vir})) \int \rho_{\rm NFW}^2(s,\Omega) ds d\Omega \\ J &\approx (1 + b_{\rm sh}(M_{\rm vir})) \, \frac{M_{\rm vir} \, c^3}{d(z)^2} \end{split}$$

Boost factor from DM sub-halos

▶ J-factor depends on M_{vir} , c, $b_{\text{sh}}(M_{\text{vir}})$, and z:

$$J = (1 + {b_{\sf Sh}}(M_{\sf Vir})) \int
ho_{\sf NFW}^2(s,\Omega) ds d\Omega$$

Boost factor from DM sub-halos

▶ Boost-factor given by integral over sub-halo population $dN/dm \sim m^{-1.9}$ (for field halos)

$$b_{\rm sh}(M_{\rm vir}) = \frac{1}{L_{\rm host}(M_{\rm vir})} \int dm \frac{dN}{dm} L_{\rm sh}(m)$$

Boost factor from DM sub-halos

▶ Boost-factor given by integral over sub-halo population $dN/dm \sim m^{-1.9}$ (for field halos)

$$b_{\rm sh}(M_{\rm vir}) = \frac{1}{L_{\rm host}(M_{\rm vir})} \int dm \frac{dN}{dm} L_{\rm sh}(m)$$

▶ Sub-halo luminosity $L_{sh}(m)$

$$L_{\rm sh}(m) \sim m \, c^3$$

Step 2: Fermi data selection

- 40 log-spaced bins between 200 MeV 2 TeV
- 423 weeks Pass 8 UltracleanVeto
- ▶ mask: large-scale structures, $|b| \le 5^{\circ}$

Profile likelihood in 10° halo ROIs

DarkSky: top ∼100 halos

Real data: 2MASS redshift survey

- ▶ 2MASS: 1997 2001 infrared survey ($K_s \le 13.5 \text{ mag}$)
- 2011: spectroscopic followup survey (CFA)
- ▶ 44,599 2MASS galaxies with $K_s \le 11.75$ mag
- Tully 2015: group catalog

DarkSky N-body simulation vs real data

Real Data limit consistent with DarkSky

▶ Remove handful of halos with large cosmic-ray emission (TS > 5, $\sigma_A v > 10 \times$ best indiv. limit)

Extragalactic annihilation summary

- First systematic search for DM annihilation from extragalactic halos
- Fermi future: combines datasets (e.g., Fermi data + galaxy group catalogs, DES for dSphs)
 - Combined EG + dSphs with Alex Drlica-Wagner in the works
- In progress: Fermi data + galaxy group catalogs for astrophysical source
- ► Galaxy-group *J*-factor catalog (to be released) likely useful elsewhere (e.g., HAWC, NuSTAR, ...)
- ▶ WIMP DM is on the run: may detect soon, but should take seriously alternate proposals (*e.g.*, axions, heavy DM, ···)

Template fitting code available

https://github.com/bsafdi/NPTFit: S. M.-Sharma, N. Rodd, B.S., 1612.03173. Open-source code for performing template analysis

Questions?

Extragalactic backup

Top few halos dominate limit

Systematics

Recover Injected with DarkSky

Poissonian template fit: stacking halos halo

Sum log-likelihood $(p_h(d|\psi_{DM}))$ of individual halos

$$\log p(d|\psi_{\mathsf{DM}}) = \sum_h \log p_h(d|\psi_{\mathsf{DM}})$$

► Construct likelihood profiles for σv at fixed $m_{\rm DM}$

WIMP Indirect Detection

DarkSky: compute *J*-factors for halos

▶ Model params.: $\theta = \{\psi_{\text{DM}}, \lambda_{nuisance}\}\ (\psi_{\text{DM}} = \{m_{\text{DM}}, \sigma_A v\})$

- ▶ Model params.: $\theta = \{\psi_{DM}, \lambda_{nuisance}\}\ (\psi_{DM} = \{m_{DM}, \sigma_A v\})$
- ▶ Likelihood in energy bin i with pixelated data $d_i = \{n_i^p\}_p$:

$$p_i(d_i|\theta) = \prod_p \frac{\mu_i^p(\theta)^{n_i^p} e^{-\mu_i^p(\theta)}}{n_i^p!}$$

- ▶ Model params.: $\theta = \{\psi_{DM}, \lambda_{nuisance}\}\ (\psi_{DM} = \{m_{DM}, \sigma_A v\})$
- Likelihood in energy bin i with pixelated data $d_i = \{n_i^p\}_p$:

$$p_i(d_i|\theta) = \prod_p \frac{\mu_i^p(\theta)^{n_i^p} e^{-\mu_i^p(\theta)}}{n_i^p!}$$

• maximize over nuisance parameters: $\lambda = (\{\lambda_i\}, J)$

$$\log p(d|\psi_{\text{DM}}) = \max_J \left(\sum_{i=0}^{39} \max_{\lambda_i} \log p_i(d_i|\theta) - \frac{(\log J - \log \bar{J})^2}{2\sigma_{\log J}^2} \right)$$

- ▶ Model params.: $\theta = \{\psi_{DM}, \lambda_{nuisance}\}\ (\psi_{DM} = \{m_{DM}, \sigma_A v\})$
- Likelihood in energy bin i with pixelated data $d_i = \{n_i^p\}_p$:

$$p_i(d_i|\theta) = \prod_p \frac{\mu_i^p(\theta)^{n_i^p} e^{-\mu_i^p(\theta)}}{n_i^p!}$$

• maximize over nuisance parameters: $\lambda = (\{\lambda_i\}, J)$

$$\log p(d|\psi_{\mathsf{DM}}) = \mathsf{max}_J \left(\sum_{i=0}^{39} \mathsf{max}_{\lambda_i} \log p_i(d_i|\theta) - \frac{(\log J - \log \bar{J})^2}{2\sigma_{\log J}^2} \right)$$

DarkSky N-body simulation vs real data

Real data: 2MASS group catalog (Tully 2015)

Real data: 2MASS group catalog (Tully 2015)

DarkSky (2016): mock galaxy catalog

Galaxy Surveys (SDSS)

Simulations
Risa Weetsler Star

▶ Boost-factor given by integral over sub-halo population $dN/dm \sim m^{-1.9}$ (for field halos)

$$b_{\rm sh}(M_{\rm vir}) = \frac{1}{L_{\rm host}(M_{\rm vir})} \int dm \frac{dN}{dm} L_{\rm sh}(m)$$

▶ Boost-factor given by integral over sub-halo population $dN/dm \sim m^{-1.9}$ (for field halos)

$$b_{\rm sh}(M_{\rm vir}) = \frac{1}{L_{\rm host}(M_{\rm vir})} \int dm \frac{dN}{dm} L_{\rm sh}(m)$$

▶ Sub-halo luminosity $L_{sh}(m)$

$$L_{\rm sh}(m) \sim m \, c^3$$

▶ Boost-factor given by integral over sub-halo population $dN/dm \sim m^{-1.9}$ (for field halos)

$$b_{\rm sh}(M_{\rm vir}) = \frac{1}{L_{\rm host}(M_{\rm vir})} \int dm \frac{dN}{dm} L_{\rm sh}(m)$$

▶ Sub-halo luminosity $L_{sh}(m)$

$$L_{\rm sh}(m) \sim m \, c^3$$

Can be very sensitive to m_{min}

▶ Boost-factor given by integral over sub-halo population $dN/dm \sim m^{-1.9}$ (for field halos)

$$b_{\rm sh}(M_{\rm vir}) = \frac{1}{L_{\rm host}(M_{\rm vir})} \int dm \frac{dN}{dm} L_{\rm sh}(m)$$

▶ Sub-halo luminosity $L_{sh}(m)$

$$L_{\rm sh}(m) \sim m \, c^3$$

- Can be very sensitive to mmin
- $ightharpoonup m_{min}$ determined by horizon size at kinetic decoupling:

$$m_{\mathsf{min}} pprox 3 imes 10^{-6} M_{\odot} \left(\frac{T_{\mathsf{kd}}}{50 \; \mathsf{MeV}} \right)^{-3}$$

▶ Boost-factor given by integral over sub-halo population $dN/dm \sim m^{-1.9}$ (for field halos)

$$b_{\rm sh}(M_{\rm vir}) = \frac{1}{L_{\rm host}(M_{\rm vir})} \int dm \frac{dN}{dm} L_{\rm sh}(m)$$

▶ Sub-halo luminosity $L_{sh}(m)$

$$L_{\rm sh}(m) \sim m \, c^3$$

- Can be very sensitive to mmin
- m_{min} determined by horizon size at kinetic decoupling:

$$m_{\mathsf{min}} pprox 3 imes 10^{-6} M_{\odot} \left(\frac{T_{\mathsf{kd}}}{50 \; \mathsf{MeV}} \right)^{-3}$$

► Kinetic decoupling depends on elastic-scattering with SM

$$T_{
m kd}\sim 50\left(rac{m_\chi}{50~{
m GeV}}
ight)^{3/4}~{
m MeV}$$

Boost factor: importance of c(M), dN/dM

Boost factor: importance of c(M), dN/dM

- ightharpoonup c(M) steepens at low m from tidal stripping
- ightharpoonup dN/dM hardens at low m from tidal stripping
 - Low-mass halos tidally stripped (Bartels et. al. 2015)

DarkSky: top ∼100 halos

