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CDM is successfully on large scale
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However, on smaller scales

* core-cusp problem
» missing satellite problem
» Too big to fail problem

* unexpected diversity problem

discrepancies between CDM-simulation and observations



these small scale issues might be attributed to

baryonic effects (star formation, SN feedback, ... ...)
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these small scale issues might be attributed to

baryonic efi
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or may be hinting to alternatives of CDM

* warm dark matter
° fuzzy dark matter (FDM) [Hu et al., 00]

+ self-interacting dark matter (SIDM) 12" e 2]

[Spergel and Steinhardt, 01]

0.1 CmQ/g 5 Uself/m KS 1 CmQ/g

[For recent review, Tulin and Yu, 17]



Large self-interaction is required:
0.1cm?/g < oger/m < 1cm?/g

What particle physics models can realize this?



Large self-interaction is required:
0.1cm?/g < oger/m < 1cm?/g

What particle physics models can realize this?

An option : Strongly Interacting Massive Particle (SIMP)

[Hochberg et al., 14]



Consider QCD-like hypercolor dynamics of SU(N,)
with SU(Nf ) X SU(N¢ ) flavour symmetry

L= qiiDq; — mgq;q;
fermion condensation forms at some scale
3
QLZ’Q};]’ = p Ui

with a matrix of Goldstone bosons

U = exp [2079T7/ £,]

-

dark meson; dark matter
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Effective description of meson states

2 m2 f2
£ — —”Tr(@MUc‘?“UT) as WTI(U UT) £WZW
16 16
Expanding them, we find
1 2/ 7\2 m; 4
Lself D) —(87'(') (77) 9 (ﬂ-)
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(self-interaction; responsible for small scale issues)



Effective description of meson states

2 Tnng2
£ — —”Tr(@MUc?“UT) as WTI‘(U UT) LWZW
16 16
Expanding them, we find
1 m?2
Lseif D P(aﬂ)Q(W)Za f—%(ﬂ)4

(self-interaction; responsible for small scale issues)

UL PO
Lwzw D €f5 (70,70, O, TO,T)

(number-changing process; responsible for relic density)



There are two relevant processes

self-interaction 3-to-2 process

| 5 cHVPO
Lot O — (0m)*(1)?, =Z(m)* Lwzw D [E

(70,0, mO,TO,T)



These interactions should be able to ... ...

(1) predict the correct relic abundance

QCDMhQ ~ (.12

(ll) provide sufficient self-scattering cross section

0.1 CmZ/g < Oself /M S 1cm2/g

Y



self-interaction

1 m2

7 (Om)* ()7, f—g(ﬂ)

»Cself D)

cross-section
4 3
Oselt /Mg ~ O /T

with O = (mﬂ'/fﬂ')



self-interaction

1 2
['self D _(87‘-)2(7‘-)27 %

12 (™)

cross-section
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with oz = (my/fr)



3-to-2 process

Uy po
Lwzw D €f5 (70,70, mO,mOHT)

cross-section
(03520%) ~ ag’ /m3

with O = (mﬂ'/fﬂ')



3-to-2 process

Uy po
Lwzw D €f5 (70,70, mO,mOHT)

cross-section

\? (400 MeV ) ®
n7r<03—>2U2>‘Tfo ~3-107 cmg/sec (%) ( : )
M

with O = (mﬂ'/fﬂ')



self-scattering cross-section
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self-scattering cross-section

400 MeV
e

2

3 to 2 cross-section

400 MeV
N (03207 ~ 3107 26cm3/sec( 5) ( ° )

Uz

This model is controlled by two parameters

— (mﬂ/fW) & iz,



Assuming the standard freeze-out and taking

Or = (Mx/fr) =5

m., ~ 400 MeV

(1) predict the correct relic abundance

QCDMhQ ~ (.12

(ll) provide sufficient self-scattering cross section

0.1 sz/g g Uself/mﬂ' 5 1 sz/g
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heats up DM particles



Assuming the standard freeze-out and taking

Or = (Mx/fr) =5

m., ~ 400 MeV

Not a valid assumption because

T, # T

—1
Td x In a
[Carlson, Machacek and Hall, 92]

heats up DM particles

sensible only when SIMP is in kinetic equilibrium with SM



Assuming the standard freeze-out and taking

Ur = (Mr/fr) =5

m., ~ 400 MeV



Assuming the standard freeze-out and taking

or = (Mmy/fr) =25

m., ~ 400 MeV

Too large for the effective Lagrangian ...

r = (My/[rx) S (A fr) ~ 27



(i) kinetic equilibrium between SIMP and SM

(ii) perturbativity issue



consider an axion-like particle

[Kamada, HK and Sekiguchi, 17]
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consider an axion-like particle

- connecting DM sector with SM sector (kinetic eq.)

¢

* openning up a new annihilation channel (perturbativity)

[Kamada, HK and Sekiguchi, 17]



let’s see how ALP interacts with DM and SM

L=qg1Dq — myq;q;

1 2 | gH ¢ 1%
+5(0u9)" = V(9) 39,2 f v , H"

emqb
47 f Fru

+C¢W P

[Kamada, HK and Sekiguchi, 17]
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let’s see how ALP interacts with DM and SM

L= qit Dqg; — myqiq;

At low energies, effective Lagrangian is

2 m2 f2 |
L= ETr(@,UoUT) + == (e DU + hie.) + Lwaw

[Kamada, HK and Sekiguchi, 17]



Expanding the chiral Lagrangian,

we see not only operators for self-scattering and 3-to-2 process

[Kamada, HK and Sekiguchi, 17]



Expanding the chiral Lagrangian,

we see not only operators for self-scattering and 3-to-2 process

but also an operator for semi-annihilation
[D’Emaro and Thaler, 10]

['semi ™~ = dabc 7T&7Tb7TC ¢
Nifrf ( )

[Kamada, HK and Sekiguchi, 17]



We want the semi-annihilation
to be in equilibrium until freeze-out

<Usemiv> ~ CY72T/]E2 ~ 10735 cm?

= f < O(TeV)
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We want the semi-annihilation
to be in equilibrium until freeze-out

2
<Usem1U> ~ /f 107°% cm?
= f < O(TeV)
For ALP mass, restrict our attention to

10MeV S my S Mg

Constraints from cosmology (BBN, CMB)



We want the semi-annihilation
to be in equilibrium until freeze-out

2
<Usem1U> ~ /f 107°% cm?
= f < O(TeV)
For ALP mass, restrict our attention to

10 MeV S mg S My

kinematics of semi-annihilation



There are total four parameters
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There are total four parameters

(e~ O(1)
Mz ~ O(100) MeV

Mg
f

r = (Mx/ fr)



There are total four parameters

(e~ O(1)
Mz ~ O(100) MeV
Mme ~ O(100) MeV

f ~ 0O(100) GeV

r = (Mx/ fr)



taking My = My

0

3, Ny =4, Oy =

N, =

[Kamada, HK and Sekiguchi, 17]
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. sufficient enough self-scattering cross section

Il. kinetic eq. with SM through axion portal

Ill. alleviate perturbativity issue o ~ 1 < 271 /+/ N,

IV. falsified by future beam dump experiment



taking My = My

not arbitrarily chosen but required ...



drawback : a certain mass degeneracy is required because of

strong constraints on semi-annihilation cross section
from CMB

—23

24

0 1 2 3 4
log,( m, [GeV]) [Kawasaki et al., 15]
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drawback : a certain mass degeneracy is required because of

strong constraints on semi-annihilation cross section
from gamma-ray searches
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[Ackermann et al., 15]



<Usemivrel> |x

A

(oo tre)| O(1072)  [from CMB]
semiVrel/ | x¢s

S 0(1077)

[from gamma-ray searches]
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suppression can be obtained if masses are degenerate

if ALP is lighter than dark matter

Am:mﬂ—m¢>0

cross section in non-rel. limit is suppressed as

<0-semivrel> X max(vrel, \/Am/mﬂ')

required mass degeneracy is

Am/my < O(10~ )

Y

[from gamma-ray searches: EGRET & Fermi-LAT]



suppression can be obtained if masses are degenerate

if ALP is heavier than dark matter [i.e. forbidden DM]

[D’Agnolo and Ruderman, 15]

Am:mw—m¢<0



suppression can be obtained if masses are degenerate

if ALP is heavier than dark matter [i.e. forbidden DM]

[D’Agnolo and Ruderman, 15]

Am:mw—m¢<0

cross section in non-rel. limit is suppressed as

(OsemiV) X exp(—|Aml|/T)



suppression can be obtained if masses are degenerate

if ALP is heavier than dark matter [i.e. forbidden DM]

[D’Agnolo and Ruderman, 15]
Am =myz —mge < 0
cross section in non-rel. limit is suppressed as

(OsemiV) X exp(—|Aml|/T)

no fine-tuning as in the previous case is required but

\Am| < T,

not to have big suppression during freeze-out process



. sufficient enough self-scattering cross section

Il. kinetic eq. with SM through axion portal
lll. alleviate perturbativity issue o ~ 1 < 27w /y/ N,
IV. falsified by future beam dump experiment

V. a certain mass degeneracy is required



