Strongly interacting massive particle with ALP

Hyungjin Kim KAIST & IBS-CTPU

based on 1704.04505 with A. Kamada & T. Sekiguchi

June 2017 @ CERN-CKC Workshop

CDM is successfully on large scale

However, on smaller scales

- core-cusp problem
- missing satellite problem
- Too big to fail problem
- unexpected diversity problem

discrepancies between CDM-simulation and observations

these small scale issues might be attributed to

baryonic effects (star formation, SN feedback,)

these small scale issues might be attributed to

baryonic effects (star formation, SN feedback,)

[Sawala et al., 15]

these small scale issues might be attributed to

baryonic effects (star formation, SN feedback,)

baryonic effects

or may be hinting to alternatives of CDM

baryonic effects

or may be hinting to alternatives of CDM

warm dark matter

baryonic effects

or may be hinting to alternatives of CDM

- warm dark matter
- fuzzy dark matter (FDM) [Hu et al., 00]

baryonic effects

or may be hinting to alternatives of CDM

- warm dark matter
- fuzzy dark matter (FDM) [Hu et al., 00]
- self-interacting dark matter (SIDM) [Hall et al., 92] [Spergel and Steinhardt, 01]

baryonic effects

or may be hinting to alternatives of CDM

- warm dark matter
- fuzzy dark matter (FDM) [Hu et al., 00]
- self-interacting dark matter (SIDM)

[Hall *et al.*, 92] [Spergel and Steinhardt, 01]

baryonic effects

or may be hinting to alternatives of CDM

- warm dark matter
- fuzzy dark matter (FDM) [Hu et al., 00]
- self-interacting dark matter (SIDM)

[Hall *et al.*, 92] [Spergel and Steinhardt, 01]

$$0.1 \, \mathrm{cm}^2/\mathrm{g} \lesssim \sigma_{\mathrm{self}}/m \lesssim 1 \, \mathrm{cm}^2/\mathrm{g}$$

Large self-interaction is required:

$$0.1 \, \mathrm{cm}^2/\mathrm{g} \lesssim \sigma_{\mathrm{self}}/m \lesssim 1 \, \mathrm{cm}^2/\mathrm{g}$$

What particle physics models can realize this?

Large self-interaction is required:

$$0.1 \, \mathrm{cm}^2/\mathrm{g} \lesssim \sigma_{\mathrm{self}}/m \lesssim 1 \, \mathrm{cm}^2/\mathrm{g}$$

What particle physics models can realize this?

An option: Strongly Interacting Massive Particle (SIMP)

Consider QCD-like hypercolor dynamics of $SU(N_c)$

with $SU(N_f) \times SU(N_f)$ flavour symmetry

$$\mathcal{L} = \bar{q}_i i \not D q_i - m_q \bar{q}_i q_i$$

fermion condensation forms at some scale

$$q_{Li}q_{Rj}^{\dagger} = \mu^3 U_{ij}$$

with a matrix of Goldstone bosons

$$U = \exp\left[2i\pi^a T^a/f_\pi\right]$$

dark meson; dark matter

Effective description of meson states

$$\mathcal{L} = \frac{f_{\pi}^2}{16} \text{Tr}(\partial_{\mu} U \partial^{\mu} U^{\dagger}) + \frac{m_{\pi}^2 f_{\pi}^2}{16} \text{Tr}(U + U^{\dagger}) + \mathcal{L}_{\text{WZW}}$$

Expanding them, we find

Effective description of meson states

$$\mathcal{L} = \frac{f_{\pi}^2}{16} \text{Tr}(\partial_{\mu} U \partial^{\mu} U^{\dagger}) + \frac{m_{\pi}^2 f_{\pi}^2}{16} \text{Tr}(U + U^{\dagger}) + \mathcal{L}_{\text{WZW}}$$

Expanding them, we find

$$\mathcal{L}_{\text{self}} \supset \frac{1}{f_{\pi}^2} (\partial \pi)^2 (\pi)^2, \quad \frac{m_{\pi}^2}{f_{\pi}^2} (\pi)^4$$

(self-interaction; responsible for small scale issues)

Effective description of meson states

$$\mathcal{L} = \frac{f_{\pi}^2}{16} \text{Tr}(\partial_{\mu} U \partial^{\mu} U^{\dagger}) + \frac{m_{\pi}^2 f_{\pi}^2}{16} \text{Tr}(U + U^{\dagger}) + \mathcal{L}_{\text{WZW}}$$

Expanding them, we find

$$\mathcal{L}_{\text{self}} \supset \frac{1}{f_{\pi}^2} (\partial \pi)^2 (\pi)^2, \quad \frac{m_{\pi}^2}{f_{\pi}^2} (\pi)^4$$

(self-interaction; responsible for small scale issues)

$$\mathcal{L}_{\text{WZW}} \supset \frac{\epsilon^{\mu\nu\rho\sigma}}{f_{\pi}^{5}} (\pi \partial_{\mu}\pi \partial_{\nu}\pi \partial_{\rho}\pi \partial_{\sigma}\pi)$$

(number-changing process; responsible for relic density)

There are two relevant processes

self-interaction

$$\mathcal{L}_{\text{self}} \supset \frac{1}{f_{\pi}^2} (\partial \pi)^2 (\pi)^2, \quad \frac{m_{\pi}^2}{f_{\pi}^2} (\pi)^4$$

3-to-2 process

$$\mathcal{L}_{\text{self}} \supset \frac{1}{f_{\pi}^{2}} (\partial \pi)^{2} (\pi)^{2}, \quad \frac{m_{\pi}^{2}}{f_{\pi}^{2}} (\pi)^{4} \qquad \mathcal{L}_{\text{WZW}} \supset \frac{\epsilon^{\mu\nu\rho\sigma}}{f_{\pi}^{5}} (\pi \partial_{\mu} \pi \partial_{\nu} \pi \partial_{\rho} \pi \partial_{\sigma} \pi)$$

These interactions should be able to

(1) predict the correct relic abundance

$$\Omega_{\rm CDM} h^2 \simeq 0.12$$

$$0.1 \, \mathrm{cm}^2/\mathrm{g} \lesssim \sigma_{\mathrm{self}}/m_\pi \lesssim 1 \, \mathrm{cm}^2/\mathrm{g}$$

self-interaction

$$\mathcal{L}_{\text{self}} \supset \frac{1}{f_{\pi}^2} (\partial \pi)^2 (\pi)^2, \quad \frac{m_{\pi}^2}{f_{\pi}^2} (\pi)^4$$

$$\sigma_{\rm self}/m_{\pi} \sim \alpha_{\pi}^4/m_{\pi}^3$$

with
$$\alpha_{\pi} \equiv (m_{\pi}/f_{\pi})$$

self-interaction

$$\mathcal{L}_{\text{self}} \supset \frac{1}{f_{\pi}^2} (\partial \pi)^2 (\pi)^2, \quad \frac{m_{\pi}^2}{f_{\pi}^2} (\pi)^4$$

$$\sigma_{\rm self}/m_{\pi} \sim 1 \, {\rm cm}^2/{\rm g} \left(\frac{\alpha_{\pi}}{5}\right)^4 \left(\frac{400 \, {\rm MeV}}{m_{\pi}}\right)^3$$

with
$$\alpha_{\pi} \equiv (m_{\pi}/f_{\pi})$$

3-to-2 process

$$\mathcal{L}_{\text{WZW}} \supset \frac{\epsilon^{\mu\nu\rho\sigma}}{f_{\pi}^{5}} (\pi \partial_{\mu}\pi \partial_{\nu}\pi \partial_{\rho}\pi \partial_{\sigma}\pi)$$

$$(\sigma_{3\to 2}v^2)\sim \alpha_{\pi}^{10}/m_{\pi}^5$$

with
$$\alpha_{\pi} \equiv (m_{\pi}/f_{\pi})$$

3-to-2 process

$$\mathcal{L}_{\text{WZW}} \supset \frac{\epsilon^{\mu\nu\rho\sigma}}{f_{\pi}^{5}} (\pi \partial_{\mu}\pi \partial_{\nu}\pi \partial_{\rho}\pi \partial_{\sigma}\pi)$$

$$n_{\pi} \langle \sigma_{3 \to 2} v^2 \rangle |_{T_{\text{fo}}} \sim 3 \cdot 10^{-26} \,\text{cm}^3/\text{sec}\left(\frac{\alpha_{\pi}}{5}\right)^5 \left(\frac{400 \,\text{MeV}}{m_{\pi}}\right)^5$$

with
$$\alpha_\pi \equiv (m_\pi/f_\pi)$$

self-scattering cross-section

$$\sigma_{\rm self}/m_{\pi} \sim 1 \, {\rm cm}^2/{\rm g} \left(\frac{\alpha_{\pi}}{5}\right)^4 \left(\frac{400 \, {\rm MeV}}{m_{\pi}}\right)^3$$

3 to 2 cross-section

$$n_{\pi} \langle \sigma_{3 \to 2} v^2 \rangle |_{T_{\text{fo}}} \sim 3 \cdot 10^{-26} \,\text{cm}^3/\text{sec}\left(\frac{\alpha_{\pi}}{5}\right)^5 \left(\frac{400 \,\text{MeV}}{m_{\pi}}\right)^5$$

self-scattering cross-section

$$\sigma_{\rm self}/m_{\pi} \sim 1 \, {\rm cm}^2/{\rm g} \left(\frac{\alpha_{\pi}}{5}\right)^4 \left(\frac{400 \, {\rm MeV}}{m_{\pi}}\right)^3$$

3 to 2 cross-section

$$n_{\pi} \langle \sigma_{3 \to 2} v^2 \rangle |_{T_{\text{fo}}} \sim 3 \cdot 10^{-26} \,\text{cm}^3/\text{sec}\left(\frac{\alpha_{\pi}}{5}\right)^5 \left(\frac{400 \,\text{MeV}}{m_{\pi}}\right)^5$$

This model is controlled by two parameters

$$\alpha_{\pi} = (m_{\pi}/f_{\pi})$$
 & m_{π}

$$\alpha_{\pi} = (m_{\pi}/f_{\pi}) \simeq 5$$

$$m_{\pi} \simeq 400 \, \mathrm{MeV}$$

(1) predict the correct relic abundance

$$\Omega_{\rm CDM} h^2 \simeq 0.12$$

$$0.1 \, \mathrm{cm}^2/\mathrm{g} \lesssim \sigma_{\mathrm{self}}/m_{\pi} \lesssim 1 \, \mathrm{cm}^2/\mathrm{g}$$

$$\alpha_{\pi} = (m_{\pi}/f_{\pi}) \simeq 5$$

$$m_{\pi} \simeq 400 \, \mathrm{MeV}$$

(1) predict the correct relic abundance

$$\Omega_{\rm CDM} h^2 \simeq 0.12$$

$$0.1\,\mathrm{cm}^2/\mathrm{g} \lesssim \sigma_{\mathrm{self}}/m_\pi \lesssim 1\,\mathrm{cm}^2/\mathrm{g}$$

$$\alpha_{\pi} = (m_{\pi}/f_{\pi}) \simeq 5$$

$$m_{\pi} \simeq 400 \, \mathrm{MeV}$$

Not a valid assumption because

$$T_d \neq T$$

$$T_d \propto \ln^{-1} a$$

heats up DM particles

$$0.1\,\mathrm{cm}^2/\mathrm{g} \lesssim \sigma_{\mathrm{self}}/m_\pi \lesssim 1\,\mathrm{cm}^2/\mathrm{g}$$

$$\alpha_{\pi} = (m_{\pi}/f_{\pi}) \simeq 5$$

$$m_{\pi} \simeq 400 \, \mathrm{MeV}$$

Not a valid assumption because

$$T_d \neq T$$

$$T_d \propto \ln^{-1} a$$

heats up DM particles

$$0.1 \, \mathrm{cm}^2/\mathrm{g} \lesssim \sigma_{\mathrm{self}}/m_\pi \lesssim 1 \, \mathrm{cm}^2/\mathrm{g}$$

sensible only when SIMP is in kinetic equilibrium with SM

$$\alpha_{\pi} = (m_{\pi}/f_{\pi}) \simeq 5$$

$$m_{\pi} \simeq 400 \, \mathrm{MeV}$$

(1) predict the correct relic abundance

$$\Omega_{\rm CDM} h^2 \simeq 0.12$$

$$0.1\,\mathrm{cm}^2/\mathrm{g} \lesssim \sigma_{\mathrm{self}}/m_\pi \lesssim 1\,\mathrm{cm}^2/\mathrm{g}$$

$$\alpha_{\pi} = (m_{\pi}/f_{\pi}) \simeq 5$$

$$m_{\pi} \simeq 400 \, \mathrm{MeV}$$

(1) predict the correct relic abundance

Too large for the effective Lagrangian ... $\Omega_{\rm CDM} h^2 \simeq 0.12$

$$\alpha_{\pi} = (m_{\pi}/f_{\pi}) \lesssim (\Lambda/f_{\pi}) \sim 2\pi$$

$$0.1\,\mathrm{cm}^2/\mathrm{g} \lesssim \sigma_{\mathrm{self}}/m_\pi \lesssim 1\,\mathrm{cm}^2/\mathrm{g}$$

$$\alpha_{\pi} = (m_{\pi}/f_{\pi}) \simeq 8$$

$$m_{\pi} \simeq 600 \, \mathrm{MeV}$$

- (i) kinetic equilibrium between SIMP and SM
 - (1) predict the correct relic abundance

$$0.1\,\mathrm{cm}^2/\mathrm{g} \lesssim \sigma_{\mathrm{self}}/m_\pi \lesssim 1\,\mathrm{cm}^2/\mathrm{g}$$

consider an axion-like particle

consider an axion-like particle

connecting DM sector with SM sector (kinetic eq.)

consider an axion-like particle

connecting DM sector with SM sector (kinetic eq.)

openning up a new annihilation channel (perturbativity)

let's see how ALP interacts with DM and SM

$$\mathcal{L} = \bar{q}_i i \mathcal{D} q_i - m_q \bar{q}_i q_i$$

$$+ \frac{1}{2} (\partial_{\mu} \phi)^2 - V(\phi) + \frac{g_H^2}{32\pi^2} \frac{\phi}{f} H_{\mu\nu} \widetilde{H}^{\mu\nu}$$

$$+ C_{\phi\gamma\gamma} \frac{\alpha_{\rm em}}{4\pi} \frac{\phi}{f} F_{\mu\nu} \widetilde{F}^{\mu\nu}$$

let's see how ALP interacts with DM and SM

$$\mathcal{L} = \bar{q}_i i \not D q_i - m_q \bar{q}_i q_i$$

$$+\frac{1}{2}(\partial_{\mu}\phi)^{2} - V(\phi) + \frac{g_{H}^{2}}{32\pi^{2}}\frac{\phi}{f}H_{\mu\nu}\widetilde{H}^{\mu\nu}$$
$$+C_{\phi\gamma\gamma}\frac{\alpha_{\text{em}}}{4\pi}\frac{\phi}{f}F_{\mu\nu}\widetilde{F}^{\mu\nu}$$

let's see how ALP interacts with DM and SM

$$\mathcal{L} = \bar{q}_i i \not D q_i - m_q \bar{q}_i q_i$$

$$+\frac{1}{2}(\partial_{\mu}\phi)^{2} - V(\phi) + \frac{g_{H}^{2}}{32\pi^{2}}\frac{\phi}{f}H_{\mu\nu}\widetilde{H}^{\mu\nu}$$
$$+C_{\phi\gamma\gamma}\frac{\alpha_{\rm em}}{4\pi}\frac{\phi}{f}F_{\mu\nu}\widetilde{F}^{\mu\nu}$$

At low energies, effective Lagrangian is

$$\mathcal{L} = \frac{f_{\pi}^2}{16} \text{Tr}(\partial_{\mu} U \partial^{\mu} U^{\dagger}) + \frac{m_{\pi}^2 f_{\pi}^2}{16} \text{Tr}(e^{i\phi/(N_f f)} U + \text{h.c.}) + \mathcal{L}_{\text{WZW}}$$

Expanding the chiral Lagrangian,

we see not only operators for self-scattering and 3-to-2 process

Expanding the chiral Lagrangian,

we see not only operators for self-scattering and 3-to-2 process

but also an operator for semi-annihilation

[D'Emaro and Thaler, 10]

$$\mathcal{L}_{\text{semi}} \sim \frac{m_{\pi}^2}{N_f f_{\pi} f} d_{abc}(\pi^a \pi^b \pi^c) \phi$$

$$\langle \sigma_{\rm semi} v \rangle \sim \alpha_{\pi}^2 / f^2 \sim 10^{-36} \, \rm cm^2$$

$$\Rightarrow f \lesssim \mathcal{O}(\text{TeV})$$

$$\langle \sigma_{\rm semi} v \rangle \sim \alpha_{\pi}^2 / f^2 \sim 10^{-36} \, \rm cm^2$$

$$\Rightarrow f \lesssim \mathcal{O}(\text{TeV})$$

For ALP mass, restrict our attention to

$$10 \,\mathrm{MeV} \lesssim m_{\phi} \lesssim m_{\pi}$$

$$\langle \sigma_{\rm semi} v \rangle \sim \alpha_{\pi}^2 / f^2 \sim 10^{-36} \, \rm cm^2$$

$$\Rightarrow f \lesssim \mathcal{O}(\text{TeV})$$

For ALP mass, restrict our attention to

$$10\,\mathrm{MeV} \lesssim m_\phi \lesssim m_\pi$$

Constraints from cosmology (BBN, CMB)

$$\langle \sigma_{\rm semi} v \rangle \sim \alpha_{\pi}^2 / f^2 \sim 10^{-36} \, \rm cm^2$$

$$\Rightarrow f \lesssim \mathcal{O}(\text{TeV})$$

For ALP mass, restrict our attention to

$$10\,\mathrm{MeV} \lesssim m_\phi \lesssim m_\pi$$

kinematics of semi-annihilation

There are total four parameters

$$\alpha_{\pi}$$

$$m_{\pi}$$

$$\alpha_{\pi} = (m_{\pi}/f_{\pi})$$

There are total four parameters

$$\alpha_{\pi} \sim \mathcal{O}(1)$$

$$m_{\pi} \sim \mathcal{O}(100) \, \mathrm{MeV}$$

$$m_{\phi}$$

$$\alpha_{\pi} = (m_{\pi}/f_{\pi})$$

There are total four parameters

$$\alpha_{\pi} \sim \mathcal{O}(1)$$

$$m_{\pi} \sim \mathcal{O}(100) \, \mathrm{MeV}$$

$$m_{\phi} \sim \mathcal{O}(100) \,\mathrm{MeV}$$

$$f \sim \mathcal{O}(100) \, \mathrm{GeV}$$

$$\alpha_{\pi} = (m_{\pi}/f_{\pi})$$

taking $m_\phi=m_\pi$

$$N_c = 3, \ N_f = 4, \ \theta_H = 0$$

taking
$$m_\phi=m_\pi$$

$$N_c = 3, \ N_f = 4, \ \theta_H = 0$$

taking
$$m_\phi=m_\pi$$

$$N_c = 3, \ N_f = 4, \ \theta_H = 0$$

I. sufficient enough self-scattering cross section

II. kinetic eq. with SM through axion portal

taking
$$m_\phi=m_\pi$$

$$N_c = 3, \ N_f = 4, \ \theta_H = 0$$

- I. sufficient enough self-scattering cross section
- II. kinetic eq. with SM through axion portal
- III. alleviate perturbativity issue $\, \alpha_{\pi} \simeq 1 < 2\pi/\sqrt{N_c} \,$

$$10^{-2}$$
 10^{-1} 10^{0} $lpha_{\pi}=(m_{\pi}/f_{\pi})$

taking
$$m_\phi=m_\pi$$

$$N_c = 3, \ N_f = 4, \ \theta_H = 0$$

- I. sufficient enough self-scattering cross section
- II. kinetic eq. with SM through axion portal
- III. alleviate perturbativity issue $\, \alpha_\pi \simeq 1 < 2\pi/\sqrt{N_c} \,$
- IV. falsified by future beam dump experiment

$$10^{-2}$$
 10^{-1}
 10^{0}
 10^{0}
 $\alpha_{\pi} = (m_{\pi}/f_{\pi})$

taking $m_\phi=m_\pi$

not arbitrarily chosen but required ...

drawback: a certain mass degeneracy is required because of

strong constraints on semi-annihilation cross section from CMB

drawback: a certain mass degeneracy is required because of

strong constraints on semi-annihilation cross section from gamma-ray searches

drawback: degenerated mass is required because of

strong constraints on semi-annihilation cross section from CMB and gamma-ray searches

$$\frac{\langle \sigma_{\rm semi} v_{\rm rel} \rangle|_x}{\langle \sigma_{\rm semi} v_{\rm rel} \rangle|_{x_{\rm fo}}} \lesssim \mathcal{O}(10^{-2}) \quad \text{[from CMB]}$$

[from gamma-ray searches]

if ALP is lighter than dark matter

$$\Delta m = m_{\pi} - m_{\phi} > 0$$

if ALP is lighter than dark matter

$$\Delta m = m_{\pi} - m_{\phi} > 0$$

cross section in non-rel. limit is suppressed as

$$\langle \sigma_{\rm semi} v_{\rm rel} \rangle \propto \max(v_{\rm rel}, \sqrt{\Delta m/m_{\pi}})$$

if ALP is lighter than dark matter

$$\Delta m = m_{\pi} - m_{\phi} > 0$$

cross section in non-rel. limit is suppressed as

$$\langle \sigma_{\rm semi} v_{\rm rel} \rangle \propto \max(v_{\rm rel}, \sqrt{\Delta m/m_{\pi}})$$

required mass degeneracy is

$$\Delta m/m_{\pi} \lesssim \mathcal{O}(10^{-(5-7)})$$

[from gamma-ray searches: EGRET & Fermi-LAT]

if ALP is heavier than dark matter [i.e. forbidden DM]

[D'Agnolo and Ruderman, 15]

$$\Delta m = m_{\pi} - m_{\phi} < 0$$

if ALP is heavier than dark matter [i.e. forbidden DM]

[D'Agnolo and Ruderman, 15]

$$\Delta m = m_{\pi} - m_{\phi} < 0$$

cross section in non-rel. limit is suppressed as

$$\langle \sigma_{\rm semi} v \rangle \propto \exp(-|\Delta m|/T)$$

if ALP is heavier than dark matter [i.e. forbidden DM]

[D'Agnolo and Ruderman, 15]

$$\Delta m = m_{\pi} - m_{\phi} < 0$$

cross section in non-rel. limit is suppressed as

$$\langle \sigma_{\rm semi} v \rangle \propto \exp(-|\Delta m|/T)$$

no fine-tuning as in the previous case is required but

$$|\Delta m| < T_{\rm fo}$$

not to have big suppression during freeze-out process

taking
$$m_\phi=m_\pi$$

$$N_c = 3, \ N_f = 4, \ \theta_H = 0$$

I. sufficient enough self-scattering cross section

II. kinetic eq. with SM through axion portal

III. alleviate perturbativity issue $\, \alpha_\pi \simeq 1 < 2\pi/\sqrt{N_c} \,$

IV. falsified by future beam dump experiment

V. a certain mass degeneracy is required

$$10^{-2}$$
 10^{-1} 10^{0} $\alpha_{\pi} = (m_{\pi}/f_{\pi})$