
LHAPDF

Recent developments, current issues and future plans

Andy Buckley
IPPP, Durham University

PDF4LHC meeting, 2009-05-28

1/19



In this talk. . .

I A bit of history
I Current issues with LHAPDF

Memory occupancy
Maintainability
Extensibility / standards

I Current situation: coping strategies
I Re-development plans
I Summary

I first gave this talk to CMS MC; there will be tech details, but it
affects everyone so no apology!

2/19



LHAPDF history
pre-2001: Original HEP PDF library was PDFLIB, maintained as
part of CERNLIB (in the LEP era). PDFLIB contained all set data
in the code, and became unmaintainable

2001/2002: LHAPDF started development as a “Les Houches
Accord” PDF library at the Les Houches HEP workshop. Main
work by W. Giele. PDF parameterisations, runnings and
boundary conditions stored in .LHpdf data files. DGLAP PDF
RGE evolution in x & Q2 via QCDNUM (by M. Botje) and CTEQ
codes.

2003/2004: Management handed to Mike Whalley at Durham, as
a component of the HepData grant. PDFLIB-a-like interface,
LHAGLUE, by D. Bourilkov. Extensions to grids and multi-set
initialisation, many more PDFs, drift towards larger .LHgrid
interpolation grids rather than .LHpdf files, particularly for sets
with large error eigensets. C++ interface by S. Gieseke.

3/19



LHAPDF history (ctd.)
2005–2007: AB starts contributing: build system improvements
as part of CEDAR. Move to HepForge, re-written & portable C++

API, Python interface, regression testing. . . Extensions to QED
NLO & gluino PDFs: hacky/inextensible.

2008/9: LCG deployments encountering memory difficulties
with LHAPDF: “lite” versions. Proliferation of new sets
continues: too many / too large to bundle, who makes the
worthiness decision? Every new set requires code changes — a lot
of work for the maintainers. Time for PDF library version 3!

Recent additions: Thorne-Sherstnev mLO, HERA, NNPDF &
MSTW 2008 (plus one more last week). Expect more MSTW,
CTEQ etc. PDFs, plus LHC collaborations’ equivalents (LHCb,
CMS, Atlas). . .

Coming in LHAPDF 5.7.1: bug fixes, no more set bundling
(download via lhapdf-getdata script), mpl plotting examples

4/19



Some recent PDFs
mLO vs. LO f (x, Q2)i

From LHAPDF 5.7.0, Q2 = 10 GeV2:

10-4 10-3 10-2 10-1 100

x

5

0

5

10

15

20

25

30

35

40

x
f(
x
,Q

2
)

gluon

cteq6ll.LHpdf
MSTW2008lo68cl.LHgrid
MRST2001lo.LHgrid
MRST2007lomod.LHgrid
MRSTMCal.LHgrid

10-4 10-3 10-2 10-1 100

x

0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2
up

cteq6ll.LHpdf
MSTW2008lo68cl.LHgrid
MRST2001lo.LHgrid
MRST2007lomod.LHgrid
MRSTMCal.LHgrid

5/19



Some recent PDFs
mLO vs. LO f (x, Q2)i

From LHAPDF 5.7.0, Q2 = 6400 GeV2:

10-4 10-3 10-2 10-1 100

x

20

0

20

40

60

80

100

120

140

x
f(
x
,Q

2
)

gluon

cteq6ll.LHpdf
MSTW2008lo68cl.LHgrid
MRST2001lo.LHgrid
MRST2007lomod.LHgrid
MRSTMCal.LHgrid

10-4 10-3 10-2 10-1 100

x

1

0

1

2

3

4

5
up

cteq6ll.LHpdf
MSTW2008lo68cl.LHgrid
MRST2001lo.LHgrid
MRST2007lomod.LHgrid
MRSTMCal.LHgrid

6/19



Current issues with LHAPDF
Memory occupancy

Fortran only has static allocation. Interpolation grids stored as
huge working arrays; allocated as common blocks, i.e. huge
(uninitialised) global array variables in C parlance.

Number of concurrent sets defined at compile time⇒ static
memory footprint. Pre-5.5.1 used NSET = 3, without option to
change. 3 sets allocated concurrently: BSS > 400 MB.

Common blocks defined on an approx. set-by-set basis
i.e. even if using only one member of one set, global arrays are
allocated for other (uninitialised) sets. Worse, arrays are sized for
full sets, i.e. 40+ members for CTEQ6 and recent MRST/MSTW:
40 times larger than you probably want!

7/19



Current issues with LHAPDF
Memory occupancy (ctd.)

Is this really a problem?
Not for interactive users!
Uninitialised data areas declared as “BSS” in library, but a good
OS won’t allocate that memory in RAM or swap to disk until
code tries to use it (try it!) But falls foul of LCG process
accounting: makes Grid MC production with LHAPDF difficult.

Response (LHAPDF 5.5.1): make number of concurrent sets
specifiable at compile time. Can reduce BSS by × ∼ 3 with
usability loss. “lite” mode can be set at compile time: reduce
main multi-sets to single member array sizes.

Best: BSS ∼ 130 MB. QCDNUM uses about 20 MB/set, CTEQ
LHpdf uses about 3 MB/set.

8/19



Current issues with LHAPDF
Maintainability

LHAPDF currently supported as part of HepData grant +
donated time. Sustainable, but not with the current work model.

High workload for maintainers +
limited development/maintenence resources = trouble!
Maintainer(s) have to add new code to the framework for each
new PDF set. Grid file formats not standardised: each ipol code
reads a different format.

How do we decide what sets are most important to devote time
to integrating into the framework? How do we deal with a
higher rate of new PDFs than the maintenence team can handle?

Plus, the original framework was not really designed carefully:
plagued with global state, a maddening common block based
configuration system etc.

9/19



Current issues with LHAPDF
Extensibility / standards

There are sets with an extra photon, extra gluino (!), etc. These
have had to be hacked in rather inextensibly, by adding extra
members to the returning x f (x,Q2) array for those sets if the
right function is called. If you get the wrong set for that function
call, LHAPDF will exit ungracefully! No programmatic way to
protect against this.

To make it really extensible, a more general PID scheme (of
which the PDG MC ID code is the only obvious contender)
would be needed, with the possibility to check whether a
particular flavour is supported (and to exit gracefully in C++ at
least, via exceptions.)

10/19



Current situation: coping strategies

Any rewrite is going to take some time. How to cope with the
Fortran version for now?

Be aware there is a fundamental size to PDF sets. If you want to
use n sets at the same time, you will need at least n× set-size. x
and Q2 values vary sufficiently in MC code that just storing one
part of the grid at any time won’t work: code will be continually
re-reading the grid file.

Typically, set-size = 30 MB. Larger sets (NNPDF_1000!) will need
more, on the rough scale of the grid file size! Evolved sets,
especially CTEQ evolution, use less runtime memory than
gridded sets, but same BSS due to common arrays.

11/19



Current situation: coping strategies (ctd.)

Bearing this in mind, running in “lite” mode will reduce
memory occupancy to ∼ 130 MB for 3 concurrent sets. 40 MB
overhead isn’t so bad, and getting it any lower in Fortran will be
hard: fragile work in legacy code.

Drastic action: “chopped” LHAPDF, only compiled with
particular sets supported. Is it worth it for 40 MB! We won’t do
this, encourage it or validate chopped versions for you. And no
code forks of the Fortran version, i.e. you would be on your own.

But we have development plans of our own. . .

12/19



Re-development plans
For almost a year, I have been planning a rewrite to address the
problems. Support has gradually built both inside and outside
developer group: rewrite will involve contributions from AB,
M. Whalley, D. Grellscheid, G. Watt. Design discussions and
early coding work started.

Rewrite will be a C++ core, allowing dynamic memory
allocation, wrapped by Fortran and other APIs (i.e. an inversion
of the current design).

This will be a major, major upgrade. Probably a different
library name to make it clear.

PDFLIB API fixed; others flexible to some degree — expect small
user community for current non-LHAGLUE Fortran, C++ and
Python interfaces. User community surveyed to assess degree of
flexibility. MCnet MC authors prepared to move to new C++

interface.
13/19



Re-development plans
Memory management

Current “slots” system ⇒ proper dynamic allocation.
Scope to use even more memory, but default will be smaller: you
use what you ask for, and no more.

Set members rather than full sets as central PDF objects: scope
for reducing memory further? Must still allow efficient set-wise
initialisation.

Constraints: C++ design must be compatible with “the Fortran
way”, especially how the LHAGLUE interface works, because of
legacy code expecting a PDFLIB-compatible API. So it must
appear to PDFLIB client code that global, static set assignments
are still happening, even though the true footprint is dynamic.

14/19



Re-development plans
Move to pure grid interpolation system

Standardise grid format. αs ipol in grid files? Scope for extra ipol
dimensions needed? Many issues if we don’t want to
re-re-design.

Ability to specify ipol scheme away from set defaults, by string
(or function pointer in C++ API.) Several will be implemented,
starting with MSTW 2008 ipol code. Onus is on set authors who
want a particular interpolation algorithm to supply such an
algorithm that matches the defined C++ LHAPDF::Interpolator

API.

Memory structuring for most efficient use of main use case: all
flavours at given x & Q2. Use single cache line for all flavours.

15/19



Re-development plans
Open issues

Use PDG IDs and return flavour-indexed maps of x f (x,Q2)
values. Possibility of asking a set about what flavours it
supports.

Handling nuclear and other PDFs — special extra args. Set
transformations.

Metadata in data files: set info, authors, description, URLs,
contact email etc. more semantically that at present. Use code to
generate documentation.

Reading files: file-per-member or single file per set, with
member read pointers set during initial scan?

16/19



Sketch redesign
Survey results indicated that most users are using LHAPDF
indirectly via MC event generators, i.e. LHAGLUE interface
without direct common block access; some are using a subset of
the Fortran LHAPDF API. Propose that we provide
compatibility wrappers for these methods.

Core will be C++ Pdf class, providing interface to ask about
supported flavours and calculate flavour-indexed maps of
x f (x,Q2) values. Extra metadata also supported. One Pdf object
will represent a single member.

Memory management will be dynamic, but a system will be
provided to hide the dynamic (de)allocation details by
initialising Pdf s with a name, e.g.
Pdf* mypdf = LHAPDF::initPdf(0, "cteq66");

This will be used to provide dynamic allocation from Fortran,
and to emulate the current behaviour without the NSET
restriction.

17/19



Summary
LHAPDF in its current form is unsustainable
Both for users and developers: memory issues, amount of work
required per new set, etc.

Memory issues particularly a problem for Grid-based
production
Due to Fortran static initialisation and historic use of common
blocks (without actually using them “commonly”). Recent
versions have provided compile time control of NSET and
NHESS, allowing reductions in BSS at the cost of usability.

A rewrite is underway which will solve the problems
(or at least, pass the blame over: in future if you use too much
memory, it’s because you requested too much concurrently!) But
the rewrite will take time: maybe something for testing by
mid/end of the summer.
Sorry, I’d have liked it to happen sooner, too.

18/19



Summary (ctd.)

In the meantime, workarounds will be needed.
Best option is probably to hack src/Makefile.am to only build
the interpolation/evolution code for the set(s) that you are using.
Memory gains from ∼ 30 MB to > 100 MB depending on how
hard you work and what sets you are using.

But it will no longer be a general purpose PDF library and you
won’t be supported as if it was a vanilla install. Sorry!

19/19


