

News from HERA and data in HERPDF0.2 set

PDF4LHC workshop, 29 May 2009 S. Glazov, DESY

1

Data included in HERAPDF0.2 set

Data Set		x range		Q^2 range		L	Mode	\sqrt{s}	ref.
				GeV ²		pb ⁻¹		GeV	
H1 svx-min. bias	95-00	5×10^{-6}	0.02	0.2	12	2.1	<i>e</i> ⁺ <i>p</i>	301-319	[1]
H1 low Q^2	96-00	2×10^{-4}	0.1	12	150	22	<i>e</i> ⁺ <i>p</i>	301-319	[2]
H1 NC	94-97	0.0032	0.65	150	30000	35.6	<i>e</i> ⁺ <i>p</i>	301	[3]
H1 CC	94-97	0.013	0.40	300	15000	35.6	<i>e</i> ⁺ <i>p</i>	301	[3]
H1 NC	98-99	0.0032	0.65	150	30000	16.4	<i>e</i> ⁻ <i>p</i>	319	[4]
H1 CC	98-99	0.013	0.40	300	15000	16.4	<i>e</i> ⁻ <i>p</i>	319	[4]
H1 NC	99-00	0.00131	0.65	1?0	30000	65.2	<i>e</i> ⁺ <i>p</i>	319	[5]
H1 CC	99-00	0.013	0.40	300	15000	65.2	<i>e</i> ⁺ <i>p</i>	319	[5]
ZEUS BPC	95	2×10^{-6}	6×10^{-5}	0.11	0.65	1.65	<i>e</i> ⁺ <i>p</i>	301	[6]
ZEUS BPT	97	6×10^{-7}	0.001	0.045	0.65	3.9	<i>e</i> ⁺ <i>p</i>	301	[7]
ZEUS SVX	95	1.2×10^{-5}	0.0019	0.6	17	0.2	<i>e</i> ⁺ <i>p</i>	301	[8]
ZEUS NC	96-97	6×10^{-5}	0.65	2.7	30000	30.0	<i>e</i> ⁺ <i>p</i>	301	[9]
ZEUS CC	94-97	0.015	0.42	280	17000	47.7	e^+p	301	[10]
ZEUS NC	98-99	0.005	0.65	200	30000	15.9	e^+p	319	[11]
ZEUS CC	98-99	0.015	0.42	280	30000	16.4	e^+p	319	[12]
ZEUS NC	99-00	0.005	0.65	200	30000	63.2	e^+p	319	[13]
ZEUS CC	99-00	0.008	0.42	280	17000	60.9	e^+p	319	[14]

All the datasets included in combined H1-ZEUS set. Blue are new data vs previous average.

Low $0.2 \le Q^2 \le 12 \text{ GeV}^2 \text{ H1}$ data

- Combined H1 data from years 1995-2000, $E_p = 820$ and $E_p = 920$ GeV using special "minimum bias" runs including runs with "shifted" vertex position.
- Typically 2% precision for $Q^2 \ge 2 \text{ GeV}^2$.
- Submitted for publication (arXiv:0904.0929).
- Extends to high y = 0.8.
- Can be described by Dipole Models, from $Q^2 \ge 3.5 \text{ GeV}^2$ included in QCD fits.

Medium $12 \le Q^2 \le 150 \text{ GeV}^2 \text{ H1}$ data

- New analysis of 2000 ($E_p = 920 \text{ GeV}$) compared to corrected (up to 2.5%) 1996/97 data ($E_p = 820$).
- Agree well, combine. Results are available as *arXiv:0904.3513*.

Medium $12 \le Q^2 \le 150 \text{ GeV}^2 \text{ H1}$ data

- Up to 1.3% precision for $Q^2 \sim 20 \text{ GeV}^2$.
- Described well by NLO QCD fit.

- Low, medium and high Q^2 data collected in 1994-2000 (HERA-I).
- All H1 data used for NLO QCD fit (H1PDF2009).

- Fit using inclusive DIS cross section data from H1 only.
- Improved theoretical treatment of heavy quarks (TRscheme)
- Similar to HERAPDF0.2 fit.

Separation of **experimental**, **model** and **parameterization** uncertainty. Parameterization uncertainty dominates at high *x*.

Measurements at HERA II – e^-p data from ZEUS

- Analysis of all HERA-II e⁻p data collected in 2005 – 2006 (DESY-08-202)
- Integrated luminosity of 169.9 pb⁻¹.
- Data taken with longitudinally polarized *e*⁻ beam.
- Included in ZEUS PDF fits.

Not included in HERAPDF 0.2 set — will be combined together including all HERA-II data.

Measurement of F_L by ZEUS

- Measurement based on HERA runs with reduced $E_p =$ 460 GeV and $E_p = 575$ GeV (DESY-09-046).
- Extraction of both F_L and F_2 s.f. (previously F_2 was extracted using assumptions on F_L leading to some model dependence for higher y > 0.35data.)
- Measurement of $R = F_L/(F_2 - F_L) = 0.18^{+0.07}_{-0.05}$

Not included in HERAPDF 0.2 set — work in progress how to combine low E_p / F_L data.

 F_L vs x, Q^2

Preliminary measurement of H1 extending down to 2.5 GeV² using Backward Silicon Tracker

F_L measured at $Q^2 < 100 \text{ GeV}^2$

MSTW and H1PDF 2009 predictions use the same scheme to calculate F_L . Data agree better with calculation of CTEQ.

Combination Procedure

- All NC,CC $e^{\pm}p$ data are combined in one step. This allows for coherent propagation of the systematic uncertainties.
- Before the combination, the data are corrected to a common *x*, *Q*² grid using parameterizations of NC,CC cross section. QCD fit is used for *Q*² ≥ 4 GeV² and fractal model fit for *Q*² < 4 GeV² data.
- The data collected at $E_p = 820$ GeV are corrected to $E_p = 920$ GeV for all point excluding y > 0.35 NC data. The model uncertainty arising from this CME correction is negligible compared to experimental errors.
- The correlated systematic uncertainties are considered uncorrelated between H1 and ZEUS. To study importance of this approximation, similar sources were identified and assumed to be correlated. Additional **procedural** uncertainties are introduced for possible correlation of photoproduction background and hadronic final state simulation.

Combination χ^2

$$\chi^2_{\exp}(\boldsymbol{m}, \boldsymbol{b}) = \sum_i \frac{\left[m^i - \sum_j \gamma^i_j m^i b_j - \mu^i\right]^2}{\delta^2_{i,\text{stat}} \left(m^i - \sum_j \gamma^i_j m^i b_j\right) + \left(\delta_{i,\text{uncor}} m^i\right)^2} + \sum_j b_j^2.$$

- μ^i measured central value at point *i*
- γ_j^i , $\delta_{i,\text{stat}}$, $\delta_{i,\text{uncor}}$ relative correlated systematic, statistical and uncorrelated systematic uncertainty.

The function χ^2_{exp} depends on the set of underlying physical quantities m^i (vector **m**) and the set of systematic uncertainties b_i (**b**).

All(normalization, correlated, uncorrelated) systematic uncertainties are assumed to be **multiplicative** and statistical errors are rescaled based on estimated (instead of measured) number of events. Extra procedural error for if only normalizations are considered multiplicative.

Alternative: average/fit $\log \sigma_r$, in this case all uncertainties should be treated as additive (also normalizations). Consistent resulting average.

Combination Results

- Average 1397 input data points to 741 cross section measurements.
- 110 separate correlated error sources.
- Good consistency, $\chi^2/n_{dof} = 641/656$, no tension seen from distribution of pulls for all kinematic domains.
- Data precision reaches
 ~ 1% for Q² ~ 20 GeV²
 NC e⁺p sample.

NC e^+p HERA for low Q^2

Compared to data in HERAPDF 0.1 set, extension to low Q^2 using ZEUS BPT, BPC and SVX as well as H1 data.

The data are compared to ALLM97 parameterization and Iancu, Itakura and Munier (IIM) dipole model fit to low Q^2 H1 data.

Changes for $Q^2 \sim 30 \text{ GeV}^2$ range

Before the addition of the latest H1 data (HERAPDF 0.1) ...

Changes for $Q^2 \sim 30 \text{ GeV}^2$ range

All HERA-I data. Precision improves from $\sim 1.50\%$ to $\sim 1.05\%$ (new H1 data: 1.45%)

CC $e^{\pm}p$ data

- CC data allows flavor separation using HERA data only.
- Average improves precision of the data but ultimate precision will come with the combination of the complete HERA dataset.

Summary

- Plenty of new data from HERA.
- HERA combined cross section data include new H1 results for $0.2 \le Q^2 \le 150 \text{ GeV}^2$ and ZEUS data for $0.045 \le Q^2 \le 0.65 \text{ GeV}^2$, significantly improve precision for $Q^2 \le 150 \text{ GeV}^2$.

All the data intended for the HERA-I publication are released/included in the combination.