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A PUZZLE?

GLUON DISTRIBUTION

CTEQ HESSIAN RESULT COMPARED TO

ENVELOPE OF 500 MC REPLICAS

Pumplin et al., 2009

H1 HESSIAN RESULT COMPARED TO

ST. DEV. FROM 100 MC REPLICAS

Fit vs H1PDF2000, Q2 = 4. GeV2
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HESSIAN ERROR ESTIMATES

THE STANDARD METHOD

OBSERVABLE X DEPENDING ON PARAMETERS ~z: (LINEAR ERROR PROPAGATION)

X(~z) � X0 + zi�iX(~z) ASSUMING MOST LIKELY VALUE AT ~z = 0

VARIANCE: �

2
X = �ij�iX�jX,

�ij ) COVARIANCE MATRIX IN PARAMETER SPACE

MAXIMUM LIKELIHOOD: COVARIANCE , HESSIAN �ij = �i�j�
2 EVALUATED AT MIN. OF �2

DIAGONALIZATION: CHOOSE zi AS EIGENVECTORS OF �ij WITH UNIT EIGENVALUES

�

2
X = j
~
rXj

2

(LENGTH OF GRADIENT)

THE ENVELOPE METHOD

ONE SIGMA CONTOUR IN PARAMETER SPACE:

TWO PARAMETERS X �X0 = �1X 
os � + �2X sin �

n PARAMETERS X �X0 = ~n �

~
rX; (~n UNIT VECTOR IN PARAMETER SPACE)

HALF­WIDTH OF THE ENVELOPE: MAX(X) = j
~
rXj = �X (MAX IF ~n& ~rX PARAL.)

) ENVELOPE & STANDARD DEVIATION COINCIDE



THE “HESSIAN MONTE CARLO”

Q:IF ONE PICKS REPLICAS AT RANDOM ON THE ONE­SIGMA CONTOUR

WHAT IS THE CHANCE OF “FILLING” THE ENVELOPE?

A:DETERMINE THE PROBABILITY FOR AT LEAST ONE REPLICA TO BE

WITHIN ANGLE � OF DIRECTION ~
rX OF MAX

TWO PARAMETERS: ONE REPLICA WITH � < �0 ) P (2; 1 : �0) =

�0
�

PROBABILITY OF MAX(ENVELOPE)=�X 
os �0

) ALL n REPLICAS HAVE � > �0 ) P (2; n; �0) =

�
1�

�0
�

�n

d � < �0

) P (d; 1 : �0) =

�
�
d
2

�
(d�1)
p

��
�
d�1
2

� �d�1
0

(1 +O(�0)) �

�
d�1

0p

2�d

�X 
os �0

) P (d; n; �0) =

�
1�

�
d�1
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2�d
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R �X

R

d = 23 n = 10; 100; 500; 1000
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�n

PROBABILITY FOR THE WIDTH OF THE ENVELOPE

TO BE SMALLER BY A FACTOR R THAN THE STANDARD DEVIATION �X

PLOTTED VS R FOR

d = 23 PARAMETERS AND n = 10; 100; 500; 1000 REPLICAS



MONTE CARLO ERROR ESTIMATES

PARAMETER SPACE:

OBSERVABLE X DEPENDS ON PARAMETERS ~z

VARIANCE: �2X = hX

2
i � hXi

2

AVERAGES: hXi =
R
d
d
zX(~z)P (~z), WITH

P (~z)) PROBABILITY DISTN. OF PARAMETER VALUES

& INTEGRAL PERFORMED BY MONTE CARLO SAMPLING

HOW MANY REPLICAS DOES ONE NEED?

) 3
d

> 10
11

z1

~
rX

)

hXi =

R
dz1X(~z)P (z1)

n

�
p

n

�
3



MONTE CARLO ERROR ESTIMATES

PARAMETER SPACE: NOT ADVISABLE
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DIAGONALIZATION: CHOOSE PARM z1 ALONG ~
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Q: HOW IS IT DONE IN PRACTICE?

A: CHOOSE REPLICAS OF THE DATA, DISTRIBUTED AS THE DATA



MONTE CARLO ERROR ESTIMATES
MANY OBSERVABLES

IN GLOBAL PARTON FITS, THE NUMBER OF OBSERVABLES (DATA) IS LARGE

BUT THEY ARE NOT COMPLETELY INDEPENDENT!

Q: HOW MANY REPLICAS DOES ONE NEED? AT WORST, COULD BE VERY LARGE > Ndat

A: JUST TRY. COMPUTE AVERAGES, VARIANCES, COVARIANCES FROM MC SAMPLE

& ENLARGE SAMPLE UNTIL THEY AGREE WITH THOSE OF DATA

Ndat � 3500
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IN GLOBAL PARTON FITS, THE NUMBER OF OBSERVABLES (DATA) IS LARGE

BUT THEY ARE NOT COMPLETELY INDEPENDENT!
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A: JUST TRY. COMPUTE AVERAGES, VARIANCES, COVARIANCES FROM MC SAMPLE

& ENLARGE SAMPLE UNTIL THEY AGREE WITH THOSE OF DATA

NNPDF1.2 DATASET, Ndat � 3500
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10 REPLICAS FOR CENTRAL VALS, 100 FOR UNCERTAINTIES, 1000 FOR CORRELNS



NORMALIZATION UNCERTAINTIES

HESSIAN

� FIRST OPTION (MSTW08) RESCALE ALL DATA VALUES & ST. DEVNS. BY FACTOR f
& TREAT f AS A FIT PARM WITH A PENALTY TERM SUCH AS

�
2
f

=

(f�1)
2

�2
f

� SECOND OPTION TREAT NORMALIZATION AS AN OFFSET UNCERTAINTY x = xtrue + �0

ADD OFFSET UNCERTAINTY AS A CORRELATED UNCERTAINTY TO COVARIANCE MATRIX


ovij =

�P
Nsys

k=1

�i;k�j;k + Æij�i;t
�

� WRONG OPTIONS RESCALE DATA VALUES BUT NOT STANDARD DEVIATIONS & FIT WITH

PENALTY;

ADD NORMALIZATION UNCERTAINTY TO COVARIANCE MATRIX


ovij =

�P
Nsys

k=1

�i;k�j;k + FiFj�
2
N

�
+ Æij�i;t:

MONTE CARLO

� FIRST OPTION (NNPDF) INCLUDE NORMALIZATION UNCERTAINTY ALONG WITH OTHER

SYSTEMATICS IN DATA GENERATION

F

(art)(k)

i

=

�
1 + r

(k)

N

�N

��
F

(exp)

i

+

P
Nsys

p=1

r
(k)

p �i;p + r
(k)

i

�i;t
�

� SECOND OPTION NORMALIZATION IS NOT INCLUDED IN DATA GENERATION, & TREATED AS A

FREE PARAMETER, TO BE FITTED REPLICA BY REPLICA



INCOMPATIBLE DATA

WHEN USED TOGETHER WITH NEURAL NETWORK & CROSS–VALIDATION STOPPING

MONTE CARLO LEADS TO INFLATION OF UNCERTAINTY

WHEN COMBINING INCONSISTENT DATA ) SIMILAR TO PDG (SCALE FACTOR) METHOD

EXAMPLE BENCHMARK FIT (HERALHC WSHOP)

LARGER COMPATIBLE DATASET
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CONCLUSION

� HESSIAN & MONTE CARLO METHOD GIVE THE SAME RESULTS

IN THE LINEAR (ERROR PROPAGATION) APPROXIMATION

� MONTE CARLO MORE FLEXIBLE IN HANDLING NON GAUSSIAN OR NON LINEAR

BEHAVIOUR

� MONTE CARLO MUST BE DONE IN THE SPACE OF DATA,

NOT IN THE SPACE OF PARAMETERS

� MONTE CARLO COUPLED WITH NEURAL NETWORKS AND CROSS­VALIDATION

STOPPING ALLOWS FOR AN IMROVED TREATMENT OF INCONSISTENT DATA


