ESTIMATING UNCERTAINTIES: MONTE CARLO vs HESSIAN

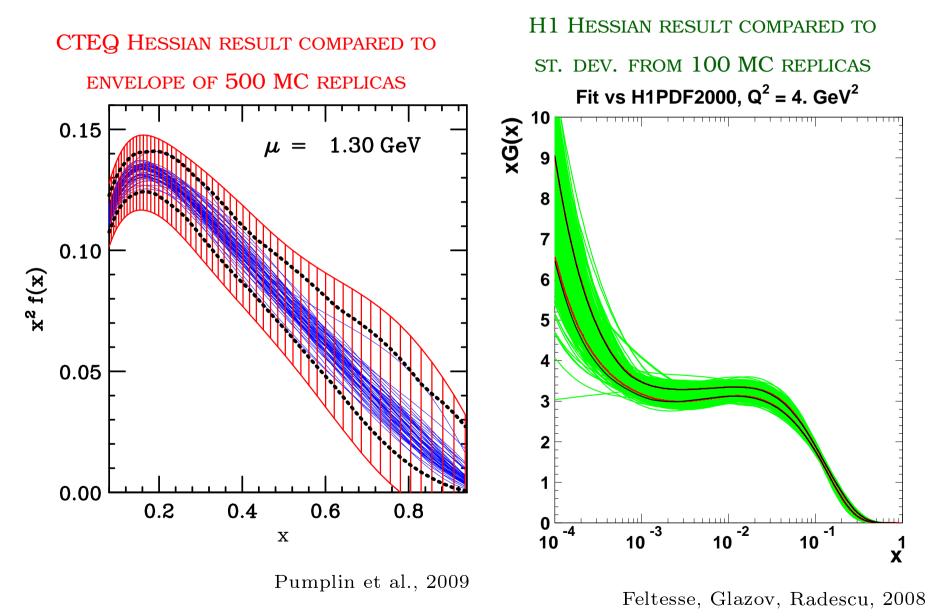
STEFANO FORTE MILAN UNIVERSITY & INFN

PDF4LHC WORKSHOP

CERN, MAY 29, 2009

A PUZZLE?

GLUON DISTRIBUTION



HESSIAN ERROR ESTIMATES

THE STANDARD METHOD

OBSERVABLE X DEPENDING ON PARAMETERS \vec{z} : (LINEAR ERROR PROPAGATION) $X(\vec{z}) \approx X_0 + z_i \partial_i X(\vec{z})$ ASSUMING MOST LIKELY VALUE AT $\vec{z} = 0$ VARIANCE: $\sigma_X^2 = \sigma_{ij} \partial_i X \partial_j X$,

 $\sigma_{ij} \Rightarrow$ COVARIANCE MATRIX IN PARAMETER SPACE

MAXIMUM LIKELIHOOD: COVARIANCE \Leftrightarrow HESSIAN $\sigma_{ij} = \partial_i \partial_j \chi^2$ EVALUATED AT MIN. OF χ^2 DIAGONALIZATION: CHOOSE z_i AS EIGENVECTORS OF σ_{ij} WITH UNIT EIGENVALUES $\sigma_X^2 = |\vec{\nabla}X|^2$ (LENGTH OF GRADIENT)

THE ENVELOPE METHOD

ONE SIGMA CONTOUR IN PARAMETER SPACE:

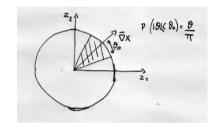
TWO PARAMETERS $X - X_0 = \partial_1 X \cos \theta + \partial_2 X \sin \theta$ n parameters $X - X_0 = \vec{n} \cdot \vec{\nabla} X$; (\vec{n} unit vector in parameter space) HALF-WIDTH OF THE ENVELOPE: $Max(X) = |\vec{\nabla} X| = \sigma_X$ (Max if $\vec{n} \& \vec{\nabla} X$ paral.) \Rightarrow ENVELOPE & STANDARD DEVIATION COINCIDE

THE "HESSIAN MONTE CARLO"

Q:IF ONE PICKS REPLICAS AT RANDOM ON THE ONE-SIGMA CONTOUR WHAT IS THE CHANCE OF "FILLING" THE ENVELOPE? A:DETERMINE THE PROBABILITY FOR AT LEAST ONE REPLICA TO BE WITHIN ANGLE θ OF DIRECTION $\vec{\nabla}X$ OF MAX

TWO PARAMETERS: ONE REPLICA WITH $\theta < \theta_0 \Rightarrow P(2, 1 : \theta_0) = \frac{\theta_0}{\pi}$ PROBABILITY OF MAX(ENVELOPE)= $\sigma_X \cos \theta_0$

 \Rightarrow All *n* REPLICAS HAVE $\theta > \theta_0 \Rightarrow P(2, n; \theta_0) = \left(1 - \frac{\theta_0}{\pi}\right)^n$



THE "HESSIAN MONTE CARLO"

Q:IF ONE PICKS REPLICAS AT RANDOM ON THE ONE-SIGMA CONTOUR WHAT IS THE CHANCE OF "FILLING" THE ENVELOPE? A:DETERMINE THE PROBABILITY FOR AT LEAST ONE REPLICA TO BE WITHIN ANGLE θ OF DIRECTION $\vec{\nabla}X$ OF MAX

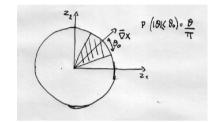
TWO PARAMETERS: ONE REPLICA WITH $\theta < \theta_0 \Rightarrow P(2, 1 : \theta_0) = \frac{\theta_0}{\pi}$ PROBABILITY OF MAX(ENVELOPE)= $\sigma_X \cos \theta_0$

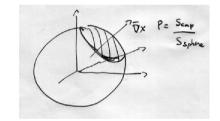
 $\Rightarrow \text{ALL } n \text{ REPLICAS HAVE } \theta > \theta_0 \Rightarrow P(2, n; \theta_0) = \left(1 - \frac{\theta_0}{\pi}\right)^n$ *d* parameters: One replica with $\theta < \theta_0$

$$\Rightarrow P(d, 1:\theta_0) = \frac{\Gamma\left(\frac{d}{2}\right)}{(d-1)\sqrt{\pi}\Gamma\left(\frac{d-1}{2}\right)} \theta_0^{d-1} (1+O(\theta_0)) \approx \frac{\theta_0^{d-1}}{\sqrt{2\pi d}}$$

PROBABILITY OF MAX(ENVELOPE)= $\sigma_X \cos \theta_0$

 $\Rightarrow P(d,n;\theta_0) = \left(1 - \frac{\theta_0^{d-1}}{\sqrt{2\pi d}}\right)^n$





THE "HESSIAN MONTE CARLO"

Q:IF ONE PICKS REPLICAS AT RANDOM ON THE ONE-SIGMA CONTOUR WHAT IS THE CHANCE OF "FILLING" THE ENVELOPE? A:DETERMINE THE PROBABILITY FOR AT LEAST ONE REPLICA TO BE WITHIN ANGLE θ OF DIRECTION $\vec{\nabla}X$ OF MAX

TWO PARAMETERS: ONE REPLICA WITH $\theta < \theta_0 \Rightarrow P(2, 1 : \theta_0) = \frac{\theta_0}{\pi}$ PROBABILITY OF MAX(ENVELOPE)= $\sigma_X \cos \theta_0$

 $\Rightarrow \text{ALL } n \text{ REPLICAS HAVE } \theta > \theta_0 \Rightarrow P(2, n; \theta_0) = \left(1 - \frac{\theta_0}{\pi}\right)^n$ *d* parameters: One replica with $\theta < \theta_0$

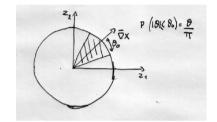
$$\Rightarrow P(d, 1:\theta_0) = \frac{\Gamma\left(\frac{d}{2}\right)}{(d-1)\sqrt{\pi}\Gamma\left(\frac{d-1}{2}\right)} \theta_0^{d-1} (1+O(\theta_0)) \approx \frac{\theta_0^{d-1}}{\sqrt{2\pi d}}$$
PROBABILITY OF MAX(ENVELOPE)= $\sigma_X \cos \theta_0$

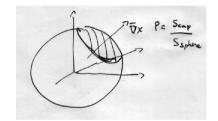
 $\Rightarrow P(d, n; \theta_0) = \left(1 - \frac{\theta_0}{\sqrt{2\pi d}}\right)$

PROBABILITY FOR THE WIDTH OF THE ENVELOPE

TO BE SMALLER BY A FACTOR R THAN THE STANDARD DEVIATION σ_X PLOTTED VS R FOR

d = 23 parameters and n = 10, 100, 500, 1000 replicas







PARAMETER SPACE:

OBSERVABLE X DEPENDS ON PARAMETERS \vec{z} VARIANCE: $\sigma_X^2 = \langle X^2 \rangle - \langle X \rangle^2$ AVERAGES: $\langle X \rangle = \int d^d z X(\vec{z}) P(\vec{z})$, WITH $P(\vec{z}) \Rightarrow$ PROBABILITY DISTN. OF PARAMETER VALUES & INTEGRAL PERFORMED BY MONTE CARLO SAMPLING HOW MANY REPLICAS DOES ONE NEED?

PARAMETER SPACE: NOT ADVISABLE

OBSERVABLE X DEPENDS ON PARAMETERS \vec{z} VARIANCE: $\sigma_X^2 = \langle X^2 \rangle - \langle X \rangle^2$ AVERAGES: $\langle X \rangle = \int d^d z X(\vec{z}) P(\vec{z})$, WITH $P(\vec{z}) \Rightarrow$ PROBABILITY DISTN. OF PARAMETER VALUES & INTEGRAL PERFORMED BY MONTE CARLO SAMPLING HOW MANY REPLICAS DOES ONE NEED? THREE BINS PER PARM $\Rightarrow 3^d$ BINS FOR 23 PARMS., NEED > 10^{11} REPLICAS

PARAMETER SPACE: NOT ADVISABLE

OBSERVABLE X DEPENDS ON PARAMETERS \vec{z} VARIANCE: $\sigma_X^2 = \langle X^2 \rangle - \langle X \rangle^2$ AVERAGES: $\langle X \rangle = \int d^d z X(\vec{z}) P(\vec{z})$, WITH $P(\vec{z}) \Rightarrow$ PROBABILITY DISTN. OF PARAMETER VALUES & INTEGRAL PERFORMED BY MONTE CARLO SAMPLING HOW MANY REPLICAS DOES ONE NEED? THREE BINS PER PARM $\Rightarrow 3^d$ BINS FOR 23 PARMS., NEED > 10^{11} REPLICAS

DATA SPACE

DIAGONALIZATION: CHOOSE PARM z_1 ALONG ∇X ALL OTHER PARMS \Rightarrow FLAT DIRECTIONS AVERAGES: $\langle X \rangle = \int dz_1 X(\vec{z}) P(z_1)$ HOW MANY REPLICAS DOES ONE NEED?

PARAMETER SPACE: NOT ADVISABLE

OBSERVABLE X DEPENDS ON PARAMETERS \vec{z} VARIANCE: $\sigma_X^2 = \langle X^2 \rangle - \langle X \rangle^2$ AVERAGES: $\langle X \rangle = \int d^d z X(\vec{z}) P(\vec{z})$, WITH $P(\vec{z}) \Rightarrow$ PROBABILITY DISTN. OF PARAMETER VALUES & INTEGRAL PERFORMED BY MONTE CARLO SAMPLING HOW MANY REPLICAS DOES ONE NEED? THREE BINS PER PARM $\Rightarrow 3^d$ BINS FOR 23 PARMS., NEED > 10^{11} REPLICAS

DATA SPACE

DIAGONALIZATION: CHOOSE PARM z_1 ALONG ∇X ALL OTHER PARMS \Rightarrow FLAT DIRECTIONS AVERAGES: $\langle X \rangle = \int dz_1 X(\vec{z}) P(z_1)$ HOW MANY REPLICAS DOES ONE NEED?ONE-DIMENSIONAL AVERAGE OF n REPLICAS

converges to true average with standard dev. $\frac{\sigma}{\sqrt{n}}$ 10 Replicas enough for $\frac{\sigma}{3}$ accuracy

PARAMETER SPACE: NOT ADVISABLE

OBSERVABLE X DEPENDS ON PARAMETERS \vec{z} VARIANCE: $\sigma_X^2 = \langle X^2 \rangle - \langle X \rangle^2$ AVERAGES: $\langle X \rangle = \int d^d z X(\vec{z}) P(\vec{z})$, WITH $P(\vec{z}) \Rightarrow$ PROBABILITY DISTN. OF PARAMETER VALUES & INTEGRAL PERFORMED BY MONTE CARLO SAMPLING HOW MANY REPLICAS DOES ONE NEED? THREE BINS PER PARM $\Rightarrow 3^d$ BINS FOR 23 PARMS., NEED > 10^{11} REPLICAS

DATA SPACE

DIAGONALIZATION: CHOOSE PARM z_1 ALONG $\vec{\nabla}X$

ALL OTHER PARMS \Rightarrow FLAT DIRECTIONS

AVERAGES: $\langle X \rangle = \int dz_1 X(\vec{z}) P(z_1)$

HOW MANY REPLICAS DOES ONE NEED? ONE-DIMENSIONAL AVERAGE OF n REPLICAS

CONVERGES TO TRUE AVERAGE WITH STANDARD DEV. $\frac{\sigma}{\sqrt{n}}$

10 REPLICAS ENOUGH FOR $\frac{\sigma}{3}$ ACCURACY

- Q: HOW IS IT DONE IN PRACTICE?
- A: CHOOSE REPLICAS OF THE DATA, DISTRIBUTED AS THE DATA

MANY OBSERVABLES

IN GLOBAL PARTON FITS, THE NUMBER OF OBSERVABLES (DATA) IS LARGE BUT THEY ARE NOT COMPLETELY INDEPENDENT! Q: HOW MANY REPLICAS DOES ONE NEED? AT WORST, COULD BE VERY LARGE > N_{dat} A: JUST TRY. COMPUTE AVERAGES, VARIANCES, COVARIANCES FROM MC SAMPLE & ENLARGE SAMPLE UNTIL THEY AGREE WITH THOSE OF DATA

MANY OBSERVABLES

IN GLOBAL PARTON FITS, THE NUMBER OF OBSERVABLES (DATA) IS LARGE BUT THEY ARE NOT COMPLETELY INDEPENDENT! Q: HOW MANY REPLICAS DOES ONE NEED? AT WORST, COULD BE VERY LARGE > N_{dat} A: JUST TRY. COMPUTE AVERAGES, VARIANCES, COVARIANCES FROM MC SAMPLE & ENLARGE SAMPLE UNTIL THEY AGREE WITH THOSE OF DATA

NNPDF1.2 dataset, $N_{\rm dat} \sim 3500$

REPLICA AVERAGES

VS. CENTRAL VALUES

REPLICA STANDARD DEV.

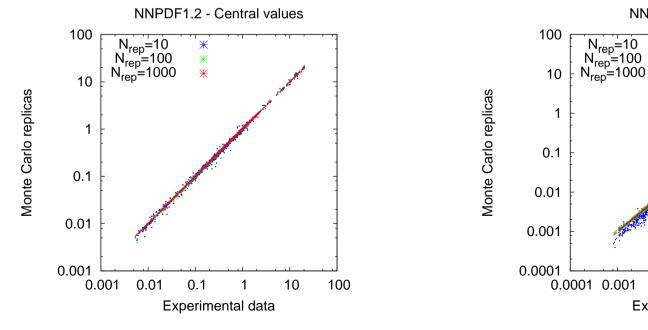
VS. UNCERTAINTIES

0.01

Experimental data

0.1

10



NNPDF1.2 - Errors

NORMALIZATION UNCERTAINTIES

HESSIAN

• FIRST OPTION (MSTW08) RESCALE ALL DATA VALUES & ST. DEVNS. BY FACTOR f & TREAT f AS A FIT PARM WITH A PENALTY TERM SUCH AS

$$\chi_f^2 = \frac{(f-1)^2}{\sigma_f^2}$$

- SECOND OPTION TREAT NORMALIZATION AS AN OFFSET UNCERTAINTY $x = x_{true} + \sigma_0$ ADD OFFSET UNCERTAINTY AS A CORRELATED UNCERTAINTY TO COVARIANCE MATRIX $\operatorname{cov}_{ij} = \left(\sum_{k=1}^{N_{\mathrm{sys}}} \sigma_{i,k} \sigma_{j,k} + \delta_{ij} \sigma_{i,t}\right)$
- WRONG OPTIONS RESCALE DATA VALUES BUT NOT STANDARD DEVIATIONS & FIT WITH PENALTY;

ADD NORMALIZATION UNCERTAINTY TO COVARIANCE MATRIX

$$\operatorname{cov}_{ij} = \left(\sum_{k=1}^{N_{\text{sys}}} \sigma_{i,k} \sigma_{j,k} + F_i F_j \sigma_N^2\right) + \delta_{ij} \sigma_{i,t}.$$

MONTE CARLO

- FIRST OPTION (NNPDF) INCLUDE NORMALIZATION UNCERTAINTY ALONG WITH OTHER SYSTEMATICS IN DATA GENERATION $F_i^{(art)(k)} = \left(1 + r_N^{(k)} \sigma_N\right) \left(F_i^{(exp)} + \sum_{p=1}^{N_{sys}} r_p^{(k)} \sigma_{i,p} + r_i^{(k)} \sigma_{i,t}\right)$
- SECOND OPTION NORMALIZATION IS NOT INCLUDED IN DATA GENERATION, & TREATED AS A FREE PARAMETER, TO BE FITTED REPLICA BY REPLICA

INCOMPATIBLE DATA

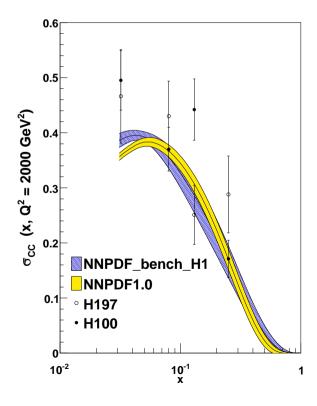
WHEN USED TOGETHER WITH NEURAL NETWORK & CROSS-VALIDATION STOPPING MONTE CARLO LEADS TO INFLATION OF UNCERTAINTY

WHEN COMBINING INCONSISTENT DATA \Rightarrow SIMILAR TO PDG (SCALE FACTOR) METHOD

EXAMPLE BENCHMARK FIT (HERALHC WSHOP)

LARGER COMPATIBLE DATASET

 \Rightarrow ERROR REDUCTION



INCOMPATIBLE DATA

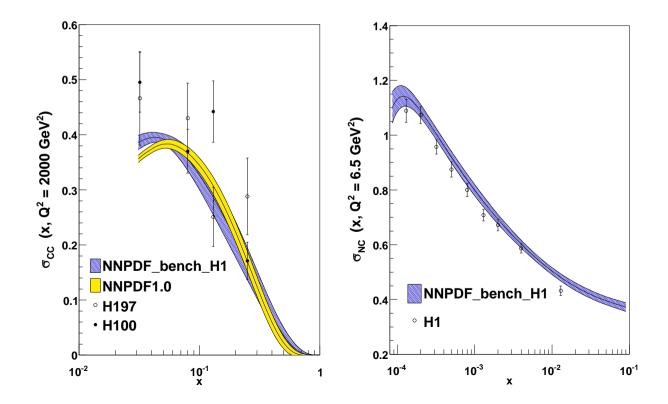
WHEN USED TOGETHER WITH NEURAL NETWORK & CROSS-VALIDATION STOPPING MONTE CARLO LEADS TO INFLATION OF UNCERTAINTY WHEN COMBINING INCONSISTENT DATA \Rightarrow SIMILAR TO PDG (SCALE FACTOR) METHOD

EXAMPLE BENCHMARK FIT (HERALHC WSHOP)

LARGER COMPATIBLE DATASET

LARGER DATASET

 \Rightarrow ERROR REDUCTION



INCOMPATIBLE DATA

WHEN USED TOGETHER WITH NEURAL NETWORK & CROSS-VALIDATION STOPPING MONTE CARLO LEADS TO INFLATION OF UNCERTAINTY WHEN COMBINING INCONSISTENT DATA \Rightarrow SIMILAR TO PDG (SCALE FACTOR) METHOD

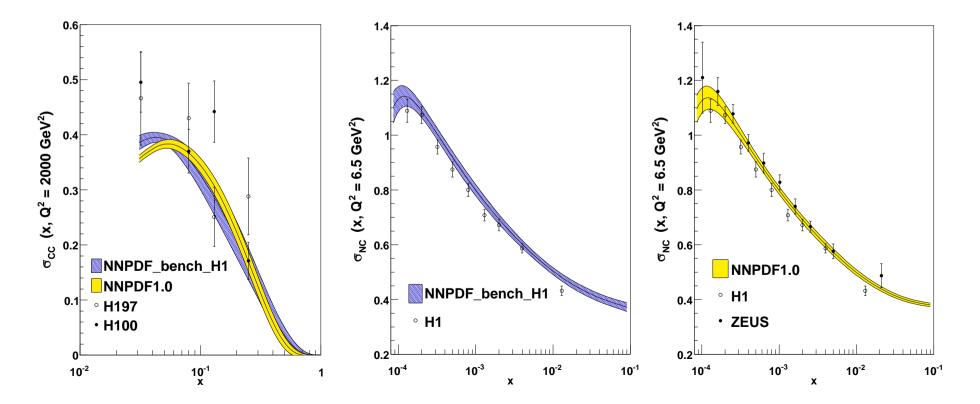
EXAMPLE BENCHMARK FIT (HERALHC WSHOP)

LARGER COMPATIBLE DATASET

LARGER DATASET INCOMPATIBLE

 \Rightarrow ERROR REDUCTION

 \Rightarrow NO ERROR REDUCTION



CONCLUSION

- HESSIAN & MONTE CARLO METHOD GIVE THE SAME RESULTS IN THE LINEAR (ERROR PROPAGATION) APPROXIMATION
- MONTE CARLO MORE FLEXIBLE IN HANDLING NON GAUSSIAN OR NON LINEAR BEHAVIOUR
- MONTE CARLO MUST BE DONE IN THE SPACE OF DATA, NOT IN THE SPACE OF PARAMETERS
- MONTE CARLO COUPLED WITH NEURAL NETWORKS AND CROSS-VALIDATION STOPPING ALLOWS FOR AN IMROVED TREATMENT OF INCONSISTENT DATA