

Pseudo-data fits*: some comments on error definitions

Ronan McNulty, Francesco deLorenzi University College Dublin

Pseudo-data fits

- From eigenvector phase space (assume multinomial distribution), choose one set: <u>'truth'</u>
- Generate many pseudo-data sets corresponding to given luminosity
- Fit each pseudo-data set: 'pseudo-measurement'
- Compare <u>pseudo-measurement</u> to <u>truth</u>
 - centre of distribution gives bias
 - width of distribution gives precision
- Repeat

What is fit? (MSTW,CTEQ,Alekhin)

We considered
$$\frac{d\sigma}{dy}$$
 for W+,W-,Z.

(Luminosity)

$$f_0 = \frac{d\sigma}{dy}$$
: distribution obtained with central eigenvectors

$$f_i = \frac{d\sigma}{dy}(\lambda_i = 1, \lambda_{\neq i} = 0)$$
: distribution with ith e.v. moved 1σ

$$\text{Fit} \\ \chi^2(\lambda_0,\lambda_i) = \sum_{j=1}^{\#bins} \left[\frac{x_j - \lambda_0 \big(f_0 + \lambda_i \big(f_i - f_0\big)\big)}{\sigma_j} \right]^2 + \sum_{i=1}^{\#e.v.} \lambda_i^2$$
 Normalisation

data in j bins, each with uncertainty $\boldsymbol{\sigma}$

What is fit? (NNPDF)

We considered $d\sigma$ for W+,W-,Z.

$$f_i = \frac{d\sigma}{dy} \quad \text{for ith replica}$$

Fit
$$\chi^2(\lambda_0) = \sum_{j=1}^{\#bins} \left[\frac{x_j - \lambda_0 f_i}{\sigma_j} \right]^2$$

... and only consider consistent replicas (Chisquared probability > 1 %) [should explicitly include in NN procedure ... to do]

Thanks to Maria and Juan for suggestion on how to sample a large number of times from the NNPDF distribution

1S2009 - SF & low-x WG

Results for precision on luminosity shown at DIS09....

	0.1 fb ⁻¹			
	MSTWos	CTEQ66	Alekhin	NNPDF
W+	1.8	2.4	2.0	2.9
W-	1.9	2.6	2.2	2.7
Z	1.9	2.4	2.2	2.4
WWZ	1.7	2.3	1.8	2.0
	1 fb ⁻¹			
	MSTWos	CTEQ66	Alekhin	NNPDF
W+	1.6	2.2	1.8	2.4
W-	1.6	2.3	2.1	2.4
Z	1.7	2.1	1.9	1.8
WWZ	1.5	2.1	1.4	2.2
	10 fb ⁻¹			
	MSTWos	CTEQ66	Alekhin	NNPDF
W+	1.3	2.0	1.5	2.5
W-	1.2	1.9	1.6	5.0
Z	1.4	1.9	1.9	1.9
WWZ	0.8	1.7	1.0	_

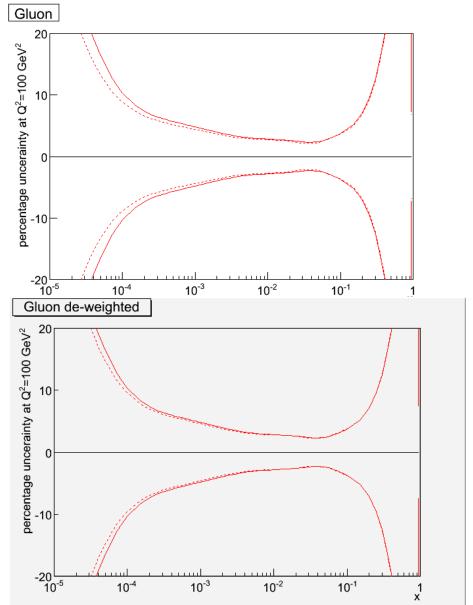
Percentage statistical uncertainty on fitted luminosity

Precision doesn't scale with

Comments at September PDF4LHC meeting:

- If such a fit is a valid fit, it also has produced valid improved values for the eigenvectors.
- If you trust my luminosity derived in this way, you should trust my eigenvector values too.
- BUT my eigenvector values are more precise than values that would be given by the global fit.

Comments at September PDF4LHC meeting:


- If such a fit is a valid fit, it also has produced valid improved values for the eigenvectors.
- If you trust my luminosity derived in this way, you should trust my eigenvector values too.
- BUT my eigenvector values are more precise than values that would be given by the global fit.

Approximate effect of global fit (should redo global fits):

$$\chi^{2}(\lambda_{0}, \lambda_{i}) = \frac{1.65^{2}}{(\Delta \chi_{90}^{2})} \sum_{j=1}^{\#bins} \left[\frac{y_{j} - \lambda_{0} (f_{0} + \lambda_{i} (f_{i} - f_{0}))}{\sigma_{j}} \right]^{2} + \sum_{i=1}^{\#e.v.} \lambda_{i}^{2}$$

MSTW "deweight" data by ~4, CTEQ "deweight" data by ~6

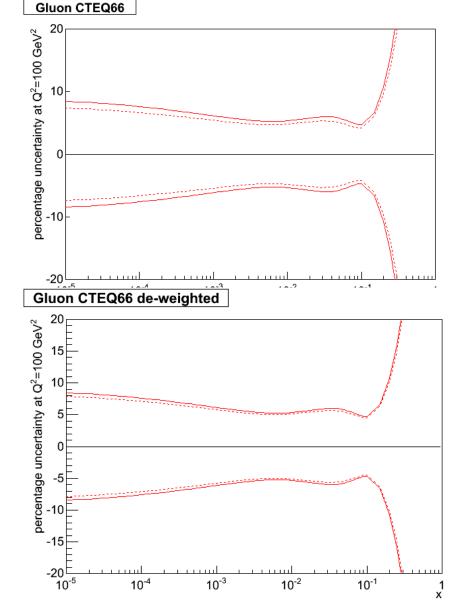
Effect on gluon PDF of fit to 1fb⁻¹ of LHCb Z data (MSTW08)

solid line: current uncertainty

dashed line: with LHCb data

Straight fit

x=1E-4, 11% -> 8%


x=5E-5, 17%->13%

Deweighted fit

x=1E-4, 11%->10%

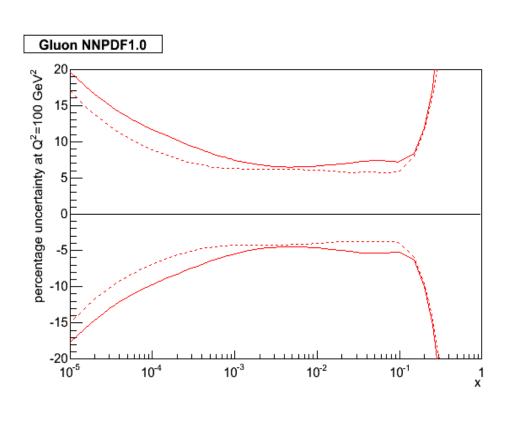
x=5E-5, 17%->15%

Effect on gluon PDF of fit to 1fb⁻¹ of LHCb Z data (CTEQ66)

Straight fit

x=1E-4, 7.5% -> 6.5%

x=5E-5, 7.5% -> 6.5%

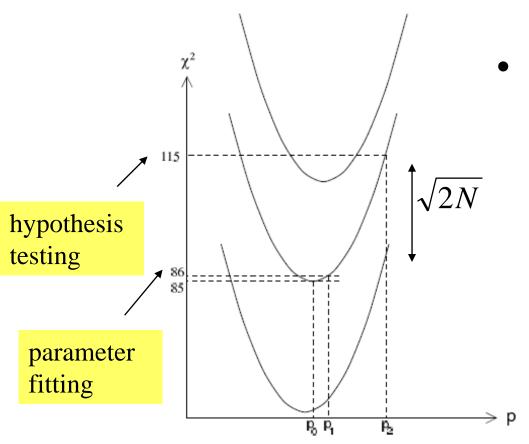

Deweighted fit

x=1E-4, 7.5%->7%

x=5E-5, 7.5%->7%

(Smaller difference because impact of data is less)

Effect on gluon PDF of fit to 1fb⁻¹ of LHCb Z data (NNPDF1.0)

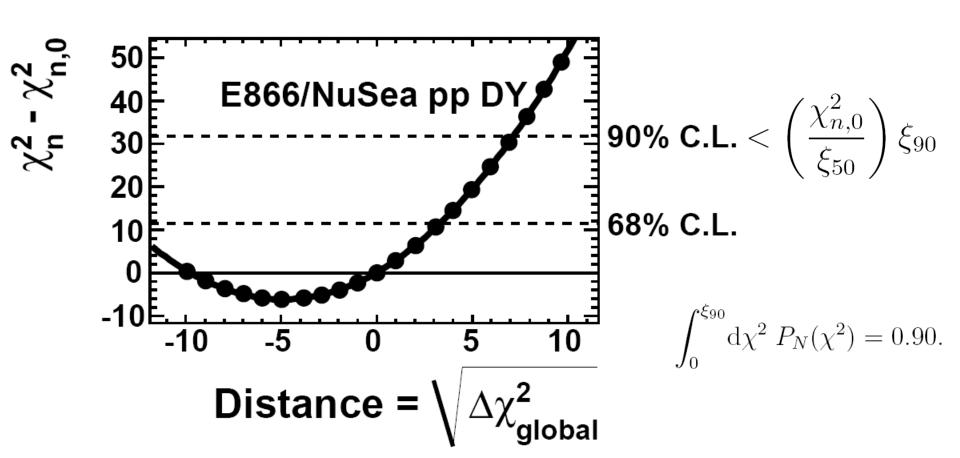


<u>Fit</u>

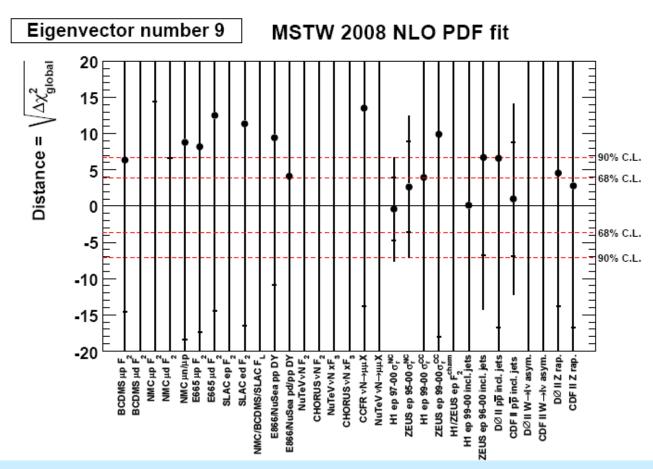
x=1E-4, 12% -> 9%

x=5E-5, 13%-> 11%

Dynamic Tolerance



 In principle the dynamic tolerance method (see Watt PDF4LHC Feb 08) seems a better way to proceed.


•Collins&Pumplin hep-ph/0105207

Dynamic Tolerance

• In principle the dynamic tolerance method (see Watt PDF4LHC Feb 08) seems a better way to proceed.

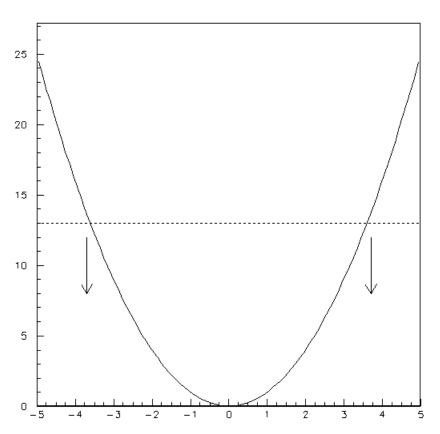
<u>Dynamic Tolerance</u>

If LHCb were the dominant experiment, how small could the tolerance be?

Would we reproduce the simple Chisq fit? i.e. tolerance 1.

<u>Dynamic Tolerance</u>

- Assume we bin data in 50 rapidity bins
- If dominant experiment then

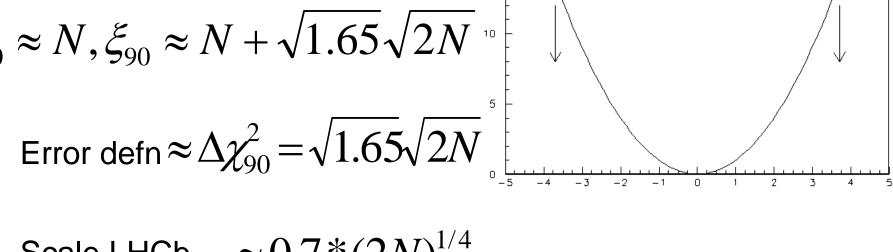

$$\Delta \chi^2 = \chi_n^2 - \chi_{n,0}^2$$

$$\xi_{50} \approx 50, \xi_{90} \approx 63$$

• Error defn $\approx \Delta \chi_{90}^2 = 13$

Scale LHCb data by

$$\approx \frac{\sqrt{13}}{1.65} \approx 2.2$$


Dynamic Tolerance

- Assume we bin data in N rapidity bins
- If data dominant then

$$\Delta \chi^2 = \chi_n^2 - \chi_{n,0}^2$$

$$\xi_{50} \approx N, \xi_{90} \approx N + \sqrt{1.65} \sqrt{2N}$$

• Error defn $\approx \Delta \chi_{90}^2 = \sqrt{1.65}\sqrt{2}N$

20

Scale LHCb $\approx 0.7*(2N)^{1/4}$ data by

<u>Dynamic Tolerance</u>

- Deweighting of data scales with $N^{1/4}$
 - Experimental Brinksmanship. Report your data in as few bins as possible (but not too few!)
 - Paradoxical situation (also for CTEQ) that if you have just one data set you will immediately deweight it
 - Tolerance may be reasonable when competing datasets
 - If you have a <u>dominant</u> dataset, this may not be the best approach.

Summary (Personal feelings)

- As an experimentalist, I feel uneasy that the full statistical impact of the data is not seen in the global fits.
- We would have to collect 10fb-1 of data in order to have the same statistical effect as 1fb-1 of data.
- It is unlikely that experiments are underestimating their systematics by such a large effect (see e.g. LEPEWWG or HERAPDF).
- More likely to be due to model dependence. (Have previously shown that 1fb-1 of data is sufficient to distinguish between models.)
- If so, try to determine a systematic error due to the model but don't scale experimental errors