Error analysis of the Higgs transverse spectrum

Varun Vaidya, Los Alamos Natl. Lab

In collaboration with I. Rothstein and D. Neill JHEP 1512 (2015) 097

Higgs transverse spectrum

Power corrections in Mh/Mt

• Corrections relevant only for Pt > Mh

Renormalization scale variation

 $\frac{d^2\sigma}{dP_t^2dy} \sim H(M_h) C_t^2 \int db b J_0(bP_t) \Big[f_n^{\mu\nu}(b,z_1) f_{\mu\nu,\bar{n}}(b,z_2) S(b) \Big]$

 Two independent scale variations : The virtuality scale : µ, the rapidity scale : v

Scale variation error band

Power corrections in Pt/Mh

- Non-singular pieces ~ Pt/Mh become comparable to the singular cross section at Pt ~ 30 GeV
- Logs are small and resummation is not required.

- Turn off resummation using profiles in μ,ν
- Match to the full theory **NNLO** (O(α_s^2)) cross section

Power corrections in \QCD/Pt

- Power corrections in ΛQCD/Pt are important at very low values of Pt.
- Include higher dimensional operators in both the soft and colinear sectors.

$$S_n^{ac}(0)S_{\bar{n}}^{ad}(0)\mathcal{P}_{\perp}^{\alpha}\mathcal{P}_{\perp}^{\beta}S_n^{bc}(0)S_{\bar{n}}^{bd}(0)$$

$$\left\{B_{n\perp}^{A\mu}(0)\delta(p_n z_1 - \overline{\mathcal{P}}_n)\mathcal{P}_{\perp}^{\sigma}\mathcal{P}_{\perp}^{\rho}\left[B_{n\perp}^{A\nu}(0)\right]\right\}$$

• An estimate of these power corrections

$$\frac{d\sigma}{dP_t} \left(1 \pm \frac{\Lambda_{QCD}^2}{P_t^2}\right)$$

Non-perturbative corrections

PDF uncertainty

Total Error Band

 Two independent scale variations provide a more reliable error estimate

Scale variation is dominant source of uncertainty

v variation enhances error band

- Power corrections in Mh/Mt important for Pt > Mh
- Non perturbative power corrections important for Pt< 5 GeV

Power suppresed operators need to be included Extraction of TMDPDF from expt. for Pt < 1 GeV