Fiducial and Differential Properties of Higgs from NNLOJET

WG1 ggF subgroup meeting: uncertainties in kinematic regions

Xuan Chen

Centre of High Energy Physics Peking University

CERN, November 15, 2016

Xuan Chen (CHEP, Peking University)

NNLOJET: NNLO tool with Antenna subtraction

XC, J. Cruz-Martinez, J. Currie, A. Gehrmann-De Ridder, T. Gehrmann, N. Glover, A. Huss, M. Jaquier, T. Morgan, J. Niehues, J. Pires

•	$pp \rightarrow H + 0, 1 \text{ jet (ggF)}$	1408.5325, 1604.04085, 1607.08817
v	$pp \rightarrow H + 2$ jet (VBF)	comming soon
v	$pp \rightarrow Z(W) + 0, 1$ jet	1507.02850, 1601.04569, 1605.04295, 1610.01843
v	$pp \rightarrow 2$ jets	1310.3993, 1407.5558
v	$pp \rightarrow 1$ jet	1611.01460
v	$ep \rightarrow e+1,2$ jets	1606.03991
v	e+e- ightarrow 1,2,3 jets	0710.0346, 0711.4711
~	••••	all process @NNLO

Xuan Chen (CHEP, Peking University)

NNLOJET: application in $pp \rightarrow H + jet$

- $pp \rightarrow H + jet$
 - Higgs production via gluon fusion in EFT
 - NNLO accuracy for one-jet bin in fiducial cross section
 - Precise study for p_T^H distribution (Boosted Higgs with NNLO accuracy)
 - Excellent agreement in inclusive H($\gamma\gamma$)+Jet final states (RUN II data)
- One of the first NNLO processes done with three different subtraction schemes
 - pp \rightarrow H + J Antenna subtraction. xc, Gehrmann, Glover and Jaquier 1408.5325, 1604.04085, 1607.08817 [hep-ph]
 - pp \rightarrow H + J Sector Improved Decomposition subtraction (without quark-quark channel). Boughezal, Caola, Melnikov, Petriello, Schulze 1302.6216, 1504.07922, 1508.02684 [hep-ph]
 - pp \rightarrow H + J N-jettiness subtraction. Boughezal, Focke, Giele, Liu, Petriello 1505.03893 [hep-ph]
- Results in YR4 were calculated with the following cuts:

\sqrt{s}	13 TeV
PDF set	PDF4LHC15_nnlo_30
Scale choices	$\mu_R = \mu_F = [1, 1/2, 2] \times m_H$
anti- k_T jets	R = 0.4
	$p_T^j > 30 { m GeV}$
Parton channels	all@NNLO
Wilson correction	Same order of $lpha_s$
m_t effects	N/A

Xuan Chen (CHEP, Peking University) Fiducial and Differential Properties of Higgs from NNLOJET CERN, November 15, 2016 3 / 19

Xuan Chen (CHEP, Peking University) Fiducial and Differential Properties of Higgs from NNLOJET CERN, November 15, 2016 4 / 19

• Jet-bin comparison using CERN-LHCHXSWG recommend cuts:

Xuan Chen (CHEP, Peking University)

• Differential distribution of p_H^T in YR4:

6 / 19

• Suitable as benchmark reference for p_{i1}^T in YR4:

7 / 19

• Cross-checking is important (more details later):

У

Finite quark mass effect

Xuan Chen (CHEP, Peking University) Fiducial and Differential Properties of Higgs from NNLOJET CERN, November 15, 2016 9 / 19

Finite quark mass effect in p_T^H

- Precision study for p_T^H distribution (no jet cut)
- The heavy particle loop is resolved by the large momentum transfer flowing through it
- Currently only LO mass effect is known for Higgs + 3 parton
- Including Top, Bottom and Charm quark masses (and interference terms)
- Define differential reweighing function to estimate the effect at NLO and NNLO:

$$R=\sigma^M_{\rm LO}/\sigma^{\rm EFT}_{\rm LO}$$

Finite quark mass effect in p_T^H

- Precision study for p_T^H distribution (no jet cut)
- The heavy particle loop is resolved by the large momentum transfer flowing through it
- Currently only LO mass effect is known for Higgs + 3 parton
- Including Top, Bottom and Charm quark masses (and interference terms)
- Define differential reweighing function to estimate the effect at NLO and NNLO:

$$R = \sigma_{\rm LO}^M / \sigma_{\rm LO}^{\rm EFT}$$

Finite quark mass effect in p_T^H

- Precision study for p_T^H distribution (no jet cut)
 - EFT \otimes M reweighting $\frac{\mathbf{d}\sigma_{\text{NNLO}}^{EFT \otimes M}}{\mathbf{d}p_T^H} \equiv R(p_T^H) \left(\frac{\mathbf{d}\sigma_{\text{NNLO}}^{EFT}}{\mathbf{d}p_T^H}\right)$ • EFT \oplus M reweighting $\frac{\mathbf{d}\sigma_{\text{NNLO}}^{EFT \oplus M}}{\mathbf{d}p_T^H} \equiv \left(\frac{\mathbf{d}\sigma_{\text{NNLO}}^{EFT}}{\mathbf{d}p_T^H}\right) + \left(R(p_T^H) - 1\right) \left(\frac{\mathbf{d}\sigma_{\text{LO}}^{EFT}}{\mathbf{d}p_T^H}\right)$

- The spread serves to quantify the systematic uncertainty
- Mass correction within scale uncertainties for $p_T^H < 250 \ {\rm GeV}$
- Corrections in high p_T^H region (400 ~ 500 GeV) could be $40\% \sim 70\%$
- Would need NLO mass effect for further constrain

Finite quark mass effect in γ_1

- Apply CMS cuts at 13 TeV in $H \rightarrow \gamma \gamma$ channel, γ_1 is the leading photon
- $p_T^{\gamma_1}$ and y^{γ_1} distributions with two reweighting schemes :

Xuan Chen (CHEP, Peking University)

Xuan Chen (CHEP, Peking University) Fiducial and Differential Properties of Higgs from NNLOJET CERN, November 15, 2016 13 / 19

- One of the first NNLO processes done with three different subtraction schemes
 - pp ightarrow H + J Antenna subtraction. xc, Gehrmann, Glover and Jaquier 1408.5325, 1604.04085, 1607.08817 [hep-ph]
 - pp \rightarrow H + J Sector Improved Decomposition subtraction (without quark-quark channel). Boughezal, Caola, Melnikov, Petriello, Schulze 1302.6216, 1504.07922, 1508.02684 [hep-ph]
 - pp \rightarrow H + J N-jettiness subtraction. Boughezal, Focke, Giele, Liu, Petriello 1505.03893 [hep-ph]
- $\bullet\,$ NNLL effects are included in jet-bin analysis $\rightarrow\,$ direct comparison not available
- Rapidity distribution of Higgs show tension between N-jettiness and NNLOJET
- NNLOJET repeat three sets of calculations for cross check (next slides)

Xuan Chen (CHEP, Peking University)

\sqrt{s}	8 TeV	13 TeV	8 TeV
PDF set	NNPDF23_nnlo	PDF4LHC15_nnlo_30	NNPDF23_nnlo
Central scales	$\mu_R = \mu_F = m_H$	$\mu_R = \mu_F = m_H$	$\mu_R = \mu_F = m_H$
anti- k_T jets	R = 0.4	R = 0.4	R = 0.5
	$ \eta_j < 4.4$	-	$ \eta_j < 2.5$
	$p_T^j > 30 { m GeV}$	$p_T^j > 30 { m GeV}$	$p_T^j > 30 { m GeV}$
leading photon	$ \eta_{\gamma_1} < 2.37$	-	-
	$p_T^{\gamma_1} > 0.35 m_H$	-	-
sub-leading photon	$ \eta_{\gamma_2} < 2.37$	-	-
	$p_T^{\gamma_2} > 0.25 m_H$	-	-
Parton channels	$gg{+}qg{+}qar{q}(NLO)$	$gg{+}qg{+}qar{q}(NLO)$	all channels (NNLO)
	$\sigma_{H(\to\gamma\gamma)+>1jet,\text{NNLO}}^{EFT}$	$\sigma_{H+\geq 1jet,\text{NNLO}}^{EFT}$	$\sigma_{H+\geq 1jet,\text{NNLO}}^{EFT}$
NNLOJET	$9.44^{+0.59}_{-0.85}$ fb	$16.8^{+0.9}_{-1.5}~{\sf pb}$	$5.81^{+0.51}_{-0.62}~{ m pb}$
STRIPPER 1508.02684	$9.45^{+0.58}_{-0.82}$ fb	-	-
STRIPPER 1511.02886	-	$16.7^{+1.0}_{}$ pb	-
N-jettiness 1505.03893	-	-	$5.5^{+0.3}_{-0.4}~{ m pb}$

- In-depth comparison with 1508.02684 also for differential distributions
- Unable to confirm the N-jettiness results
- More comparison using Les Houches setup on the way

Xuan Chen (CHEP, Peking University)

• Preliminary comparison using Les Houches 2015 setup [1605.04692]

- Same choices of scale, PDFs, jet algorithm and etc.
- Tension in both fiducial and differential cross sections $\sigma_{H+\geq 1jet,\text{NNLO}}^{NNLOJET} = 17.4^{+0.28}_{-1.22} \text{(pb)}, \sigma_{H+>1jet,\text{NNLO}}^{N-jettiness} = 16.4^{+0.0}_{-0.9} \text{(pb)}$

Summary

Summary

- NNLO corrections is important for H+J
 - Increase total cross sections and reduce scale uncertainties
 - Change the normalisation and the shape in differential distributions
 - Provide p_T^H distributions at NNLO accuracy
- To improve from YR4
 - Finite quark mass effects are important for $p_T^H,\, {\rm NLO}$ corrections needed
 - Cross check between different groups are needed
 - Different decay channels not yet well studied
- Future work
 - More process and more functions in NNLOJET
 - Require resummation for certain observables
 - Closer collaboration with experimental analysis for LHC Run 2.

Summary

Summary

- NNLO corrections is important for H+J
 - Increase total cross sections and reduce scale uncertainties
 - Change the normalisation and the shape in differential distributions
 - Provide p_T^H distributions at NNLO accuracy
- To improve from YR4
 - $\bullet\,$ Finite quark mass effects are important for $p_T^H,$ NLO corrections needed
 - Cross check between different groups are needed
 - Different decay channels not yet well studied
- Future work
 - More process and more functions in NNLOJET
 - Require resummation for certain observables
 - Closer collaboration with experimental analysis for LHC Run 2.

THANK YOU!

17 / 19

 $\bullet \ y_{\rm H}$ distributions:

