

Python 2.x to Python 3.x software
stack migration
Stefan-Gabriel Chitic
EP-LBC, Physics Department
CERN
stefan-gabriel.chitic@cern.ch

May 15, 2017 Python 2.x to Python 3.x software stack migration 2

stefan-gabriel.chitic@cern.ch

Why?

End of support and updates for Python 2.x

• Python 2.6.x ended with 2.6.9 in 2013 - SLC6

• Python 2.7.x will end in 2020 - Centos 7

• No more 2.x

Now or never: Migrate to Python 3.

May 15, 2017 Python 2.x to Python 3.x software stack migration 3

What you get?
• Cool new features

• Concurrent programming (Asyncio)
• Advanced string processing
• Everything is an iterator
• Many other1

• NumPy, SciPy, matplotlib, Pandas, IPython,
SymPy and many others scientific Python
libraries are all compatible with Python 3 and
support for some packages will be available
only for python 3.x

1http://goo.gl/cPNjgX.

May 15, 2017 Python 2.x to Python 3.x software stack migration 4

Impact

• Long transition time: Keep the
retro-compatibility with previous python
versions: 2.6.6 (default on SLC6), 2.7.5 (default
of Centos 7)

• Maintain one package for all python version

• Avoid adding/removing (extra) dependencies

May 15, 2017 Python 2.x to Python 3.x software stack migration 5

Needs

• Strategy on how the migration should be done

• Testing environment for all the considered
python version

• Analysis of cross-versions dependencies

• Multi-python version: matrix of tests to see the
failures on different versions

May 15, 2017 Python 2.x to Python 3.x software stack migration 6

Continuous integration and testing
• Dedicated Jenkins instance

http://jenkins-lhcb-core-soft.web.cern.ch/

Figure: LHCb Core Soft Jenkins

May 15, 2017 Python 2.x to Python 3.x software stack migration 7

http://jenkins-lhcb-core-soft.web.cern.ch/

Dedicated virtual machines for testing

• Multiple python versions installed on the same
host (Centos 7): 2.6.6, 2.7.5, 2.7.12 and

3.6.2

• Dedicated virtualenv for each python version
with version specific packages installed running
on top of the corresponding python version

• Docker ready template usable on Openshift

• Openstack instance running and linked to
Jenkins instance

May 15, 2017 Python 2.x to Python 3.x software stack migration 8

Lessons learned

• Openstack qualify better than Openshift

(@cern)

• DON’T use 2to3, autopep in this order
because first step will render the code almost
python 3 ready and the second step will impact
all the files, making debugging impossible

• Lint as much as possible and respect the coding
rules and guidelines

May 15, 2017 Python 2.x to Python 3.x software stack migration 9

Lbinstall

• First fully migrated tool

• Supports all the considered python versions

• Different dependencies based on which version is
running (decided at installation phase)

• 78% of code coverage in unit testing and 0%
pep8 errors

May 15, 2017 Python 2.x to Python 3.x software stack migration 10

Conclusion

• This is the right time to migrate to Python 3.

• Extra code to keep the retro compatibility
should be easy to remove

• New code should be written in Python 3 directly

• Infrastructure is available for new projects

May 15, 2017 Python 2.x to Python 3.x software stack migration 11

	Introduction
	Why?
	Impact

	Infrastructure
	Needs
	Continuous integration and testing
	Dedicated virtual machines for testing

	Work in progress
	Lessons learned
	Lbinstall

	Conclusion

