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Why?

End of support and updates for Python 2.x

• Python 2.6.x ended with 2.6.9 in 2013 - SLC6

• Python 2.7.x will end in 2020 - Centos 7

• No more 2.x

Now or never: Migrate to Python 3.
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What you get?
• Cool new features

• Concurrent programming (Asyncio)
• Advanced string processing
• Everything is an iterator
• Many other1

• NumPy, SciPy, matplotlib, Pandas, IPython,
SymPy and many others scientific Python
libraries are all compatible with Python 3 and
support for some packages will be available
only for python 3.x

1http://goo.gl/cPNjgX.
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Impact

• Long transition time: Keep the
retro-compatibility with previous python
versions: 2.6.6 (default on SLC6), 2.7.5 (default
of Centos 7)

• Maintain one package for all python version

• Avoid adding/removing (extra) dependencies
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Needs

• Strategy on how the migration should be done

• Testing environment for all the considered
python version

• Analysis of cross-versions dependencies

• Multi-python version: matrix of tests to see the
failures on different versions
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Continuous integration and testing
• Dedicated Jenkins instance

http://jenkins-lhcb-core-soft.web.cern.ch/

Figure: LHCb Core Soft Jenkins
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Dedicated virtual machines for testing

• Multiple python versions installed on the same
host (Centos 7): 2.6.6, 2.7.5, 2.7.12 and

3.6.2

• Dedicated virtualenv for each python version
with version specific packages installed running
on top of the corresponding python version

• Docker ready template usable on Openshift

• Openstack instance running and linked to
Jenkins instance
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Lessons learned

• Openstack qualify better than Openshift

(@cern)

• DON’T use 2to3, autopep in this order
because first step will render the code almost
python 3 ready and the second step will impact
all the files, making debugging impossible

• Lint as much as possible and respect the coding
rules and guidelines

May 15, 2017 Python 2.x to Python 3.x software stack migration 9



Lbinstall

• First fully migrated tool

• Supports all the considered python versions

• Different dependencies based on which version is
running ( decided at installation phase)

• 78% of code coverage in unit testing and 0%
pep8 errors
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Conclusion

• This is the right time to migrate to Python 3.

• Extra code to keep the retro compatibility
should be easy to remove

• New code should be written in Python 3 directly

• Infrastructure is available for new projects
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