Toward a Rigorous Comparison Between Models & Data

Scott Pratt, Michigan State University

Lessons from RHIC (bulk properties)

- * Matter is rather stiff: (no large latent heat, but softer than I gas)
- * Early flow seems important: (otherwise difficult to fit HBT)
- * Viscosity is low: (mostly from elliptic flow)

$$\frac{\eta}{s} \approx \left(\frac{1}{2} \text{ to } 3\right) \times \frac{\hbar}{4\pi}$$

... but nothing is quantitative or rigorous

- * EOS (min c_s², width of soft region, max c_s²)
- * ??? < \eta /s < ??? (energy dependence?)
- * ε for τ < 0.5 fm/c uncertain by factor of 2

Properties are neither DETERMINED nor VALIDATED rigorously

RHIC Analysis Challenge

Individual elements cannot be isolated!! complex, non-linear network

Uncertainties and Parameters

Initial State	6	Energy density, profile shape, rapidity width, pressure, anisotropy of T _{ij} , quark/gluon content
Hadronic Boltzmann	2-4	Mass changes
Eq. of State / Viscosity	3-8	Might be constrained by lattice, hadron gas
Chemical	3-6	Quark density, relaxation rates, hadronic scattering reduction
Jet Quenching	2-4	Dissipation rates
Systematic Experimental	?	Efficiencies, calibrations

≈ 30 parameters
Some are unimportant
Some combinations are unimportant

Bayesian Analysis

WIKIPEDIA: Bayesian inference is statistical inference in which evidence or observations are used to update or to newly infer the probability that a hypothesis may be true. The name "Bayesian" comes from the frequent use of Bayes' theorem in the inference process.

$$P(H \mid E) = \frac{P(E \mid H)P(H)}{P(E)}$$

P(H) is probability (in absence of E) for parameter set H
a.k.a. the "prior distribution"
P(E|H) is probability of E given H, i.e,

$$P \sim \exp\left(-\sum \delta_i^2 / 2\sigma_i^2\right)$$

P(E) is net probability of E, i.e., a normalization factor P(H|E) is probability of parameter set H given E

Bayes' Theorem

$$P(E \& H) = P(E \mid H) \cdot P(H) = P(H \mid E) \cdot P(E)$$

$$P(H \mid E) = \frac{P(E \mid H) \cdot P(H)}{P(E)}$$

Parameter Sampling via Metropolis

random step

if $P_b > P_a$ then ACCEPT else if $RAN < P_b / P_a$ ACCEPT else TRY AGAIN

Can find disjoint regions
No problem with undeterminable parameters

Surrogate Models (a.k.a.Emulators, Meta-Models)

Brute Force:

- · Sampling requires millions of runs
- Each run requires 1 work-station day

Alternative:

- Run 10² 10³ times at various points
- "Interpolate" to find values at all other points
- · Competing "interpolation" schemes:
 - Gaussian fields
 - Multi-dimensional splines

An Emerging Science

Other fields can do it....

Cosmological parameters (Habib et al, astro-ph/07023481)

Can this work for Relativistic Heavy Ion Collisions?

- * Must be amenable to parameterization
 - * Model must contain basic truth
 - * Not too many competing theories

- * Must have well stated errors
 - * Statistical & systematic for both theory and experiment
 - * Cross correlated errors

STRATEGY

- * First Pass At "Bulk" Observables
 - * Spectra, Yields, HBT, Flow
- * Intimate Theory/Experiment Discussions
 - * Re-express experimental errors
- * "Professionalize" hydro/cascade code
 - * validated, open-source, modular, flexible...
- * Pedicated team to develop comparison software
 - * Theory/experiment/statistics/computation expertise

OUTCOME

- * Rigorous Quantitative Conclusions about Bulk Properties
- * Validated Base from which to Calculate Jet Energy Loss, Fluctuations, Rare Probes...